

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

LOGIC PROGRAMMING FOR ARTIFICIAL INTELLIGENCE								
III Semester: CSE (AI&ML)								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACAD01	Core	L	T	P	C	CIA	SEE	Total
		3	0	0	3	40	60	100
Contact Classes: 48	Tutorial Classes: NIL	Practical Classes: NIL				Total Classes: 48		
Prerequisite: Python Programming								

I. COURSE OVERVIEW:

Artificial intelligence (AI) is the simulation that examines to achieve intelligent human behaviors on machines especially on a computer system. This course provides the ideas, methods, and problem-solving paradigms that helps in providing solutions to real-world problems without human effort. Furthermore, it is a mathematical language that enables knowledge to be expressed precisely and unambiguously, making it perfect for usage in AI systems. AI applications are becoming increasingly common in a wide variety of applications including machine language, deep learning, natural language processing, computer vision, and robotics.

II. COURSES OBJECTIVES:

The students will try to learn:

- I Knowledge representation in solving AI problems and different search strategies and learn different search strategies.
- II The characteristics of Intelligent agents and the way the AI agents plan and act in the real world.
- III Handling uncertainty, reasoning the complex problems and models behind the AI applications.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

- CO1 Explain the ability to design a plan for the real-world problems and mapping it to the digital world.
- CO2 Choose appropriate problem-solving methods and optimize the search results.
- CO3 Develop agents through knowledge representation for any given AI based problem using logic programming.
- CO4 Discover how planning helps to automate complicated tasks, manage complex procedures, and optimize them for better results.
- CO5 Examine the uncertainty in designing AI systems and propose methods for reasoning.
- CO6 Model AI methods to identify problems that are amenably solved through their applications.

IV. COURSE SYLLABUS:

MODULE – 1: INTRODUCTION (09)

Introduction - Definition - Future of Artificial Intelligence - Characteristics of Intelligent Agents - Typical Intelligent Agents - Problem Solving Approach to Typical AI problems.

MODULE - 2: PRODUCTION SYSTEMS (09)

Defining the Problem as a State Space Search, Production Systems, Problem Characteristics, Production System Characteristics, Issues in the Design of Search Programs.

MODULE - 3: PROBLEM-SOLVING METHODS AND KNOWLEDGE REPRESENTATION (10)

Problem solving Methods - Search Strategies - Uninformed - Informed - Heuristics - Local Search Algorithms and

Optimization Problems - Searching with Partial Observations - Backtracking Search - Performance of Search Algorithms.

Using Predicate Logic: Representing Simple Facts in Logic, Representing Instance and ISA Relationships, Computable Functions and Predicates, Properties of Wff, Clausal Forms, Conversion to clausal forms, Resolution.

MODULE - 4: PLANNING AND LEARNING (10)

Planning with State-Space Search - Partial-Order Planning - Planning Graphs - Planning and Acting in the Real World - Plan Generation Systems.

Learning – Learning and its types – Discovery – Clustering – Analogy - Neural Net and Genetic Learning - Reinforcement Learning.

MODULE - 5: UNCERTAIN KNOWLEDGE AND REASONING (10)

Symbolic Reasoning Under Uncertainty: Introduction to Non monotonic Reasoning - Logics for Non monotonic Reasoning - Implementation Issues - Augmenting a Problem-solver.

Uncertainty - review of probability - probabilistic Reasoning - Bayesian networks - inferences in Bayesian networks - Temporal models - Hidden Markov models.

V. TEXT BOOKS:

1. S. Russel, P. Norvig, "Artificial Intelligence – A Modern Approach", Third Edition, Pearson Education, 2015.

VI. REFERENCE BOOKS:

- 1. Kevin Night, Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Third Edition, McGraw Hill, 2017.
- 2. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007.

VII. ELECTRONICS RESOURCES:

- 1. Department of Computer Science, University of California, Berkeley, http://www.youtube.com/playlist?list=PLD52D2B739E4D1C5F
- 2. NPTEL: Artificial Intelligence, https://nptel.ac.in/courses/106105077/
- 3. http://www.udacity.com/ 4. http://www.library.thinkquest.org/2705/
- 4. http://www.ai.eecs.umich.edu/

VIII. MATERIALS ONLINE

- 1. Course Template
- 2. Tutorial Question Bank
- 3. Definition and Terminology
- 4. Tech-Talk topics
- 5. Assignments
- 6. Model question paper I
- 7. Model question paper II
- 8. Lecture notes
- 9. Early learning readiness videos (ELRV)
- 10. PowerPoint Presentations