Hall Ticket N	To Question H	Paper Code: BST201	
	NSTITUTE OF AERONAUTICAL ENGINEER	ING	
FU LARE OF	(Autonomous)		
THON FOR LIBER	M.Tech I Semester End Examinations (Regular) - February, 201	7	
Regulation: IARE–R16			
	MATRIX METHOD OF STRUCTURAL ANALYSI	S	
(Structural Engineering)			
Time: 3 Hours	i de la constante de	Max Marks: 70	
	Answer ONE Question from each Unit		
All Questions Carry Equal Marks			
All parts of the question must be answered in one place only			

$\mathbf{UNIT}-\mathbf{I}$

- 1. (a) Differentiate between static indeterminacy and kinematic indeterminacy with examples. [8 M]
- (b) Determine the degree of static indeterminacy of the pin-jointed plane frame shown in Figure 1.

[6 M]

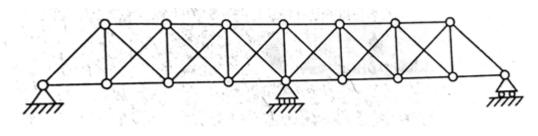


Figure 1

2. (a) Develop the flexibility matrix for prismatic member AB with hinged support at A and roller support at B as shown in Figure 2. [7 M]

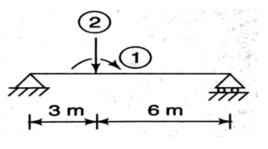


Figure 2

(b) Develop the stiffness matrix for prismatic member AB with hinged support at A and roller support at B as shown in figure 3. [7 M]

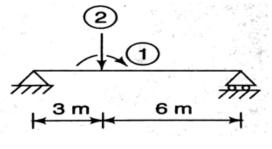


Figure 3

 $\mathbf{UNIT}-\mathbf{II}$

3. (a) Determine the degree of static and kinematic indeterminacies of the beam shown in Figure 4. [6 M]

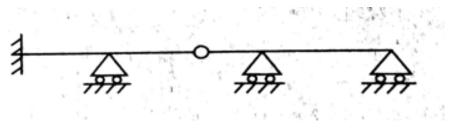


Figure 4

(b) Using the stiffness method, calculate the end deflection and rotation of a cantilever beam loaded uniformly as shown in Figure 5. EI is constant. [8 M]

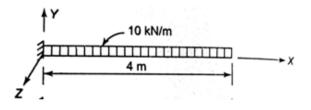


Figure 5

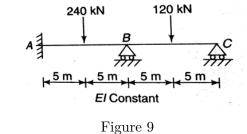
- 4. (a) Explain the step by step procedure for stiffness matrix method. [12 M]
 - (b) Determine the degree of freedom for the beam given in Figure 6. [2 M]

Figure 6

60 KN

m,, ↓ ↓ ↓ ↓ ↓ ↓ **D** 2 m 2 m 3 m 1.5/ 21

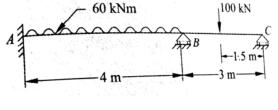
Figure 10


$\mathbf{UNIT} - \mathbf{III}$

5. Analyse the continuous beam shown in Figure 7 using flexibility method.

- 6. Analyse the pin-jointed structure shown in Figure 8 by using flexibility method. The cross sectional area of ach member is 2000 mm^2 . Take $E = 200 \ kN/mm^2$. [14 M]

 $\mathbf{UNIT}-\mathbf{IV}$


7. Analyse the continuous beam shown in Figure 9 using stiffness method.

8. Analyse the frame shown in Figure 10 using stiffness method.

[14 M]

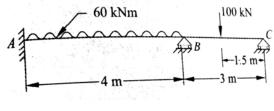


Figure 7

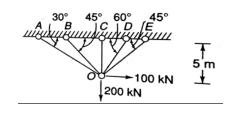


Figure 8

$\mathbf{UNIT} - \mathbf{V}$

9. Describe briefly about the behavior of large frames shear walls.	[14 M]

10. Analyse the frame shown in Figure 11 and draw the B.M.D. Consider EI as constant. [14 M]

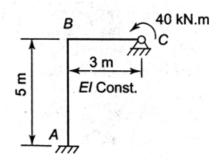


Figure 11