
Hall Ticket No	Question Paper Code: BST005				
	•				
INSTITUTE OF AERONAUTICAL ENGINEERING					
(Autonomous)					
⁷ ⁷ ⁷ ¹ ¹ ¹ M.Tech II Semester End Examinations (Regular/ Supplem	entary) - July, 2018				
Regulation: IARE–R16					
FINITE ELEMENT METHOD					
(Structural Engineering)					
Time: 3 Hours	Max Marks: 70				
Answer ONE Question from each U	nit				

All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1. (a) Applying Rayleigh - Ritz method, develop the force displacement relation and evaluate the nodal displacements, support reactions and stresses in each element. [7M]

(b) Classify the different types of elements with sketches and outline the application of these elements.

[7M]

2.(a) Analyze the tapering bar shown by using principle of minimum PE and determine the internal forces in all the elements. Use three elements. E = 200GPa Compare the solution with exact results and comment. Both ends are fixed. [7M]

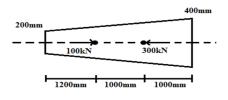
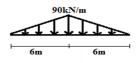



Figure 2

(b) write the basic stress - strain relations of a linear elastic materials in the finite element method. [7M]

UNIT - II

3. (a) Develop the shape functions for a two node beam element in cartesian coordinates and derive the consistent load vector for a two node beam element shown below. [7M]

Figure 3

	(b)	Determine the shape functions for a Constant Strain Triangular (CST) element intermes of	nat-	
		ural coordinate systems. Take 3 nodes. ['	7M]	
1.	(a)	Discuss mesh refinement with higher order elements with suitable examples. ['	7M]	
	(b)	Illustrate with an example how numbering of nodes has to be carried out to minimize band wi	dth.	
		['	7M]	
5.	(a)	Develop the shape functions for a triangular element with six nodes with isoparametric form	ula-	

4

5. (a) Develop the shape functions for a triangular element with six nodes with isoparametric formulation. [7M]

(b) Applying Lagrangian's polynomials develop the shape functions for an 8 -noded brick element.

[7M]

$\mathbf{UNIT}-\mathbf{III}$

- 6. (a) Develop an expression for strain displacement matrix and outline the procedure for developing element stiffness matrix in plane stress linear rectangular element with isoparametric formulation.
 - [7M]
 - (b) Develop the strain displacement matrix for constant train triangle element with three nodes.

[7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Discuss the formulation of plate bending elements based on Kirchhoff's plate theory.	[7M]
	(b) Discuss and write the basic relations in the thin plate theory with neat sketch.	[7M]
8.	(a) Discuss the formulation of plate bending elements based on Mindlin's plate theory.	[7M]
	(b) Explain the displacement models for plate analysis interms of continuity element.	[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Explain modified Newton – Raphson method in nonlinear analysis.	[7M]
	(b) Discuss convergence requirements in nonlinear analysis.	[7M]
10.	(a) Explain how plasticity is considered in uniaxial stress with respect to nonlinear analysis.	[7M]
	(b) What are the different non linear problems in finite element analysis ans explain.	[7M]

 $-\circ\circ\bigcirc\circ\circ-$