No.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

AEROSPACE STRUCTURES LABORATORY								
IV Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AAED11	Core	L	Т	P	С	CIA	SEE	Total
		-	-	2	1	40	60	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		
Prerequisite: Aircraft Structures								

I. COURSE OVERVIEW:

Aircraft structural laboratory is used to enhance the learning of the undergraduate student by encouraging them to undertake the projects in the area of structural analysis of thin-walled structural components, wings, fuselage and landing gears.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. Provide basic knowledge on the mechanical behavior of materials like aluminum, mild steel, and cast iron.
- II. Visualize the crack detection using various NDT methods and also discuss the changing strength due to these defects.
- III. Understand the concept of locating the shear centre for open and closed section of beams.
- IV. Obtain buckling strength of both long and short columns using different elastic supports.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO1 Make use of various calibration techniques for assessing the flow quality in wind tunnel test section.
- CO2 Examine the pressure distribution over airfoil, cylinder and flat plate for predicting their aerodynamics characteristics.
- CO3 Utilize the six-component force balancer for deducing the forces and moments of aircraft model and hence obtaining the aircraft performance and stability.
- CO4 Determine the pressure, temperature across each component gas turbine engine for predicting its thrust and performance characteristics.
- CO5 Examine the performance characteristics of compressor, blower, propeller and nozzle for their efficient design
- CO6 Identify the flash point, fire point and calorific value of different fuels for their suitability in aerospace applications.

IV. COURSE CONTENT

Week-1: DEFLECTION TEST

Stress and deflections of beams for various end conditions, verification of Maxwell's theorem

Week-2: BUCKLING TEST

Compression tests on long columns, Critical buckling loads.

Week-3: COMPRESSION TEST

Compression tests on short columns, Critical buckling loads, south well plot

Week-4: BENDING TEST

Unsymmetrical Bending of a Beam

Week-5: SHEAR CENTRE FOR OPEN SECTION

Shear Centre of an open Section beam.

Week-6: SHEAR CENTRE FOR CLOSED SECTION

Shear Centre of a closed Section beam.

Week- 7: SHEAR STRESS OF RIVETED JOINTS

Shear strength of riveted joints using UTM

Week -8: SANDWICH PANEL TENSION TEST

Fabrication and determine the young's modulus of a sandwich structures.

Week-9: NON-DESTRUCTIVE TESTING-I

Study of non-destructive testing procedures using dye penetration.

Week- 10: NON-DESTRUCTIVE TESTING-II

Non-destructive testing procedures - Magnetic particle inspection.

Week- 11: NON-DESTRUCTIVE TESTING-III

Non-destructive testing procedure - Ultrasonic techniques.

Week-12: VIBRATION TEST

Determination of natural frequency of beams under free and forced vibration using.

Week-13: AIRCRAFT WINGS

Study about the Aircraft Wings

Week-14: AIRFRAMES

Investigation of aircraft parts like fuselages, cockpit, engine, propeller

V. TEXT BOOKS:

1.T. H. G. Megson, "Aircraft Structures for Engineering Students", Butterworth-Heinemann Ltd, 5th Edition,

2012

2. E. H. Bruhn, "Analysis and Design of Flight vehicles Structures", Tri-state off set company, USA, 4th Edition, 1965.

VI. REFERENCE BOOKS:

1.B. K. Donaldson, "Analysis of Aircraft Structures - An Introduction", McGraw Hill, 3rd Edition, 1993.

VII. ELECTRONICS RESOURCES:

- 1. https://nptel.ac.in/courses/112101095/ 2. https://www.scribd.com/doc/244154727/theory-of-structures-timoshenko-pdf

VIII. MATERIALS ONLINE

- 1. Course template
- 2. Lab manual