Hall Ticket	No	Question Paper Code: BST210
	INSTITUTE OF AERONAUTICAL ENG (Autonomous)	BINEERING
THOW FOR LINE	M.Tech II Semester End Examinations (Regular) - Regulation: IARE–R16	July, 2018
	EARTHQUAKE RESISTANT DESIGN OF H	BUILDINGS
Time: 3 Hour	rs (SE)	Max Marks: 70
	Answer ONE Question from each Un	it

All Questions Carry Equal Marks All parts of the question must be answered in one place only

Note: Use of IS 1893:2002 (Part II), IS 13920 is Permitted

$\mathbf{UNIT}-\mathbf{I}$

1.	(a)	Explain the principal strong motion characteristics.	[7M]
	(b)	Explain the formation of earth and its interior.	[7M]
2.	(a)	Obtain the expression for natural frequency of single degree damped free vibration system.	[7M]
	(b)	What is a response spectrum? Discuss its role in earthquake resistant design of structures	
			[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) What are the different vertical irregularities in a building structure?	[7M]
	(b) Give the procedure for identification of seismic damages in RCC buildings.	[7M]
4.	(a) Mention the criteria's for earthquake resistance design of buildings.	[7M]

(b) In what way is the earthquake resistance of the structure affected by non-symmetry and elongated shape of buildings? [7M]

$\mathbf{UNIT} - \mathbf{III}$

5. (a) A 10-storeyed RCC special moment resisting frame (SMRF) conforming to ductile detailing provisions residential building with importance factor 1 is located in zone V. The height of each storey is 3m. The area of each floor is $576m^2$ with a dead load as $2kN/m^2$. The live load on roof is $1.5kN/m^2$. The structure is on medium soil. The damping in the structure is estimated to be 8.5%. Determine the design seismic forces on the structure by equivalent static force method.

[7M]

- (b) Enumerate failure mechanisms of infilled frames through sketches. [7M]
- 6. (a) Compare response spectrum method and seismic coefficient method. What for these methods are used? Which one is preferred out of the two? [7M]
 - (b) Explain briefly the effect of regular and irregular configurations of buildings due to earthquake.

[7M]

$\mathbf{UNIT} - \mathbf{IV}$

7.	(a) (b)	Give details about the procedure for design of shear walls as per IS 13920:1993. What is ductility? Discuss the factors affecting the ductility of RCC structures.	[7M] [7M]			
8.	(a)	Design a rectangular beam for 6m span to support a dead load of 15kN/m and a live lo 20kN/m inclusive of its own weight. Moment due to earthquake load is 120kN-m and shear is 80kN. Use M20 grade concrete and Fe 415 steel.	ad of force [7 M]			
	(b)	Explain the provision briefly for torsion in all buildings based on IS code method.	[7M]			
	$\mathbf{UNIT} - \mathbf{V}$					
9.	(a)	Mention the elastic properties of structural masonry.	[7M]			
	(b)	Discuss the effect of openings on the seismic performance of masonry buildings.	[7M]			
10.	(a)	Define Bands? At what levels in masonry buildings would you provide them? Give justific for each of them	ation [7M]			
	(1)		[

(b) How would you identify the damages and non damages in masonry structures? [7M]

 $-\circ\circ\bigcirc\circ\circ-$