INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

COMPUTATIONAL AERODYNAMICS AND TURBULENCE MODELLING LABORATORY							
VI Semester: AE							
Category	Hours /Week			Credits	MaximumMarks		
Cana	L	Т	Р	С	CIA	SEE	Total
Core	0	0	2	1	40	60	100
Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		
Prerequisite: Aerodynamics							
	NAL AERODYNAM LABC Category Core Tutorial Classes: Nil namics	NAL AERODYNAMICS LABORA Category Hou Core L 0 Tutorial Classes: Nil Pr aamics	NAL AERODYNAMICS AND LABORATOR Mours /W Core Tutorial Classes: Nil Mamics	NAL AERODYNAMICS AND TUL LABORATORYCategoryHours /WeekCoreLT002Tutorial Classes: NilPractical Classesramics	NAL AERODYNAMICS AND TURBULEN LABORATORYCategoryHours /WeekCreditsCoreLTPC0021Tutorial Classes: NilPractical Classes: 45namics	NAL AERODYNAMICS AND TURBULENCE MO LABORATORYCategoryHours /WeekCreditsMaCoreLTPCCIA002140Tutorial Classes: NilPractical Classes: 45To romanics	NAL AERODYNAMICS AND TURBULENCE MODELLI LABORATORYCategoryHours /WeekCreditsMaximumCoreLTPCCIASEE00214060Tutorial Classes: NilPractical Classes: 45Total Classes:aamics

I. COURSE OVERVIEW:

Computational Structural Analysis Laboratory sessions focus on the creation of geometry, meshing (Discretization) and the physics behind the stress strain variation on a continuum. It will also cover the different solvers available in a FEA package and their applications based on the problem type. This course offers a wide range of applications in aircraft structural analysis such as deflection of truss, frames, beams, stress and strain distributions in a plate as well as a solid continuum. Apart from these, it will also address the nonlinear stress problems alongside vibration and flutter analysis

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The latest computational techniques and software used for structural analysis.
- II. The how real-life structures behave under static and dynamic loads.
- III. The professional and contemporary issues in the design and fabrication of aerospace structures.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Explain the computational methods and Software's that are used in aerospace fields to simulate the complex problems through ANSYS.
- CO 2 Solve the parameters like deflections, stress, strain and bending moment by using ANSYS for the linear and non-linear problems that occur in aircraft structural components (beams, bars etc.).
- CO 3 Calculate the numerical solution of static structural problems using discretization methods and convergence criteria to minimize the errors.
- CO 4 Select the appropriate heat transfer mechanism using ANSYS thermal workbench for efficient cooling of on-board avionics system
- CO 5 Predict the suitable appropriate results using governing equations for vibrational problems that occur in aircraft structural components (beams, spring-mass system)
- CO 6 Determine the nature of stress-strain distribution by using appropriate governing equations for an aircraft structural component such as wings, fuselage and landing gear.

IV. COURSE CONTENT:

Week-1: INTRODUCTION AND BASIC FUNCTIONS

Starting up of ANSYS- Description of user interface

Week-2: INTRODUCTION TO TURBULENCE MODELLING

Introduction to turbulence modelling, the major theories, approaches and methodologies used in turbulence modelling. Applications of turbulence modelling for classical aerodynamics' problems.

Week-3: FLOW OVER A FLAT PLATE

Flow over a flat plate at low Reynolds numbers, observe the boundary layer phenomena, no slip condition and velocity profile inside the boundary layer.

Week-4: FLOW THROUGH PIPE

Flow through pipe at different Reynolds numbers; observe the velocity changes for laminar and turbulent flows.

Week-5: FLOW OVER A CIRCULAR CYLINDER

Flow over a circular cylinder at different Reynolds numbers, observe the properties at separation region and wake region.

Week-6: FLOW OVER A CAMBERED AEROFOIL

Flow over a cambered aerofoil at different Reynolds number, observe flow properties and compare the computation results with experimental results

Week-7: FLOW OVER A SYMMETRIC AEROFOIL

Flow over a symmetric aerofoil at different Reynolds number, observe flow properties and compare the computation results with experimental results.

Week-8: FLOW OVER WEDGE

Flow over wedge body at supersonic Mach number; observe the shock wave phenomena and change of properties across the shock wave.

Week-09: FLOW OVER A CONE

Flow over a cone at supersonic Mach number; observe the shock waves and 3D relieving effect.

Week-10: FLOW ANALYSIS OF AIRCRAFT STRUCTURE: WING

Flow over a wing at different Reynolds number, observe flow properties and compare the computation results with experimental results

Week-11: COMPRESSIBLE FLOW IN A NOZZLE

Flow over a nozzle at different Reynolds number and temperature, observe flow properties and compare the computation results with experimental results.

Week-12: CODE DEVELOPEMENT

Solution for the following equations using finite difference method One dimensional wave equation using explicit method of lax. One dimensional heat conduction equation using explicit method

Week-13: CODE DEVELOPEMENT

Generation of the following grids Algebraic grids. Elliptic grids.

Week-14: CODE DEVELOPEMENT

Solution for the following equations using finite difference method linear convection equation by Lax Wendroff Scheme.

V. REFERENCE BOOKS:

- 1. Huei-Huang Lee, "Finite Element Simulations with ANSYS Workbench 16", SDC publications, 2nd Edition, 2016.
- 2. Anderson, William J, "MSC/Nastran: Interactive Training Program", Wiley, 1st Edition 2015.

VI. ELECTRONICS RESOURCES:

- 1. https://www.scribd.com/doc/311680146/eBook-PDF-Cfd-Fluent.
- 2. https://cfd.ninja/tutorials/ansys-fluent
- 3. https://confluence.cornell.edu/display/SIMULATION/FLUENT+Learning+Modules

VII. MATERIALS ONLINE

- 1. Course template
- 2. Lab manual