Hall Ticket N	0 Qu	estion Paper Code: BST201
	NSTITUTE OF AERONAUTICAL ENGIN (Autonomous)	IEERING
FION FOR LISER'S	M.Tech I Semester End Examinations (Supplementary) - Regulation: IARE–R16	July, 2017
	MATRIX METHODS OF STRUCTURAL AN (Structural Engineering)	ALYSIS
Time: 3 Hours		Max Marks: 70
	Answer ONE Question from each Unit	

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Derive load vector and displacement matrix for simply supported beam subjected to w kN/m uniformly distributed load long entire span of L. [7M]
 - (b) Explain local and global stiffness matrix for a simple truss member with example. [7M]
- 2. (a) Determine the degrees of statical and kinematic indeterminacy of the beam ABC shown in Figure 1. [7M]

Figure 1

(b) Determine the degrees of statical and kinematic indeterminacy of the beam ABC shown in Figure 2. [7M]

Figure 2

$\mathbf{UNIT} - \mathbf{II}$

3. (a) Analyze the axially loaded structure as shown in Figure 3. [7M]

The individual member properties are:

Member	Length (m)	Area (mm ²)	Material, E (kN/mm ²)
1	0.28	400	70
2	0.1	200	100
3	0.1	70	200

Find the displacement of the connections and the forces in each member.

(b) Determine the force vector and displacement matrix for the following truss shown in Figure 4, E = $200 \text{ kN}/mm^2$, The reference area is A = $100 mm^2$. [7M]

Figure 4

4. (a) Determine the force vector and displacement matrix for the following $E = 200 \text{ kN} / mm^2$ area is $A = 100 mm^2$. [7M]

Figure 5

Page 2 of 4

[7M]

(b) For the following frame shown in Figure 6, determine the rotation of the joints and the bending moment diagram. Neglect axial deformation. Take $EI = 1 \times 10^5 kN - m^2$. [7M]

Figure 6

 $\mathbf{UNIT} - \mathbf{III}$

5. Analyze the continuous beam shown Figure 7. Assume that the supports are unyielding. Assume that EI is constant for all members, using Flexibility Method. [14M]

Figure 7

6. A truss of span 7.5 m carries a point load of 1 kN at joint D as shown in Figure 8 find the reactions and forces in the members of the truss, using Flexibility Method. [14M]

Figure 8

$\mathbf{UNIT}-\mathbf{IV}$

7. Analyze the plane frame shown in Figure 9 by direct stiffness method. Assume that the flexural rigidity for all members is the same. Neglect axial displacements. [14M]

Figure 9

8. Analyze the continuous beam shown in Figure 10 assume that the supports are unyielding. Assume EI to be constant for all members using direct stiffness method. [14M]

Figure 10

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Write a short notes on following:
 - i. Static condensation of stiffness matrix
 - ii. Sub structuring of stiffness matrix
 - (b) Summarize how stiffness matrix is also called as equilibrium method. [4M]
- 10. Analyze the truss given in Figure 11, member 13 is subject to a temperature change of $100^{\circ}C$. Where $EA = 2 \times 10^4$ kN, the area of member 12 as 2A, the area of member 13 as A, and the area of member 14 as $A\sqrt{2}$. [14M]

Figure 11

- 0 0 0 0 0 -

[10M]