

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

COMPUTER AIDED MANUFACTURING LABORATORY								
V Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AAED24	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	2	1	40	60	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		
Prerequisite: Aerospace Materials and Production Laboratory								

I. COURSE OVERVIEW:

Computer-aided manufacturing (CAM) is a technique that uses computer software and hardware to optimize and automate processes in manufacturing. This laboratory course provides learners with real skills and experience with computer-aided tools in manufacturing processes. The course includes topics such as computer numerical control (CNC) equipment, component identification, safety measures, setting up of home locations, offsets, part programming using G Codes, program execution, dimensional accuracy, and surface finish. It will combine theoretical understanding with hands-on applications in a modern learning environment.

II. COURSES OBJECTIVES:

The students will try to learn

- I. The fundamental principles of computer-aided manufacturing and the integration of computer technology into manufacturing processes.
- II. The workflow from design to production using CAM tools, and become proficient in utilizing industrystandard CAM for manufacturing operations.
- III. Real-world involvement with Computer Numerical Control (CNC) machines through programming and operating CNC milling and turning machines.
- IV. The optimization strategies to perform efficient machining to improve production time and enhance tool life.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

- CO1 Outline various computer numeric control systems for suitability and application on CNC machines.
- CO2 Recognize various standard machine tools and numeric codes for manufacturing machine parts by turning machines.
- CO3 Develop a numeric code for manufacturing machine components by milling machine.
- CO4 Make use of G and M codes for drilling operation on machine components using milling machine.
- CO5 Investigate tapping, slotting and cylindrical grinding by using CNC for manufacturing aircraft components.
- CO6 Utilize laser cutting and electric discharge machine for cutting and drilling of airfoil profile.

IV. COURSE CONTENT:

Week-I: INTRODUCTION TO COMPUTER NUMERICAL CONTROL

Numerical control, functions of a machine tool, concept of numerical control, historical development, definition, advantages of CNC machine tools, features of CNC, Machine Control Module (MCM) for CNC, classification of CNC Machine tools.

Week-2: INTRODUCTION TO FANUC SYSTEM

Introduction to FANUC, historical development, FANUC control components, FANUC- Lathe and Mill, control panel.

Week-3: CNC FACING

To perform facing operation using CNC turning machine.

Week-4: CNC PLAIN TURNING

To perform plain turning operation using CNC turning machine.

Week-5: CNC STEP TURNING

To perform step turning operation using CNC turning machine.

Week-6: GROOVING AND THREADING

To perform grooving and threading operation using CNC turning machine.

Week-7: DRILLING AND BORING

To perform drilling and boring operation on CNC turning machine.

Week-8: CNC MILLING PLAIN AND STEP MILLING

To perform plain and step milling operation using CNC milling machine.

Week-9: DRILLING OPERATION

To perform drilling operation using CNC milling machine.

Week-10: PROFILE AND HELICAL MILLING

To perform profile and helical milling operation using CNC milling machine.

Week-11: TAPPING AND SLOTTING

To perform tapping and slotting operation using CNC milling machine.

Week-12: CNC CYLINDRICAL GRINDING

To perform cylindrical grinding operation using CNC cylindrical grinding machine.

Week-13: LASER CUTTING

To perform aero profile cutting using Laser cutting machine.

Week-14: RAPID DRILLING

To perform rapid drilling using Electrical discharge machine.

V. TEXT BOOKS:

- 1. Peter Smid, CNC Control Setup for Milling and Turning: Mastering CNC Control Systems, Industrial Press Inc., 2010.
- 2. Stephen F. Krar, et al. Computer Numerical Control Simplified, Industrial Press Inc., 2001.

VI. REFERENCE BOOKS:

- 1. C. Elanchezhian, et al. Computer Aided Manufacturing, Firewall Media, 2007.
- 2. Chang, Tien-Chien, et al. Computer-aided manufacturing. United Kingdom, Pearson Prentice Hall, 2006.

VII. ELECTRONICS RESOURCES:

- 1. https://onlinecourses.swayam2.ac.in/nou22_me04/preview
- 2. https://onlinecourses.nptel.ac.in/noc22_me10/preview
- 3. https://faculty.etsu.edu/hemphill/entc3710/nc-prog/index.html

VIII. MATERIALS ONLINE

- 1. Course template
- 2. Lab Manual