Hall Ticket No	Question Paper Code: BST005
INSTITUTE OF AERONAUTICAL ENG	GINEERING
³ ⁷ ⁷ ⁷ _{100 For V} ⁶ ⁶ M.Tech II Semester End Examinations (Supplementary) Regulation: IARE–R16) - January, 2019
FINITE ELEMENT METHOD (STE)	

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a) Explain the steps involved in finite element method and von mises stress.	[7M]
	(b) Obtain strain displacement relationship for an axi-symmetric element.	[7M]

- 2. (a) Explain the term Axi-Symmetric problems and give constitutive law for such problems. [7M]
 - (b) Explain the terms 'Plane stress' and 'Plane strain' problems. Give constitutive laws for these cases. [7M]

$\mathbf{UNIT}-\mathbf{II}$

3. (a) Derive the general equation for determining the stiffness of an element with usual notations in the form. [7M]

$$\left[k\right]_{e} = \iint \left[B\right]^{T} \left[D\right] \left[B\right] dV$$

(b) Obtain an expression for strain displacement matrix for a rectangular element shown in Figure 1. Assuming plane stress condition with displacement matrix as [0, 0, 0.051, 0.076, 0.0152, 0.081, 0, 0] T, determine the stresses at the centre of the rectangle shown. [14M]

Figure 1

- 4. (a) Derive shape functions and their derivatives for two noded line element [7M]
 - (b) Derive expressions for natural coordinates in a CST element. Show that they are nothing but area coordinates. [7M]

$\mathbf{UNIT}-\mathbf{III}$

5. (a) Explain the isoparametric elements and their advantages. [7M]

	(b)	Using Lagrange polynomial find shape functions for Two noded bar element. Sketch the shape function. $$[7{\rm M}]$$		
6.	(a)	Derive Jacobian matrix four noded isoparametric element [7M]		
	(b)	Obtain strain displacement relation matrix for two dimensional triangular element. [7M]		
$\mathbf{UNIT}-\mathbf{IV}$				
7.	(a)	What are the assumptions in thin plate theory? Write the relation between forces and stresses action on a thin plate. [7M]		

(b) Evaluate J,B and sigma matrix, assume plane stress condition for 4 noded rectangular element.

[7M]

- 8. (a) Describe briefly about Mindlin's theory of plates? List out the assumptions [7M]
 - (b) Write the steps involved in obtaining Jacobian matrix and strain displacement relation matrix for 4 noded shell element. [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	Explain iterative procedure and modified iterative procedure for the analysis of materi	al non-
		linearity problems.	[7M]
	(b)	What are the basic methods for non linear analysis and explain?	[7M]
10.	(a)	Explain incremental procedure to handle geometric non-linear problems.	[7M]
	(b)	Explain about non linear applications to special structures.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$