Hall Ticket N	0			Question Paper Code: BST205
EU CHARE CONTRACTOR		(Au	itonomous	AL ENGINEERING) pplementary) - July, 2017
			tion: IARE	

ADVANCED CONCRETE TECHNOLOGY

(Structural Engineering)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	What is meant by hydration of cement? Explain the hydration reaction of important Bo	ogue's
		compounds indicating the products of hydration.	[7M]
	(b)	Explain how you determine the strength of aggregate using aggregate crushing and impact tests?	value [7M]
2.	(a)	Explain in detail with sketches the structure of hydrated cement paste?	[7M]

(b) What are Super plasticizers? Discuss the classification of Super plasticizers? What are the effects of Super plasticizers on Fresh Concrete? [7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	What are the causes of Bleeding and Segregation? Discuss the method of test for Bleeding of concrete? [7M]
	(b)	List the techniques for measuring Pulse velocity through concrete? Explain briefly the factors affecting the measurement of Pulse Velocity? [7M]
4.		Explain briefly the various factors which affect the workability of concrete? [7M] Discuss maturity of concrete? How is it measured? What are its practical uses in the concrete industry? [7M]
		$\mathbf{UNIT} - \mathbf{III}$

5. (a) Explain how High-Strength concrete can be classified? What are the various techniques used to achieve high strength? [7M] (b) What are the factors which control the performance of High Performance concrete? [7M] 6. (a) What are the advantages and applications of using High-Strength concrete? [7M] (b) What are the requirements for High-performance characteristics? Explain briefly the methods for achieving High-performance? [7M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	Explain briefly the requirements for self-compacting concrete. Explain production and placing of self-compacting concrete. [6M]
	(b)	What are the different types of fibers used in concrete? What are the factors effecting properties of fiber reinforced concrete? [8M]
8.	(a)	Explain the properties and applications of polymer impregnated concrete. [7M]
	(b)	Explain in detail the method of design of light weight aggregate concrete mix. [7M]
		$\mathbf{UNIT}-\mathbf{V}$
9.	(a)	List the various methods used for proportioning concrete mixes. Write any one procedure for determining concrete mix design. [7M]
	(b)	Discuss the tests necessary to check the adoptability of a particular mix proportion for field use. $[7M]$
10.	(a)	What are the variables to be considered in proportioning of concrete mixes? Write a note on statistical quality control of concrete. [7M]
	(b)	Design the concrete mix for M45 grade of concrete with the following data: [7M]
		Type of cement: OPC 43 grade
		Maximum size of aggregate: 20 mm
		Exposure condition: Severe (RCC)
		Workability: 125 mm slump
		Minimum cement content: $320 \ kg/m3$
		Maximum water cement ratio: 0.45
		Method of placing concrete: pumping
		Degree of supervision: good
		Type of aggregate: Crushed angular aggregate
		Super plasticizer will be used
		Sp. Gr of CA: 2.80
		Sp. Gr of FA: 2.70
		Water absorption of CA: 0.5%
		Water absorption of FA: 1%
		Free surface moisture of CA: Nil
		Free surface moisture of FA: Nil
		Grading of CA conforming to Table 2 of IS 383
		Grading of CA conforming to grading Zone 2.

 $-\circ\circ\bigcirc\circ\circ-$