INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
£ Dundigal - 500 043, Hyderabad, Telangana

7 &
O ror

o3
A0
S
4
10y

COURSE CONTENT
APPLIED ARTIFICIAL INTELLIGENCE ALGORITHMS LABORATORY

IV Semester: CSE (Al & ML)

Course Code Category Hours / Week | Credits Maximum Marks
T P C CIA | SEE Total
ACADO04 Core
0 0 2 1 40 60 100
Contact Classes: NIL | Tutorial Classes: NIL Practical Classes: 45 Total Classes: 45

Prerequisite: Python Programming

I. COURSE OVERVIEW:

Applied Artificial Intelligence (Applied Al) refers to the practical implementation and utilization artificial
intelligence (Al) technologies to solve real-world problems and address specific challenges in various domains. The
objective of this laboratory course for applied artificial intelligence (Al) typically aims to provide students with
hands-on experience in applying Al techniques. Applications provide a foundation for the implementation of applied
artificial intelligence across various industries, addressing specific challenges and delivering practical solutions the
scope and applications of applied Al will vary based on the specific needs and challenges within different industries
and sectors.

Il. COURSES OBJECTIVES:
The students will try to learn:

I The suitability of different search algorithms, unification strategies, and knowledge representation
Techniques for given problems.

Il The practical applications of forward chaining in expert systems, decision support, and fundamental
probability concepts essential for Bayesian inference.

Il The minimax algorithm as a basic approach for decision-making in two-player zero-sum games,
Strategic considerations and algorithmic implementations clearly.

IV The essential aspects of setting up Al environments, implementing local communication protocols
and ensuring secure message Vverification in the context of Al agents

1. COURSE OUTCOMES:
At the end of the course students should be able to:

CO1 Develop programming skills by implementing algorithms related to local search, basic search, anc
unification through arithmetic design and coding.

CO2 Utilize coding techniques to model and solve problems in Al, emphasizing practical
implementation of theoretical concepts.

CO3 Make use of the Bayesian network inference techniques to solve real-world problems in diverse
domains, including healthcare, finance, and decision support.

CO4 Demonstrate a comprehensive understanding of fuzzy logic and its application in control systems.

CO5 Identify intelligent agents to address specific challenges in practical domains, demonstrating the
versatility of Al techniques.

CO6 Solve techniques for encoding and decoding messages exchanged between Al agents, addressing
considerations such as data serialization, compression, and encryption.

IV. COURSE CONTENT:

EXERCISES FOR APPLIED ARTIFICIAL INTELLIGENCE
LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory
practice sessions.

1. Getting Started Exercises

1.1 Installing Python and other supportive libraries

1. Install Python 3 on your machine by typing the following command on the terminal:
$ python3 --version
2. Install various useful packages by following the relevant links:

NumPy: http://docs.scipy.org/doc/numpy-1.10.1/user/install.html
SciPy: http://www.scipy.org/install.html

scikit-learn: http://scikit-learn.org/stable/install.html

matplotlib: http://matplotlib.org/1.4.2/users/installing.html

Note: If you are on Windows, you should have installed a SciPy-stack compatible version of Python
3
3. Install a couple of packages before starting logic programming in python like logpy and sympy
using pip. These packages are useful to work with matching mathematical expressions.

$ pip3 install logpy

$ pip3 install sympy

If you get an error during the installation process for logpy, you can install from source at
https://github.com/logpy/logpy.

Try: Practice appropriate python commands to build a model and use the above libraries (relevant
packages) to interact with the data. The commands may include importing of packages containing all the
datasets, loading of datasets, printing data, printing labels, loading images, extracting a specific image etc.

1.2 Knowledge Representation using FOL - Translate

The goal of this exercise is to translate each of the following sentences into First Order Logic (FOL). Later
convert the FOL into a prolog program and asking questions.

Input: Domain Knowledge like:

(@) Not all cars have carburetors.

(b) Some people are either religious or pious.

(c) No dogs are intelligent.

(d) All babies are illogical.

(e) Every number is either negative or has a square root.
() Some numbers are not real.

http://www.scipy.org/install.html
http://scikit-learn.org/stable/install.html
http://matplotlib.org/1.4.2/users/installing.html
https://github.com/logpy/logpy

(9) Every connected and circuit-free graph is a tree.
Output: Equivalent FOL statement.
Hints
=V [car(x) — carburetors(x)] or
3x [car(x) A —carburetors(x))
Translate the other statements referring the above
Try: Translate each of the following sentences into First Order Logic (FOL):

(@) Not every graph is connected.

(b) All that glitters is not gold.

() Not all that glitters is gold.

(d) There is a barber who shaves all men in the town who do not shave themselves.
(e) There is no business-like show business.

1.3 Knowledge Representation using FOL - Translate

The goal of this exercise is to rewrite each proposition symbolically, given that the universe of discourse
is a set of real numbers.

Input: Domain Knowledge like:

(a) For each integer x, there exist an integer y such that x + y = 0.
(b) There exist an integer x such that x + y =y for every integer y.
(c) Forallintegers x andy, x.y = y.x

(d) There are integers x and y such that x+y=5.

Output: Equivalent FOL statement
Hints

(Vz € Z)(Jy € Z)(z +y = 0).
We could read this as, “For every integer z, there exists an integer y such that x 4+ y = 0.” This is a true statement.
Translate the other statements referring the above

Try: Using FOL, express the following:

(@) Every student in this class has taken exactly two mathematics courses at this school.
(b) Someone has visited every country in the world except Libya.
(c) No one has climbed every mountain in the Himalayas.

1.4 Check the Availability

Every computer science student takes discrete mathematics. Neetha is taking discrete mathematics.
Therefore, Neetha is a computer science student. The given conclusion is false. The following Venn diagram
is a counter example for the given conclusion.

If it does not rain or it is not foggy then the sailing race will be held, and lifesaving demonstrations will go
on. If the sailing race is held, then the trophy will be awarded. The trophy was not awarded. Therefore, it
rained. The goal of this exercise is to translate each of the following sentences into First Order Logic (FOL)

Input: Venn Diagram as a counter example for the given conclusion.

Neetha

Output: Prove that the above statements are TRUE.

Hints

Consider the below statements and infer the statement by the following
arguments

premise "RV - F = SAD ... (1)
premise S — T -(2)
premise =T -(3)
1 -Rv-F—=8 (4
4.2 —Rv-F—=T ... (5)
5 T = ~(=~Rv~F)...(6)
6,3 (=R A-F) (7)
7 RAF . (8)
8 R

Try: Prove or Disprove: All doctors are college graduates. Some doctors are not golfers. Hence, some
golfers are not college graduates.

1.5 Rewrite the sentences.

The goal of this exercise is to translate each of the following sentences into First Order Logic (FOL). Later
convert the FOL into a prolog program and asking questions.

Input:
(a)

(b)
(@]

(d)

(e)

Some boys are sharp and intelligent.

UOD(x): all persons.

Sharp(x): x is sharp.

Boy(x): x is a boy.

Intelligent(x): x is intelligent.

Not all boys are intelligent.

Some students of DM course have cleared JEE main and the rest cleared SAT.

UOD(x): all persons.

ClearJEE(x): x clears JEE main.

ClearSAT(x): x clears SAT.

Something that is white is not always milk, whereas the milk is always white.

UOD(x): things.

White(x): x is white.

M ilk(x): x is milk.

Breakfast is served in mess on all days between 7am and 9am except Sunday. And, on Sundays it is
served till 9.15 am. UOD(x): days. Day(x): x is a day of the week. Breakfast-time-non-sunday(x):
Breakfast is served in mess on x between 7am and 9am. Breakfast-time-sunday(x): Breakfast is
served in mess on x till 9.15am.

Output: Equivalent FOL statement.
Hints

Jzboys(z) A intelligent(x)
Translate the other statements referring the above

Try: Translate each of the following sentences into First Order Logic (FOL):

(a) The speed of light is not same in all mediums. The speed of light in fiber is 2x108 m/s. Therefore,
there exists at least two mediums having different speed of light. UOD(x): mediums. Medium(x):
Light travels in medium x. Speed(x): Speed of light in medium x. P: Speed of light in fiber is 2 x 108
m/s.

(b) Some students have joined IITDM. There exists a student who has not joined any IlITDM. Not all
students have cleared JEE advanced. Therefore, some students have joined deemed universities.
UOD(x) : people. UOD(y) : Educational institutes. Stud(x): x is a student. lIIT DM(y) : y is a lITDM.
JoinllIT DM(x, y) : x joins IITDM y. ClearJEE(x) : x cleared JEE advanced. JoinDeemed(x) : x joins a
deemed university.

1.6 Propositions

Identify propositions from the following. If not a proposition, justify, why it is not.
(a) I shall sleep or study.
(b) x 2 + 5x + 6 = 0 such that x € integers.

Input: Propositions
Output: Justify the statements either to be a proposition or not

Hints

The rule of logic allows to distinguish between valid and invalid arguments.
Example:

If x+1=5, then x=4=4. Therefore, if x#4, then x+1#5.

If I watch Monday night football, then I will miss the following Tuesday 8 a.m. class.
Therefore, if I do not miss my Tuesday 8 a.m. class, then I did not watch football the
previous Monday night.

Use the same format:

If p then g. Therefore, if q is false then p is false.

If we can establish the validity of this type of argument, then we have proved at
once that both arguments are legitimate. In fact, we have also proved that any argument
using the same format is also credible.

Use the above example and give the justifications

Try: Express the following in first order logic (identify the right universe of discourse, predicates before
attempting each question. Think twice and do not oversimplify the problem)

(a) The fundamental law of nature is change.

(b) We cannot help everyone, but everyone can help someone.

(c) Power does not corrupt people, people corrupt power.

(d) It is nice of somebody to do something.

(e) No one who has no complete knowledge of himself will ever have a true understanding of another.
(f) Thought or thinking is what set human beings apart from other living things.

1.7 A Simple Theorem Prover - Resolution Principle

Implement a simple theorem prover as a pattern-directed system by limiting only proving theorem in the
simple propositional logic just to illustrate the principle of resolution mechanism. Define the theorem
proving as an extendable to handle the first-order predicate calculus.

Input: A formula as a theorem which is always true regardless of the interpretation of the symbols that
occur in the formula.

~avh ~bve a ~C
Example:

N /
\ c
\m'f

read as ‘p or not p’, is always true regardless of the meaning of p. We will be using the following symbols
as logic operations:

~ - negation, read as 'not’

& - conjunction, read as ‘and’

v — disjunction, read as ‘or’

= > - implication, read as 'implies’

Output: Prove that the following propositional formula is a theorem:
(@a=>b)&(b=>c)=>(a=>c)
Hints

Write the production rules for resolution theorem proving
Contradicting the clauses

[clause(X), clause(~X)] --->

[write(‘Contradiction found’), stop].

Remove a true clause

Simply the clause
Resolution step, a special case

[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->
[assert(clause(Cl)), assert(done(~P, C, P))].

Repeat the above step for other special cases and write the last rule as a resolution
process stuck

delete(P, E, E1) means: delete a disjunction subexpression P from E giving E1

in(P,E) means: P is a disjunction subexpression in E

Write the Translating a propositional formula into(asserted) clauses

Write the Transformation rules for propositional formulas

Try: Implement an interpreter for pattern-directed programs that does not maintain its database as
Prolog's own internal database (with assert and retract), but as a procedure argument according to the

foregoing remark. Such a new interpreter would allow for automatic backtracking. Try to design a
representation of the database that would facilitate efficient pattern matching.

2. Exercises on Logic Programming

2.1 Water Jug Problem

Given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring markers on it. There is a
pump that can be used to fill the jugs with water. How can we get exactly 2 gallons of water into a 4- gallon

jug?

Input: 4 3 2

Output: {(0,0),(0,3),(3,0),(3,3).(4,2),(0,2)}

a. Describe the state space as a set of ordered pairs of integers.

b. Generate production rules and perform basic operations to achieve the goal.

c. Initialize the start state and apply the rules iteratively until the goal state is reached.
d. Generate a search tree (Depth-First Search / Breadth-First Search)

Hints
/* Define a function to initialize the dictionary elements with a default value.*/
/* Initialize dictionary with default values as false.*/

/* Define a recursive function and print the intermediate steps to reach the final
solution and return the Boolean values.*/

/* Check whether the goal is achieved and return true if achieved. */

/* Check if you have already visited the combination or not. If not, then proceed
further. */

/* Check whether all the six possibilities and see if a solution is found in any one
of them. */

/* Return false if the combination is already visited to avoid repetition otherwise
recursion will enter an infinite loop*/

/* Call the function and pass the initial amount of water present in both the jugs. */

Try: Given two jugs, a 7-gallon one and a 11-gallon one. Neither has any measuring markers on it. There
is a pump that can be used to fill the jugs with water. How can we get exactly 7 gallons of water into a 7-
gallon jug?

2.2 Monkey Banana Problem

Imagine a room containing a monkey, chair and some bananas that have been hung from the center of
ceiling. If the monkey is clever enough, he can reach the bananas by placing the box directly below the
bananas and climbing on the chair .The problem is to prove whether the monkey can reach the bananas.
The monkey wants it but cannot jump high enough from the floor. At the window of the room there is a
box that the monkey can use.

Input: The monkey can perform the following actions:-
1) Walk on the floor.
2) Climb the box.
3) Push the box around (if it is beside the box).
4) Grasp the banana if it is standing on the box directly under the banana.

Output:
a. Write down the initial state description and action schemes.
b. Prepare all the required predicates that will make the monkey to perform some action and move
from one state to the other until the goal state is reached.
c. Set the initial position of the monkey (initial state) and raise questions to whether the knowledge
represented can make the monkey get the banana.
d. Trace the flow of actions from initial state to goal state.

Hints

/* Define a class and initialize all the states */

/* Check if the goal state is achieved.*/

/* Return a list of possible actions given the current state */
/* Apply an action and return the resulting state. */

/* Solve the problem using breadth-first search by simultaneously checking the goal
state, generating the successors */

/* Return result if exist otherwise return None */

Try: Extensively make use of state space search to represent and solve Tic-Tac-Toe. Represent
the problem as a state space and define the rules. In the state space, represent the starting
state, set of legal moves, and the goal state.

2.3 Eight Puzzle Problem

The 8-puzzle consists of a 3x3 board with eight numbered tiles and a blank space. A tile adjacent to the
blank space can slide into the space. The task is to reach a specified goal state, such as the one shown on
the right of the figure. The objective is to place the numbers on tiles to match the final configuration using
the empty space. You can slide four adjacent (left, right, above, and below) tiles into the empty space.

Input:
Initial State
2 3
1 4 6
7 5 8
Goal State
1 2 3
4 5 6
=

Output: Goal state as a long output on the terminal just like:

al configuration moving 2 into the empty space

moving 2 into the empty space

into the empty space

moving 4 into the empty space into the empty space
into the empty space

into the empty space

into the empty space

into the empty space. Goal achieved!

Hints

/* Create a class that contains the methods to solve the 8-puzzle by importing the
following packages. */
from simpleai.search import astar, SearchProblem

/* Define a class that contains the methods to solve the 8-puzzle: */

/* Override the actions method to align it with our problem: */

/* Check the location of the empty space and create the new action: */
/* Check if the goal has been reached.*/

/* Define the heuristics method and compute the distance.*/

/* Define a function to convert a list of string */

/* Define a function to convert a string to a list. */

/* Define a function to get the location of a given element in the grid. */

/* Define the initial state and the final goal we want to achieve: */
/* Track the goal positions for each piece by creating a variable: */

/* Create the A* solver object using the initial state we defined earlier and extract
the result: */

/* Print the solution */

Try: Extensively make use of state space search to represent and solve the 15 Puzzle problem.
Represent the problem as a state space and define the rules.

Start state: Goal state:
3 0|13 7 112 (3 [4
9 J46 |1 5161718
T 512 9 [10]11][12
11] 8] 5[12 13014 11574

2.4 Blocks Rearrangement Problem

The problem is to find a plan for rearranging a stack of blocks as shown below. We are allowed to move
one block at a time. A block can be grasped only when its top is clear. A block can be put on the table or
on some other blocks. To find a required plan, we must find a sequence of moves that accomplish the given
transformation. Think the problem as a problem of exploring among possible alternatives.

Input:
A
n == i
o]
Output:

a. Generate the rules involving accomplishing various tasks involving the blocks world.

b. Formulate the more careful definitions for program and the actions.

c. Present the graphical representation of the problem (state space representations) including initial
state and the goal state.

10

Hints

/* Define a class to initialize all the starting states of all the blocks. */

/* Do the same for the goal state also.*/

/* Check whether the current state matches the goal state. */

/* Generate all possible moves from the current state. */

/* Allow any block can be moved to the table or on top of another block. */

/* If a block is not blocked by another, it can be moved. Move onto another block.*/
/* Apply a move to the current state and return the new state.

/* Solve the problem using BFS by checking if the goal state is reached by getting all
the possible moves . */

/* Return the solution if found otherwise return None. */

Try: The problem is to find a plan for rearranging a stack of blocks as shown below. We are allowed to
move one block at a time. A block can be grasped only when its top is clear. A block can be put on the table
or on some other blocks. To find a required plan, we must find a sequence of moves that accomplish the
given transformation. Think of the problem as a problem of exploring among possible alternatives.

(o]
(R}

o

Goal State

D |
i c N + .

The goal here is to move Block B from the middle of the pile on the left and onto the top of the pile on the
right. Hence this sequence of moves would be an acceptable solution:

[("C", "Table"), ("B", "E"), ("C", "A™)]

3. Exercises on Heuvuristic Search Techniques

3.1 Constructing a String using Greedy Search

Recreate the input string based on the alphabets using a greedy search. Ask the algorithm to search the
solution space and construct a path to the solution.

Input:
1. Afunction to parse the input arguments.
2. A class (SearchProblem) that contains the methods needed to solve the problem.
3. Check the current state and take the right action.
4. Concatenate state and action to get the result.
5. Check if the goal has been achieved.

11

6. The heuristic that will be used.

7. Initialize the CustomerProblem object.

8. Set the starting point and the goal we want to achieve.
9. Run the solver and

10. Print the path to the solution.

Output: Calculate how far we are from the goal and use that as the heuristic to guide it towards the goal.

1. Run the code with an empty initial state.
2. Run the code with a non-empty starting point.

Path to the solution: Path to the solution:
(None,) ,) (None, 'Artificial Inte’')
'1', 'Artificial Intel’)
'Artificial Intell')
'Artificial Intelli’)
! ificial Intellig')
i Intellige')
'Artific’) ! 'Artificial Intelligen’)
:Ar‘t%fﬁC% ')' 'c', 'Artificial Intelligenc')
:::iz;gi:l)) ‘e’, 'Artificial Intelligence')
‘Artificial *) t ’Art::.f‘::mc%al Intell?gence D]
© o Artificial 1) 'Artificial Intelligence w')
‘Artificial In’) 'Artificial Intelligence wi')
*Artificial Int’) 0 'Artificial Intelligence wit')
'Artificial Inte’) 'h', 'Artificial Intelligence with')
'Artificial Intel’) ' ', 'Artificial Intelligence with ')
'Artificial Intell’) ’ 'Artificial Intelligence with
'Artificial Intelli') 0 'Artificial Intelligence with
::E]ﬁ:zi:i ig:zﬂ;ge?) '"Artificial Intelligence with
CArtificial Intelligen') 'Artificial Intelligence with
. 'Artificial Intelligenc’) 'Artificial Intelligence with
'Artificial Intelligence’) 'n’ 'Artificial Intelligence with Python')

iy
Nt
e
et
1
e
g
gt
‘et
0D
et
‘et

Hints

/*Create a new Python file and import the following packages: */
import argparse
import simpleai.search as ss

/* Define a function to parse the input arguments */

class CustomProblem(ss.SearchProblem):
def set_target(self, target_string):
self.target_string = target_string

Check the current state and take the right action
def actions(self, cur_state):
if len(cur_state) < len(self.target_string):
alphabets = 'abcdefghijklmnopgrstuvwxyz'
return list(alphabets + ' ' + alphabets.upper())
else:
return []

Concatenate state and action to get the result
def result(self, cur_state, action):
return cur_state + action

Check if goal has been achieved
def is_goal(self, cur_state):
return cur_state == self.target_string

/* Initialize the CustomProblem object */

/* Set the starting point as well as the goal we want to achieve */

Run the solver:
Solve the problem
output = ss.greedy(problem)

12

/* Print the path to the solution */

Try: 1. Solve the same problem with constraints. Specify three constraints as follows: John, Anna, and Tom
should have different values. Tom’s value should be bigger than Anna's value If John's value is odd, then
Patricia's value should be even and vice versa.

2. Implement the above code to your family and start asking the questions in a similar way.

3.2 Solving a Region Coloring Problem

Consider the following screenshot:

Mark / Julia Brian
—
v
ST A
/ (T T /-
pd \\
N
Steve \ Amanda L Derek . Kelly
\, \
' |
5/‘ _ \/_
- >
I . 7 -
\// - r}) pd \\\
y ..
S Joanne Chris
Allan | Michelle ~
. \
~ \

We have a few regions in the preceding figure that are labeled with names. Our goal is to color with four
colors so that no adjacent regions have the same color. Make use of Constraint Satisfaction framework to
solve the region-coloring problem.

Input:

1. Constraints that specify different values
2. Main function and a list of names.
3. List of possible colors

Output:
Color mapping:
Derek ==> blue
Michelle ==> gray
Allan ==> red
Steve ==> blue
Julia ==> green
Amanda ==> red
Joanne ==> green
Mark ==> red
Kelly ==> gray
Brian ==> red

Hints

/* Create a new Python file and import the following packages:*/
from simpleai.search import CspProblem, backtrack

/* Define the constraint that specifies that the values should be different: */

/* # Define the function that imposes the constraint */
/* # that neighbors should be different */

13

def constraint_func(names, values):
return values[@] != values[1]

/* Define the main function and specify the list of names: */

if name__=="'_main__ ':
Specify the variables names = ('Mark', 'Julia', 'Steve', 'Amanda', 'Brian', 'Joanne’,
'Derek’', 'Allan', 'Michelle', 'Kelly')

/*Define the list of possible colors */

/* convert the map information into something that the algorithm can understand */

/* Use the variables and constraints to initialize the object */

/* Solve the problem and print the solution */

Try: Implement the above code to your region and start asking the questions in a similar way.

3.3 Building an 8 Puzzle Solver

8-puzzle is a variant of the 15-puzzle. You can check it out at https://en.wikipedia.org/wiki/15_puzzle. You
will be presented with a randomized grid, and your goal is to get it back to the original ordered
configuration. You can play the game to get familiar with it at http://mypuzzle.org/sliding. The goal is to
use A* algorithm to solve this problem and find the paths to the solution in a graph.

Input:

1. A class that contains the methods.
2. Action method to get the list of the possible numbers.
3. Check the location of the empty space and create a new action.

Output:

1. Return the resulting state after moving a piece to the empty space.
2. Computes the distance between the current state and goal state using Manhattan distance.

al configuration After moving 2 into the empty space

moving 2 into space moving 1 into empty space

moving 4 into space moving 4 into empty space

moving 3 into space moving 5 into empty space

moving 6 into space moving 8 into empty space. Goal achieved!

Hints

/* Create a new Python file and import the following packages */
from simpleai.search import astar, SearchProblem

14

http://mypuzzle.org/sliding

/* Define a class that contains the methods to solve the 8-puzzle: */
Class containing methods to solve the puzzle class PuzzleSolver(SearchProblem):

/* Override the actions method to align it with our problem: */
Action method to get the list of the possible
numbers that can be moved in to the empty space
def actions(self, cur_state):
rows = string to list(cur_state)
row_empty, col empty = get location(rows, 'e')
/* Check the location of the empty space and create the new action */

/* Override the result method. Convert the string to a list and extract the location
of the empty space. */

/* # Return the resulting state after moving a piece to the empty space */
/* Check if the goal has been reached */

/* Define the heuristic method. */

/* Compute the distance */

/* Define a function to convert a list to string */

/* Define a function to convert a string to a list */

/* Define a function to get the location of a given element in the grid */
/* Define the initial state and the final goal we want to achieve */

/* Track the goal positions for each piece by creating a variable */

/* Create the A* solver object using the initial state we defined earlier and extract
the result */

/* Print the solution */

Try: Use the A* Algorithm to solve a maze. Consider the below figure to build a maze solve.

S R S S S S
#
HIHHHE
#
##H# HIHEHE R

HHHO#

#
Hi#H# #
#
B S S s s S

15

3.4 Parsing a Family Tree

Use the most familiar Logic programming and solve an interesting problem of Parsing a Family Tree by
considering the following diagram. John and Megan have three sons — William, David, and Adam. The wives
of William, David, and Adam are Emma, Olivia, and Lily respectively. William and Emma have two children —
Chris and Stephanie. David and Olivia have five children — Wayne, Tiffany, Julie, Neil, and Peter. Adam and
Lily have one child — Sophia. Based on these facts, create a program that can tell us the name of Wayne's
grandfather or Sophia's uncles are.

John, Mega

~—

William, Emma David, Olivia Adam, Lily

] \ vy
[‘BN
/ \ / [\ \\
.ff \ / \ N
/ \ { \ \
{ v i 4 Y

Chris Stephanie Wayne Tiffany Julie Neil Peter Sophia

Input: A json file specified with the relationship among all the people involved.

Output: Ask the following questions to understand if our solver can come up with the right answer.

1. Who John's children are?

2. Who is William's mother?

3. Who are Adam's parents?

4. Who are Wayne's grandparents?
Hints

/*Create a new Python file and import the following packages: */
import json
from logpy import Relation, facts, run, conde, var, eq

/* Define a function to check if x is the parent of y. We will use the logic that if
x is the parent of y, then x is either the father or the mother. We have already
defined “father” and “mother” in our fact base: */

/* Define a function to check if x is the grandparent of y. We will use the logic that
if x is the grandparent of y, then the offspring of x will be the parent of y: */

Check for sibling relationship between 'a' and 'b'
def sibling(x, y):
temp = var()
return conde((parent(temp, x), parent(temp, y)))

/* Define the main function and initialize the relations father and mother */
/* Load the data from the relationships.json file */

/* Read the data and add them to our fact base */

Define the variable x:

x = var()

/* We are now ready to ask some questions and see if our solver can come up with the
right answers. Let's ask who John's children are:

John's children
name = 'John'’
output = run(@, x, father(name, x))

16

print("\nList of " + name + "'s children:")
for item in output:
print(item)

/* Start asking the questions like: Who is William's mother?, Who are Adam's parents?,
Who are Wayne's grandparents?, Who are Megan's grandchildren?, Who are David's
siblings?, Who are Tiffany's uncles? */

/* List out all the spouses in the family */

Try:

Who are Megan's grandchildren?
Who are David's siblings?

Who are Tiffany's uncles?

List out all the spouses in the family.

POdE

3.5 Analyzing Geography

Use logic programming to build a solver to analyze geography. In this problem, specify information about
the location of various states in the US and then query our program to answer various questions based on
those facts and rules. The following is a map of the US:

Kansas Missourt Viepinia ™ = Maend
Notth Casolina

South
Caroina

Input:
1. Define the input files to load the data from.
2. Read the files containing the coastal states.
3. Add the adjacency information to the fact base.
4. Initialize the variables x and y.
Output:

1. Print out all the states that are adjacent to Oregon.
2. List all the coastal states that are adjacent to Mississippi.
3. List all the coastal states that are adjacent to Mississippi.

17

Is Nevada adjacent to Louisiana?:
MNa

List of states adjacent to Oregon:

Washington

California

Nevada

Idaho

List of coastal states adjacent to Mississippi:
Alabama

Louisiana

List of 7 states that border a coastal state:

Oregon
Ohio

Hints
/*Create a new Python file and import the following: */

from logpy import run, fact, eq, Relation, var
/*Initialize the relations: */

adjacent = Relation() coastal = Relation()
/*Define the input files to load the data from: */

file_coastal = 'coastal_states.txt'
file_adjacent = ‘'adjacent_states.txt'’

/*Load the data: # Read the file containing the coastal states */
with open(file_coastal, 'r') as f:
line = f.read()
coastal states = line.split(',")
/*Add the information to the fact base:
Add the info to the fact base
for state in coastal_states:
fact(coastal, state)
/* Read the adjacency data */
/* Add the adjacency information to the fact base */
/* Initialize the variables x and y */
/* Check if Nevada is adjacent to Louisiana */
/* Print out all the states that are adjacent to Oregon, List all the coastal states

that are adjacent to Mississippi, List seven states that border a coastal state, List
states that are adjacent to both Arkansas and Kentucky */

Try: Add more questions like “list states that are adjacent to both Arkansas and Kentucky” to the program
to see if it can answer them.

18

3.6 Building a Puzzle Solver

The interesting application of logic programming is in solving puzzles. The goal of this exercise is to specify
the conditions of a puzzle, and the program has to come up with a solution. Also specify various bits and
pieces of information about four people and ask for the missing piece of information.

Input: In the logic program, we specify the puzzle as follows:

e Steve has a blue car.

e The person who owns the cat lives in Canada Matthew lives in USA.
e The person with the black car lives in Australia.

e Jack has a cat.

e Alfred lives in Australia.

e The person who has a dog life in France.

e Who has a rabbit?

Output: The goal is to find the person who has a rabbit. Here are the full details about the four people:

Car color Country

USA

parrot black Australia

Hints

/*Create a new Python file and import the following packages: */
from logpy import *

from logpy.core

import lall

/* Declare the variable people: */
Declare the variable
people = var()

/* Define all the rules using lall, The first rule is that there are four people, The
person named Steve has a blue car */

/* The person who has a cat lives in Canada, The person named Matthew lives in USA,
The person who has a black car lives in Australia, The person named Jack has a cat,
The person named Alfred lives in Australia, The person who has a dog lives in France,
The person who has a dog lives in France.*/

/* Run the solver with the preceding constraints */

/* Extract the output from the solution */

/* Print the full matrix obtained from the solver */

19

Try: Demonstrate how to solve a puzzle with incomplete information. You can play around with it and see
how you can build puzzle solvers for various scenarios.

4. Exercises on Heuristic Search Techniques

4.1 Best First Search Algorithms

The Best First Search algorithm is a set of rules that work together to perform a search. It considers the
various characteristics of a prioritized queue and heuristic search. The goal of this algorithm is to reach the
state of final or goal in the shortest possible time.

Input: Best First Search Algorithm

1. Create 2 empty lists: OPEN and CLOSED
2. Start from the initial node (say N) and put it in the ‘ordered’ OPEN list.
3. Repeat the next steps until the GOAL node is reached.
e If the OPEN list is empty, then EXIT the loop returning ‘False’.
e Select the first/top node (say N) in the OPEN list and move it to the CLOSED list. Also, capture
the information of the parent node.
e If N is a GOAL node, then move the node to the Closed list and exit the loop returning ‘True'.
The solution can be found by backtracking the path.
e If N is not the GOAL node, expand node N to generate the ‘immediate’ next nodes linked to
node N and add all those to the OPEN list.
e Reorder the nodes in the OPEN list in ascending order according to an evaluation function f(n)
Output:
a. Perform the search process by using additional information to determine the next step towards finding
the solution.
b. Perform the search process using an evaluation function to decide which among the various available
nodes is the most promising before traversing to that node.
c. Apply priority queues and heuristic search functions to track the traversal.

Hints
/* Import heapq. */

/* Initialize the graph and heuristic function, dictionary representing the graph and
heuristic values. */

/* Perform the best-first search by defining the priority queue to store nodes with
their heuristic values. */

/* Get the node with the lowest heuristic value. */
/* If the goal is reached, return the path and total cost. */
/* Mark the current node as visited, explore all the neighbors. */

/* Return the solution if exists otherwise return None. */

20

Try: Make use of Heuristic Search principle and apply the best first search to solve the 8-puzzle
problem.

4.2 A* Algorithm

A* Algorithm — A square grid is composed of many obstacles that are scattered randomly. The goal is to
find the final cell of the grid in the shortest possible time. Implement A* algorithm to search for the shortest
path among the given initial and the final state.

Input: Define the graph as nodes with neighboring nodes and cost. Define the heuristic values of each
node.

Output:
a. Initially represent the problem statement as a graph traversal problem.
b. Perform the search process to obtain the shorter path first, thus making it optimal.
c. Find the least cost outcome for the problem by finding all the possible outcomes.
d. Make use of weighted graph by using numbers to represent the cost of taking each path and find the
best route with the least cost in terms of distance and time.

Hints
/* Implements the A* algorithm to find the shortest path in a weighted graph.*/

/* Represent the dictionary for a graph and heuristic values. */

/* Define the starting and goal node keeping in mind to return the tuple containing
the optimal path and the total cost. */

/* Pop the node with the lowest f_cost, if the goal is reached, return the path and
cost. */

/* Mark the current node as visited */

/* Explore the neighbors to accumulate the path cost by getting the heuristic values,
total path cost. */

/* If the path is found then return, otherwise return None */

Try: Implement the A* algorithm and calculate the shortest distance between the initial and
the goal states by considering the following weighted graph:

99

21

4.3 AO* Algorithm

Implement the algorithm to generate AND-OR graph or tree to represent the solution by dividing the
problem into sub problems and solve them separately to obtain the result by combining all the sub
solutions.

Input: The AO* algorithm works on the formula given below : f(n) = g(n) + h(n) where,
e g(n): The actual cost of traversal from initial state to the current state.
e h(n): The estimated cost of traversal from the current state to the goal state.
e f(n): The actual cost of traversal from the initial state to the goal state.

Output:

a. Follow problem decomposition approach and solve each sub problem separately and later combine
all the solutions.

b. Traverse the graph starting at the initial node and following the current best path and accumulate the
set of nodes that are on the path and have not yet been expanded.

c. Pick one of these best unexpanded nodes and expand it. Add its successors to the graph and compute
cost of the remaining distance for each of them.

d. Change the cost estimate of the newly expanded node to reflect the new information produced by its
successors. Propagate this change backward through the graph. Decide which of the current best path

Optimal Solution Path: A -> B -> D Total Cost: 5

Hints

/* Define a class to represent a node in the AND-OR graph. */

/* Define a class to implement AO* algorithm to find the optimal solution path. */

/* Mention the initial state, goal state, the optimal solution path and its total cost.

*/
/* Pick the best node to expand (lowest f_cost) and expand the node. */

/* Propagate changes backward to reflect updated costs, Add successors to the open
list if not already processed. */

/* Generate the optimal path */

/* Expand the given node by calculating f_cost for its successors. */

/* Propagate cost changes backward through the graph.*/

/* Generate the optimal solution path by following the best successors. */

/* Define heuristic values for the nodes, Create nodes for the graph, Define the AND-
OR graph as node connections, Instantiate the AO* algorithm, Perform the AO* search.
*/

/* Generate the result as optimal solution path and total cost.*/

Try: Implement the algorithm to generate AND-OR graph or tree to represent the solution by dividing the

problem into sub problems and solve them separately to obtain the result by combining all the sub
solutions.

22

Start

5. Exercises on Probabilistic Reasoning for Sequential Data

5.1. Handling Time-Series Data with Pandas
Time-series data analysis is used extensively in financial analysis, sensor data analysis, speech recognition,

economics, weather forecasting, manufacturing, and many more. Explore a variety of scenarios where we
encounter time-series data and see how a solution can be built. Create a python file and learn how to handle
time-series data in Pandas.

Input: Time-series dataset

Output: Time-Series data with different dimensions like:

®-e Figure 1 s e Figure 2

Hints

/* Create a python file and import the following packages */
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

/* Define a function to read the data from the input file. */

/* Define a lambda function to convert strings to Pandas date format: */

/* Use this lambda function to get the start date from the first line in the input
file: */

/* Create a list of indices with dates using the start and end dates with a monthly
frequency: */

23

/* Create pandas data series using the timestamps: */

/* Define the main function and specify the input file:, Specify the columns that
contain the data:*/

/* Iterate through the columns and read the data in each column and Plot the time-
series data. */

Try: Revise the above code to analyze and visualize the time-series data for three and more
dimensions.

5.2. Slicing Time-Series Data

The process of slicing refers to dividing the data into various sub-intervals and extracting relevant
information. This is very useful when you are working with time-series datasets. Instead of using
indices, we will use timestamp to slice our data. Develop a python code to analyze the time-series
data and visualize the same at different intervals.

Input: Time-series dataset

Output: Visualize the Time-Series data with different levels of granularity.

:ﬂ {\ 'lL | P\[1 "WH(| [[|
A RN U \“‘”‘“!'JH\ I
"’M' /L U\ﬂ' M f\ (\/LU /’b "y lw | ‘| | ‘W N f” \H

/* Create a python file and import the following packages */
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

/* Define a function to read the data from the input file. */

/* Define a lambda function to convert strings to Pandas date format: */

/* Use this lambda function to get the start date from the first line in the input
file: */

/* Create a list of indices with dates using the start and end dates with a monthly
frequency: */

24

/* Create pandas data series using the timestamps: */

/* Define the main function and specify the input file:, Specify the columns that
contain the data:*/

/* Iterate through the columns and read the data in each column and Plot the time-
series data. */

Try: Revise the above code to analyze and visualize the time-series data for different level of
granularities.

5.3. Operating on Time-Series Data

Pandas allow us to operate on time-series data efficiently and perform various operations like filtering
and addition. You can simply set some conditions and Pandas will filter the dataset and return the right
subset. Develop a python code that can allow to build various similar applications without having to

reinvent the wheel.
Input: Time-series dataset

Output: Visualize the Time-Series data with different data frames.

: “‘(n f It i “‘ H‘ J‘)‘ ’ ﬂ H‘ J (l ‘ 'l") ‘l h “
i | M “\p M ‘,J.'\” M'M “‘l 'wl '1\'

200+ 0@ 200+v 0@

Hints

/* Create a python file and import the following packages */
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from timeseries import read_data

/* Define the input filename and load the third and fourth columns into separate
variables. */

/* Create a Pandas dataframe object by naming the two dimensions and plot the data by
specifying the start and end years */

/* Filter the data using conditions and then display it. */

25

/* Display the summarized results also */

Try: Add two series in Pandas and different dimensions between the given start and end dates.

5.4. Extracting Statistics from Time-Series Data

To extract meaningful insights from time-series data, extract statistics from it. These stats can be
things like mean, variance, correlation, maximum value, and so on. These stats must be computed
on a rolling basis using a window. Use a predetermined window size and keep computing these
stats. Develop a python code to extract these statistics from time-series data and visualize them.
Produce interesting patterns while visualizing the statistics over time.

Input: Time-series dataset

Output: Visualize the Time-Series data showing the rolling mean, rolling correlation and also include the
terminal output.

- i :
\ Il “r “ il u 02 fl‘lt M #
55 Iw | \ I \Y ‘H‘l“‘. |)‘ .l| | q‘l‘ / ' ‘(ol ‘\“‘ ,‘V;'l‘ afl | /
.! l“i\ "I:‘ }‘ Y | | 00} wF\ W*J t l((” g l‘
= T M\l ;M A M # i (LA il
” AT V' WY i
: aWW“WHL KLA‘ N|¢vﬂ 2 \, v | |
o 1 s y \f
35 | ‘ f
@iojoj+l«iEw 200+« 08

: . . Row-wise mean:
Maximum values for each dimension: 1906-01-31 85.595

diml 99.98 19@@-02-28 75.310

dim2 99.97 1900-03-31 27.760
1900-04-38 44.675
dtype: float64 190@-05-31 31.295

1900-86-38 44.160
Minimum values for each dimension: ggg’g;’g: gg-:;g
d%'“l .18 1900-89-390 51,495
dim2 @.16 1%00-10-31 61.260
dtype: float64 1900-11-30 30.925
1900-12-31 30.785
Freg: M, dtype: float64
Overall mean: N e
diml 49.030541 Correlation coefficients:
dim2 56.983291 diml 1 eagtlag]) %2;;2

. Q.

dtype: float64 dim2 ©0.00627 1.20000

Hints

/* Create a python file and import the following packages */
import numpy as np

import matplotlib.pyplot as plt

import pandas as pd
from timeseries import read_data

/* Define the input filename and load the third and fourth columns into separate
variables. */

/* Create a Pandas dataframe object by naming the two dimensions and extract maximum
and minimum values along each dimension */

/* Extract the overall mean and the row-wise mean for the first 12 rows and plot the
rolling mean using a window size of 24. */

26

/* Plot the rolling mean using a window size of 24 */

/* Print the correlation coefficients and plot the rolling correlation using a window
size of 60. */

Try: Add two series in Pandas and visualize the correlation coefficients not mentioned in the
preceding figures.

5.5. Generating Data using Hidden Markov Models

A Hidden Markov Model (HMM) is a powerful analysis technique for analyzing sequential data.
[t assumes that the system being modeled is a Markov process with hidden states. This means
that the underlying system can be one among a set of possible states. It goes through a
sequence of state transitions, thereby producing a sequence of outputs. We can only observe
the outputs but not the states. Hence these states are hidden from us. Develop the python code
to model the data so that we can infer the state transitions of unknown data.

Input: Traveling Salesman data representing the information with a transition matrix.

P(London -> London) = 0.10
P(London -> Barcelona) = 0.70
P(London -> NY) = 0.20
P(Barcelona -> Barcelona) = 0.15
P(Barcelona -> London) = 0.75
P(Barcelona -> NY) = 0.10

P(NY -> NY) =0.05

P(NY -> London) = 0.60

P(NY -> Barcelona) = 0.35

Let's represent this information with a transition matrix:
London Barcelona NY

London 0.10 0.70 0.20
Barcelona 0.75 0.15 0.10

NY 0.60 0.35 0.05

Output: Generate and Visualize samples using the trained HMM model like:

ry Figure 1 Training the Hidden Markov Model...

Generated data Means and variances:

®
=
—
——

—_—
-
——

200+ =4 | Variance = .26

Hints
/* Create a python file and import the following packages */

import numpy as np

27

import matplotlib.pyplot as plt

import pandas as pd

from timeseries import read_data

/* Define the input filename and extract the third column for training. */

/* Create a Gaussian HMM with 5 components and diagonal covariance and Train the HMM.
*/

/* Print the mean and variance values for each component of the HMM. */

Try: 1. Identifying Alphabet Sequence with Conditional Random Fields
2. Analyze the stock market data using hidden Markov model.

6. Exercises on Building Games with Al

6.1. Minimax Algorithm

As searching game trees exhaustively is not feasible for interesting games, other methods that rely on
searching only part of the game tree have been developed. Among these, a standard technique used in
computer game playing (chess) is based on the minimax principle. The goal of this exercise is to implement
the minimax principle and identify the changes that a player has to with a game.

Input: Game Tree and a Search Tree like:

MAX to move

¢ MIN to move

Static
values

Output: Make use of static and backup values and estimate the best position from a list of candidate
positions.

Hints

/* Calculate the heuristic estimator using the estimation function and estimate the
changes that a player must win. */

/* Implement the procedure as: Minimax procedure: minimax(Pos, BestSucc, Val) Pos is

a position, Val is its minimax value; best move Vo from Pos leads to position BestSuc
*/

Try: Create a knowledge base including the clauses that help in implementing the
straightforward method of minimax principle.

28

6.2. Alpha Beta Pruning

Create a knowledge base representing the straightforward procedure to implement alpha-beta algorithm.
Develop a prolog program that systematically visits all the positions in the search tree, up to its terminal
positions in a depth-first fashion, and statically evaluates all the terminal positions of this tree.

Input: Search Tree, starting point, legal moves, maximum successors of each move, and apply backtracking
wherever applicable.

4319 MAXtomove

¢ MIN to move

Output: Compute the exact value of a root position P by setting the bounds as follows:

V(P, — infinity, + infinity) = V(P)
Hints

alphabeta(/* Pass the 4 arguments like position, alpha beta values, good position and
the current value */) :-

moves (Pos, PostList), !,

boundedbest (Postlist, Alpha, Beta, GoodPos, Val);

staticval(Pos, Val).

boundedbest([Pos | Poslist], Alpha, Beta, GoodPos, GoodVal) :-

alphabeta(Pos, Alpha, Beta, _, Val),

goodenough(Poslist, Alpha, Beta, Pos, Val, GoodPos, GoodVal).
goodenough(/* Mention an empty list */, -, -, Pos, Val, Pos, Val) '- !. % No other
candidate

goodenough(-, Alpha, Beta, Pos, Val, Pos, Val) :-
min-to-rnove(Pos), Val) Beta, !; % Maximizer attained upper bound
marto-mov{ Pos), Val (Alpha, !. % Minimizer attained lower bound

goodenough(Poslist, Alpha, Beta, Pos, Val, GoodPos, GoodVal) :-

newbounds(/* Pass the 6 arguments like alpha beta values, good position,
current value, new alpha and beta values */), % Refine bounds boundedbes(Poslist,
NewAlpha, NewBeta, Posl, Vall),

betterof(Pos, Val, Posl, Vall, GoodPos, GoodVal).

newbounds(Alpha, Beta, Pos, Val, Val, Beta) :-
min-to-rnove(Pos), Vd > Alpha, !. % Maximizer increased lower bound

newbounds(Alpha, Beta, Pos, Val, Alpha, Vat) :-
marto-rnove(Pos), Val < Beta, !. % Minimizer decreased upper bound

newbounds(Alpha, Beta, -, -, Alpha, Beta)
betterof(Pos, Val, Posl, Vall, Pos, Val) :-

29

min-to-rnove(Pos), Vd > Vall, !;
marto:nove(Pos), Val < Vall, !.

betterof(-, -, Posl, Vall, Posl, Vall).

Try: Consider a two-person game (for example, some non-trivial version of tic-tac-toe). Write game-
definition relations (legal moves and terminal game positions) and propose a static evaluation function to
be used for playing the game with the alpha-beta procedure. Use the principle of alpha beta to reduce
the search in the tree mentioned above.

6.3. Iterative Deepening Techniques

The goal is to prove that search is ubiquitous in artificial intelligence. The performance of most Al systems
is dominated by the complexity of a search algorithm in their inner loops. Prove with an example that this
algorithm gives optimal solution for exponential tree searches.

Input: Starting node and goal node.

Output:

a. Complete the search process if the branching factor is finite and there is a solution at some finite
depth and obtain optimal in finding the shortest solution first.

b. Avoid exploring each non-solution branch of the tree, omit cycle detection and retain completeness.

¢. Use additional logical features of Prolog to terminate the search process whenever if there are no
solutions identified even after backtracking.

d. Document the steps if the search process does not obtain optimal solution even after backtracking.

VAL BN

I — m

Hints

/* Define a class to initialize the graph, start node, and goal node. */

/* Perform the DLS to a specified depth with current node, current depth limit, set of
visited nodes and return the tuple with a path cost and the path. */

/* Perform the iterative deepening DFS with maximum depth limit to explore.*/

/* Generate the optimal path if found otherwise generate None. */

/* Apply backtracking if the solution is not found. */

30

Try: The 15-puzzle problem is a classic example of a sliding puzzle game. It consists of a 4x4 grid of
numbered tiles with one tile missing. The aim is to rearrange the tiles to form a specific goal configuration.
The state space of the puzzle can be represented as a tree where each node represents a configuration
of the puzzle, and each edge represents a legal move. IDA* can be used to find the shortest sequence
of moves to reach the goal state from the initial state.

Start

Threshold = 2
Visited node =4, 5

Goal

7. Exercises on Building Games with Al

7.1 Building a Bot to Play Last Coin Standing

This is a game where we have a pile of coins, and each player takes turns to take a number of coins from
the pile. There is a lower and an upper bound on the number of coins that can be taken from the pile. The
goal of the game is to avoid taking the last coin in the pile. This recipe is a variant of the Game of Bones
recipe given in the easyAl library. Develop the python code to build a game where the computer can play
against the user.

Input: Libraries like TwoPlayerGame, id_solve, Human_Player, Al_Player, and TT

Output: Force the computer to take the last coin, so that you win the game.

Move #5: player 1 plays 2
11 coins left in the pile

Player 2 what do you play ? 4

2 plays 4
t in the pile

player 1 plays 1
ins left in the pile

; £t in the pi
25 coins left in the pile s 2wt o you ey 72
Move #1: player 1 plays 4 :

21 coins left in the pile ove-90:: playwe 2 plays, 2

4 coins left in the pile
Player 2 what do you play ? Move #9: player 1 plays 3
1 coins left in the pile
Move #2: player 2 plays 1 : ®

20 coins left in the pile Player 2 what do you play ? 1

Move #3: player 1 plays 4 : Move #10: player 2 plays 1
16 coins left in the pile © coins left in the pile

Hints

% Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player from easyAI.AI
import TT

% Create a class to handle all the operations of the game.

/* Define who is going to start the game */

31

/* Define the maximum number of coins that can be taken out in any move. */

/* Define all the possible moves, define a method to remove the coins and keep track
of the number of coins remaining in the pile. */

/* Check if somebody won the game by checking the number of coins remaining. */

/* Stop the game after somebody wins it and compute the score based on the win method.
*/

/* Define a method to show the current status of the pile. */
/* Define the main function and start by defining the transposition table. */

/* Define the method ttenttry to get the number of coins */

Try: Implement the same code so that you can win the game instead of a computer.

7.2 Building two Bots to Play Tic-Tac-Toe

Tic-Tac-Toe (Noughts and Crosses) is probably one of the most famous games. Let's see how to build a
game where the computer can play against the user. This is a minor variant of the Tic-Tac-Toe recipe given
in the easyAl library.

Input: Libraries like TwoPlayerGame, id_solve, Human_Player, and Al_Player.

Output: Force the computer to take the last coin, so that you win the game.

Player 1 what do you play ? 4
Player 1 what do you play ? 5

Move #7: pl: 1 plays 4 :
Move #1: player 1 plays 5 : ove (e U G

X 0X
00.
X0

. 0.

Move #2: player 2 plays 1 : Move #8: player 2 plays 6 :

Ro o
. 0.

Player 1 what do you play ? 9 Player 1 what do you play ? 7
Move #3: player 1 plays 9 : Move #9: player 1 plays 7 :
X ..

o) g
-0

Hints

% Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player from easyAI.AI
import TT

% Create a class to handle all the methods to play the game.

/* Define a method to compute all the possible moves by defining a 3 x 3 board. */

/* Define the method to update the board after making a move. */

32

/* Define a method to see if somebody has lost the game and check if the game is over
using the loss_condition method. */

/* Define a method to show the current progress and compute the score using the
loss_condition method. */

/* Define the main function and start by defining the algorithm and start the game. */

Try: Implement the same code so that you can win the game instead of a computer.

7.3 Building two Bots to Play Connect Four against each other

Connect Four™ is a popular two-player game sold under the Milton Bradley trademark. It is also known by
other names such as Four in a Row or Four Up. In this game, the players take turns dropping discs into a
vertical grid consisting of six rows and seven columns. The goal is to get four discs in a line. This is a variant
of the Connect Four recipe given in the easyAl library. Develop the python code to build it instead of playing
against the computer, we will create two bots that will play against each other.

Input: Libraries like TwoPlayerGame, id_solve, Human_Player, and Al_Player.

Output: Algorithm for each bot and see which one wins.

000X00.

Move #35: player 1 plays 6 :

Move #1: player 1 plays @ :

©123456

Move #2: player 2 plays @ :

8123456

Player 2 wins.

Hints

% Create a new Python file and import the following packages:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player, Negamax, and SSS
from easyAI.AI import TT

% Create a class that contains all the methods needed to play the game.

/* Define the board with six rows and seven columns. */

/* Define who's going to start the game while defining the board positions. */

/* Define a method to get all the possible moves. */

/* Define a method to control how to make a move and to show the current status. */

33

/* Define a method to compute what a loss looks like and check whether the game is
over or not. */

/* Compute the score to decide the winning bot */

Try: Implement the same code so that SSS algorithm can win the game instead of a Negamax algorithm.

8. Exercises on Fuzzy Logic

8.1 Fuzzy Inference Systems

Fuzzy logic involves understanding the principles of fuzzy logic and implementing them using several
python libraries that deal with a form of logic and appropriate reasoning by allowing the representation of
uncertainty and imprecision. The product has a price and a benefit, so we can create some rules. For
example, if the cost of the product is low and the benefit is high, then cost benefit is high. Another rule if
the cost of the product is high and the benefit is also high, then the cost benefit is median and not the rule.

If the cost of the product is low and the benefit is also low, then the cost benefit is also made in the next
row. If the cost is high and the benefit is low, then the cost benefit is low. And the last one, if cost is high
and benefit is low, then the cost benefit is low.

There are three results a high-cost benefits, medium cost benefits and low-cost benefits. While the variables
responsible for the forecasts are costs and benefits and they have two values low and high. When there are
only two values we can consider, it is a binary problem. The low category could be represented by number
zero, while the high category could be represented by number one. The idea of fuzzy logic is to represent
the reasoning process in a way more like the way humans think, for example. For some people, the cost
may be low, but for others it may be a little lower, as if there was a level before this category here. For other
people, the costs might be a little higher, not that low. Develop python code to understand how fuzzy logic
can be used to various problem domains effectively.

Input: Represent the reasoning process in a way more likely the way humans think.

Output: Evaluate the efficiency of the fuzzy logic system with sample inputs.
Hints

% Create a new Python file and import the following packages:

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

/* Define the fuzzy sets for the input variables (cost and benefit) */

/* Define the fuzzy sets for the output variables (cost and benefit) */

/* Define the fuzzy sets based on the provided conditions. */

/* Implement the fuzzy inference system using the chosen python libraries like scikit-
fuzzy. */

34

/* Test the fuzzy logic system with sample inputs. */

Try: Implement the code to understand the linguistic variables and membership functions for effectively
modeling and solving problems using fuzzy logic.

8.2 Fuzzy Inference Systems

Fuzzy inference involves applying fuzzy logic rules to input data to generate meaningful output. Several
steps for fuzzy inference include converting crisp (exact) input data into fuzzy sets using membership
functions and determining the degree of membership of each input value in the appropriate fuzzy sets.
Develop the python code to apply the fuzzy rules to implement aggregation, and defuzzification.

Input: Linguistic variables like ‘cost’ and ‘benefit’ from the previous example.

Output: Crisp output: 8.775.
Hints

% Create a new Python file and import the following packages:

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

/* Define universe of discourse (range) for cost and benefit */

/* Define linguistic variables: cost, benefit, and cost benefit. */

/* Define membership functions for cost and membership functions for benefits. */
/* Define membership functions for cost benefit (output). */

/* Define fuzzy rules and create fuzzy control system. */

/* Provide input values, apply fuzzy rules, and obtain crisp output. */

Try: Develop the code to implement defuzzification to convert a fuzzy set into a crisp value.

8.3 Calculating the probability of Fan Speed

implemented by taking a basic example of calculating the probability of Fan-speed being low, medium or
high based on current temperature and humidity as provided by user. Fuzzy logic allows you to model
complex relationships, make decisions in ambiguous environments, and create intelligent systems that
mimic human-like reasoning. Develop the python code while understanding the foundational logic behind
fuzzy sets, where uncertainty is embraced, and imprecision becomes a strength.

Input: Understanding the key components like membership functions, inference system, defuzzification,
and rule-based systems.

Output: Temperature, Humidity, and Speed.
Hints

% Create a new Python file and import the following packages:

35

import numpy as np
import skfuzzy as fuzz
from skfuzzy import control as ctrl

/* Define a method with temperature and humidity parameters and conduct inferencing.

*/

/* Define a method to understand the fan speed as low, medium, and high. Apply
defuzzification. */

Try: Implement the code to understand the linguistic variables and membership functions for effectively
modeling and solving problems using fuzzy logic.

9. Exercises on Expert Systems

9.1 Identify Animals

The goal is to create an expert system that can identify animals. We can use the rules of inference that we
have learned about animals to perform this task. These rules serve as a starting point for developing an
expert system, and they show the importance of having input from the users. The goal of an expert system
is to provide useful information based on its users' inputs.

Input:

« If it has a tawny color and has dark spots, then the animal is a cheetah.

« If it has a tawny color and has black stripes, then the animal is a tiger.

« If it has a long neck and has long legs, then the animal is a giraffe.

« If it has black stripes, then the animal is a zebra.

« If it does not fly and has long neck, then the animal is an ostrich.

« If it does not fly, swims, black and white in color, then the animal is penguin.

« If it appears in story ancient mariner and flys well, then the animal is albatross.
Output:

a. Create an expert system that can identify the animal class using the inference rules.
b. Utilize the user inputs and predict the animal class based on the behaviors already learned by the
expert system.

Welcome to the Animal Classifier Expert System!

Please answer the following questions with

Is the animal a vertebrate (has a backbone)? yes
Is the animal cold-blooded? yes

Does the animal have scales? yes

The animal class is: Fish

Hint:

/* Define a class to initialize an expert system with predefined inference rules. */

/* Define a class to predict the animal class based on user inputs. */

/* Define the features to ask the user and collect the user inputs. */

36

/* Create and use the expert systems. */

/* Display the results by predicting the animal class, other generate the results as
“unable to determine.” */

Try: Consider the if-then rules of figures and translate them into our rule notation. Propose extensions to
the notation to handle certainty measures when needed.

if
1 the infection is primary bacteremia, and
2 the site of the culture is one of the sterilesites, and
3 the suspected portal of entry of the organism is the gastrointestinal
tract
then
there is suggestive evidence (0.7) that the identity of the organism is
bacteroides.

if
1 there is a hypothesis, H, that a plan P succeeds, and
2 there are two hypotheses,
H,, that a plan R, refutes plan P, and
H,, that a plan R, refutes plan P, and
3 there are facts: H, is false, and H, is false
then
1 generate the hypothesis, H;, that the combined plan ‘R, or R, refutes
plan P, and
2 generate the fact: H, implies not(H)

9.2 Locating Failures in a Simple Electric Network

Create a knowledge base which can help locating failures in a simple electric network that consists of
some electric devices and fuses. Such a network is shown in figure.

if
light1 is on and
light1 is not working and
fusel is proved intact
then

light1 is proved broken.

Another rule can be:

if

heater is working
then

fusel is proved intact.

37

Input:

]

7~ light 2

]

—]
s BTN

fuse 1

:

Hint:

% A small knowledge base for locating faults in an electric network

% If a device is on and not working and its fuse is intact then the device is broken

broken_rule:

if
on(Device) and
device(Device) and
not working(Device) and
connected(Device, Fuse) and
proved(intact(Fuse))

then

proved(broken(Device))
% If a unit is working then its fuse is OK
fuse_ok_rule:
if
connected(Device,Fuse) and
working(Device)
then

proved(intact(Fuse)).

% If two different devices are connected to a fuse and are both on and not working
% then the fuse has failed.

% NOTE: This assumes that at most one device is broken!

fused_rule:
if
connected(Devicel, Fuse) and
on(Devicel) and
not working(Devicel) and
samefuse(Device2, Devicel) and
on(Device2) and

38

not working(Device2)
then
proved(failed(Fuse)).
same_fuse_rule:

if
connected(Devicel, Fuse) and
connected(device2, Fuse) and
different(Devicel, Device2)
then

samefuse(Devicel, Device2).
fact: different(X, Y) :- not(X=Y).

fact: device(heater).
fact(device(lightl).
fact(device(light2).
fact(device(light3).
fact(device(light4).
fact: connected(lightl, fusel).
fact: connected(light2, fusel).
fact: connected(heater, fusel).
fact: connected(light3, fuse2).
fact: connected(light4, fuse2).

askable(on(D), on(‘Device’)).

askable(working(D), working(‘Device’)).

Try: Think of some decision problem and try to formulate the corresponding knowledge in the form of if-
then rules. You may consider choice of holiday, weather prediction, simple medical diagnosis, and
treatment, etc

10. Exercises on Expert Systems

10.1 Mental Health Disorder

Create an expert system in prolog to improve the understanding of declarative programming paradigm
based on the logic rules. Develop the program with an idea of identifying the health disorder based on the
database provide with mental health conditions.

Input: Set of logical rules with mental health conditions.

Output: Model the disorder of the patient health.

Hints

diagnose :-

write('This is an expert system for dignosis of mental disorders.'), nl,
write('There are several questions you need to answer for dignosis of mental
disorders.'), nl, nl,

disorder(X),

39

write('Condition was diagnosed as '),
write(X),
write('.').
diagnose :-
write('The diagnose was not found.').

%The question predicate will have to determine from the user
%whether or not a given attribute-value pair is true
question(Attribute, Value):-

retract(yes, Attribute, Value), !.
question(Attribute, Value):-

retract(_, Attribute, Value), !, fail.
question(Attribute, Value):-

write('Is the '),

write(Attribute),

write(' - '),

write(Value),

write('?"),

read(Y),

asserta(retract(Y, Attribute, Value)),

Y == yes.

%question with additional argument which contains
%a list of possible values for the attribute.
questionWithPossibilities(Attribute, Value, Possibilities) :-
write('What is the patient’s '), write(Attribute), write('?'), nl,
write(Possibilities), nl,

read(X),

check_val(X, Attribute, Value, Possibilities),

asserta(retract(yes, Attribute, X)),

X == Value.

check_val(X, _, _, Possibilities) :- member(X, Possibilities),
1

check_val(X, Attribute, Value, Possibilities) :-
write(X), write(' is not a legal value, try again.'), nl,
questionWithPossibilities(Attribute, Value, Possibilities).

%retract equips this system with a memory that remembers the facts that are already
%known because they were already entered by the user at some point during the
interaction.

:- dynamic(retract/3).

%. The program needs to be modified to specify which attributes are askable
food_amount(X) :- question(food_amount,X).

symptom(X) :- question(symptom,X).

mentality(X) :- question(mentality,X).

cause(X) :- question(cause, X).

indication(X) :- question(indication,X).
social skill(X) :- question(social skill,X).
condition(X) :- question(condition, X).
consequence(X) :- question(consquence,X).
specialty(X) :- question(specialty,X).

face features(X) :- question(face_features,X).
ears_features(X) :- question(ears_features,X).

brain_function(X) :- question(brain_function,X).
perceptions(X) :- question(perceptions, X).

40

behavior(X) :- questionWithPossibilities(behavior, X, [repetitive_and_restricted,

narcissistic, aggresivel]).

disorder(anorexia_nervosa) :- type(eating disorder),
consequence(low_weight),
food_amount(food_restriction).

disorder(bulimia_nervosa) :- type(eating_disorder),
consequence(purging),
food_amount(binge_eating).

disorder(asperger_syndrome) :- type(neurodevelopmental disorder),
specialty(psychiatry),
social skill(low),
behavior(repetitive_and_restricted).

disorder(dyslexia) :- type(neurodevelopmental_disorder),
social skill(normal),
perceptions(low),
symptom(trouble_reading).

disorder(autism) :- type(neurodevelopmental disorder),
social skill(low),
symptom(impaired_communication).

disorder(tourettes syndrome) :- type(neurodevelopmental disorder),
social skill(normal),
specialty(neurology),
symptom(motor_tics).

disorder(bipolar_disorder) :- type(psychotic_disorder),
indication(elevated_moods).

disorder(schizophrenia) :- type(psychotic_disorder),
indication(hallucinations).

disorder(down_syndrome) :- type(genetic_disorder),
symptom(delayed_physical growth),
face_features(long_and_narrow),
ears_features(large),
brain_function(intellectual_disability).

disorder(fragile X syndrome) :- type(genetic_disorder),
face_features(small chin_and_slanted_eyes),
brain_function(intellectual disability).

type(eating disorder) :- symptom(abnormal eating habits),
mentality(strong _desire_to_be thin).

type(neurodevelopmental disorder) :- condition(affected_nervous_system),
brain_function(abnormal),
cause(genetic_and_enviromental).

type(psychotic_disorder) :- symptom(false_beliefs),
mentality(manic_depressive),

41

cause(genetic_and_enviromental).

type(genetic_disorder) :- cause(abnormalities_in_genome).

Try: Create an Expert System suggesting the medical support for the diagnosis of kidney diseases. Include
the features like:

1. Forward chaining reasoning

2. History and questions management

3. Backtrack and facts revocation.

4. Management of uncertainty through the CF approach proposed for the first time in the MyCIN expert
system.

5. Explanation and translation form of the technical glossary

10.2 War Crimes Explorer

Create an expert system in prolog to improve the understanding of declarative programming paradigm
based on the logic rules. Develop the program with an idea of:

e In-browser learning about genocide, war crimes, crimes against humanity, and aggression.
e Interactively enter facts and discover the laws that might have been broken.

e Possibly submit the information to the ICC (International Criminal Court) as a witness statement.

Input: Set of logical rules with laws and crimes within the jurisdiction of the International
Criminal Court.

Output: Model the legal statutes.

Hints

/*

* Crimes within the jurisdiction of the International Criminal Court.
*

*

https://world.public.law/rome_statute/article 5 crimes_within_the_jurisdiction_of_the
_court
*/
crime(genocide).
crime(war_crime).
crime(crime_against_humanity).
crime(crime_of_aggression).

/*
* A first, simple attempt at Protected Persons under
* the Geneva Conventions of 1949.

*/
protected_by geneva_convention(P) :- civilian(P).
protected_by geneva_convention(P) :- prisoner_of_war(P).
protected_by geneva_convention(P) :- medical_ personnel(P).
protected_by geneva_convention(P) :- religious_personnel(P).

42

*
O
1}

Defendant
= Victim

*
<
|

/>I<
* Genocide
* https://world.public.law/rome_statute/article_6_genocide
*/
criminal liability(genocide, Statute, D, V) :-
elements(Statute, D, V).

/*
* War crimes
* https://world.public.law/rome_statute/article 8 war_crimes
*/
criminal_liability(war_crime, Statute, D, V) :-
protected_by geneva_convention(V),
international_conflict(D, V),
elements(Statute, D, V).

elements(article 8 2 a i, D, V) :-
act(D, killed, V).

elements(article 8 2 a_ii, D, V) :-
act(D, tortured, V).

Try: Create an Expert System suggesting the medical support for the diagnosis of kidney diseases. Include
the features like:

1. Forward chaining reasoning

2. History and questions management

3. Backtrack and facts revocation.

4. Management of uncertainty through the CF approach proposed for the first time in the MyCIN expert
system.

5. Explanation and translation form of the technical glossary

10.3 DP Film Expert System

Create an expert system in prolog to improve the understanding of declarative programming paradigm
based on the logic rules. Develop the program in such a way that it allows you to get film recommendations
based on your answer and logic rules with a little film database.

Input: Set of logical rules with some film database.

Output: Recommend a file based on the persons name, mood, sex, time they have, and type of
films interested.

43

Hints

Sample database

/** DRAMA */

film('Zielona mila', 'Frank Darabont',1999, 'drama’, ‘others’, 188, 'USA', 'Tom
Hanks',8.7,719).

film('Pif Paf! Jestes trup', 'Guy Ferland', 2002, 'drama', 'others', 87, 'Kanada',
'Ben Foster', 7.7, 16).

film('Dogville', 'Lars von Trier', 2003, 'drama', ‘'others', 178, 'Dania‘', 'Nicole
Kidman', 7.7, 45).

film('Z dystansu', 'Ton Kayne', 2011, ‘'drama', 'others', 100, 'USA', 'Adrien Brody',
7.9, 30).

film('Lista Schindlera', 'Steven Spielberg', 1993, ‘'drama', 'others', 195, 'USA',
"Adrien Brody', 8.4, 259).

film('Requiem dla snu', 'Darren Aronofsky', 2000, 'drama', 'others', 102, 'USA', 'Jared
Leto', 7.9, 520).

film('Biutiful’', ‘'Alejandro Gonzalez Inarritu', 2010, ‘'drama', ‘'others', 148,
'Hiszpania', 'Javier Bardem', 7.6, 12).

film('Czarny labedz', 'Darren Aronofsky', 2010, 'drama', 'others', 108, 'USA', 'Natalie
Portman', 7.7, 248).

film('Gladiator', 'Ridley Scott', 2000, 'drama', 'others', 155, 'USA', 'Russell Crowe',
8.1, 552).

film('Dzien swira', 'Marek Koterski', 2002, ‘'drama', 'others', 123, 'Polska', 'Marek
Kondrat', 7.8, 438).

film('Pianista’, 'Roman Polanski', 2002, 'drama', ‘'others', 150, 'Polska', 'Adrien
Brody', 8.3, 410).

/** COMEDY */

film('Seksmisja', 'Juliusz Machulski', 1984, 'comedy', 'others', 118, 'Polska', 'Jerzy
Stuhr', 7.9, 420).

film('Forrest Gump', 'Robert Zemeckis', 1994, 'comedy', 'others', 144, 'USA', 'Tom
Hanks', 8.6, 697).

film('Kac Vegas', 'Todd Phillips', 2009, 'comedy', ‘'others', 100, 'USA', 'Bradley
Cooper', 7.3, 537).

film('Notykalni', 'Olivier Nakache', 2011, ‘'comedy', ‘'others', 112, 'Francja',
'"Francois Cluzet', 8.7, 393).

film('Truman Show', 'Peter Weir', 1998, 'comedy', 'others', 103, 'USA', 'Jim Carrey’,
7.4, 383).

film('Kiler', 'Juliusz Machulski', 1997, ‘'comedy', 'others', 104, 'Polska', 'Cezary
Pazura', 7.7, 315).

film('Kevin sam w domu', 'Chris Columbus', 1990, ‘'comedy', 'others', 103, 'USA',
'Macaulay Culkin', 7.1, 297).

film('Mis', 'Stanislaw Bareja', 1980, 'comedy', 'others', 111, 'Polska', 'Stanislaw
Tym', 7.8, 261).

film('Diabel ubiera sie u Prady', 'David Frankel', 2006, 'comedy', 'others', 109,
'"USA', 'Meryl Streep', 6.9, 227).

film('Jak rozpetalem druga wojne swiatowa', 'Tadeusz Chmielewski', 1969, 'comedy',
'others', 236, 'Polska‘', 'Marian Kociniak', 7.9, 195).

Write the predicates related to actors and create some helper functions

Write the code to design an expert system asking some questions related to the mode,
time available, gendre etc.

44

Try: Create an Expert System suggesting the medical support for the diagnosis of kidney diseases. Include
the features like:

1. Forward chaining reasoning

2. History and questions management

3. Backtrack and facts revocation.

4. Management of uncertainty through the CF approach proposed for the first time in the MyCIN expert
system.

5. Explanation and translation form of the technical glossary

11. Exercises on Genetic Algorithms

11.1 Generating a Bit Pattern using Predefined Parameters

Generate a bit string that contains a predefined number of ones. Perform the selection process during each
iteration by applying the genetic algorithm. Choose the strongest individuals and terminate the weakest
one where the survival of the fittest concept comes into play. Carry out the selection process by using a
fitness function and compute the strength of each individual.

Input:
1. Deap Python Library
2. Consider the problem as solving the variant of the One Max problem.

Output:
1. Generate a bit string that contains a predefined number of ones.
a. Generate a bit pattern of length 75.
2. Evaluate all the individuals in the population using the fitness function.
3. Evaluate all the individuals with invalid fitness values.
4. Print the stats for the current generation to see how its progressing.

Starting the evolution process
Evaluated 500 individuals

===== Generation @

Evaluated 297 individuals

Min = 58.9 , Max = 75.0@

Average = 70.43 , Standard deviation = 2.91

Generation 1
ed 303 individuals
.0, Max = 75.9

= 63
Average = 72.44 , Standard deviation = 2.16

===== Generation 2

Evaluated 319 individuals

Min = 65.@ , Max = 75.8

Average = 73.31 , Standard deviation = 1.6

===== Generation 3

Evaluated 273 individuals

Min = 67.@ , Max = 75.@

Average = 73.76 , Standard deviation = 1.41

45

Generation 57
306 individuals
Min , Max = 75.@

Average = 74,82 , Standard deviation = 1.

Min 69.8
Average = 74,15 , andard deviation = 1.18

andard deviation = 1.2
==== End of evolution

Best individual:
1, 1, @, 1,1, 8,1, 8,
, 1, 1,1, @, @, 1,8, @,
, 1, 8,8, 0, 1]

Number of ones: 45

Hints

/* Install the Python package like DEAP */
$ pip3 install deap

/* Create a new Python file and import the following: */
import random from deap
import base, creator, tools

Evaluation function
def eval func(individual):
target_sum = 45
return len(individual) - abs(sum(individual) - target_sum),

Create the toolbox with the right parameters
Initialize the toolbox

Generate attributes

Initialize structures

Define the population to be a list of individuals
Register the evaluation operator

Register the crossover operator

Register a mutation operator

Operator for selecting individuals for breeding

T T E E

/* Write the appropriate code here by printing the stats for the current generation
individuals and print the final output */

Try: Understand the working of genetic algorithms and use how to use it to solve similar kinds
of problems.

11.2 Visualizing the Evolution

Understand the process of visualizing the evolution process by using a CMA-ES to solve non-linear
problems in the continuous domain. The goal of this exercise is to work by delving into the code provided
in their source code by using DEAP library.

Input: Code mentioned in the DEAP library to implement the evolutionary algorithm for solving non-linear
problems in the continuous domain.

Output: Plot the progress as:

46

blue: f-values, green: sigma, red: axis ratio Object Variables

5000 10000 15000 20000 25000 O 5000 10000 15000 20000 25000

Scaling (All Main Axes)

D inAll G

o 5000 10000 15000 20000 25000

Hints

/*Create a new Python file and import the following: */
import numpy as np

import matplotlib.pyplot as plt from deap

import algorithms, base, benchmarks, \ cma, creator, tools

/* Define a function to create the toolbox. We will define a FitnessMin function using
negative weights: */

/* Create the toolbox and register the evaluation function */

/* Register the generate and update methods, Define the main function, define a strategy
before we start the process */

/* Create the toolbox based on the strategy */
/* Register the stats using the Statistics method */

/* Define objects to compile all the data, define objects to compile all the data, and
Evaluate individuals using the fitness function */

/* Update the strategy based on the population and save the data for plotting*/

/* Define the x axis and plot the stats and plot the progress */

Try: Extend the same program to see the progress printed on the Terminal. Observe the values
keep decreasing as the process progress and indicate that it's converging.

47

11.3 Solving the Symbol Regression Problem

Use genetic programming to solve the symbol regression problem and understand that genetic
programming is not the same as genetic algorithms. The goal of this exercise is to understand how the
programs are modified, at each iteration.

Input: Create a division operator, define the evaluation function, and compute the mean squared error
(MSE).

Output: Run the evolutionary algorithm using the above parameters:

population, log = algorithms.eaSimple(population, toolbox,
probab_crossover, probab_mutate, num_generations,
stats=mstats, halloffame=hall_of fame, verbose=True)

Hints

/* Create a new Python file and import the following: */
import operator import math

import random

import numpy as np

from deap import algorithms, base, creator, tools, gp

/* Create a division operator that can handle divide-by-zero error gracefully: */
/* Create a division operator that can handle divide-by-zero error gracefully: */

/* Compute the mean squared error (MSE) between the function defined earlier and the
original expression: */

/* Define a function to create the toolbox and register the stats using the objects
defined previously. */

/* Define the crossover probability, mutation probability, and the number of
generations */

/* Define the crossover probability, mutation probability, and the number of
generations */

fitness

nevals avg

450 18.6918 47.

251 15.4572 .3823

236 13.2545 L7223

251 12.2299 .828

235 11.0e1 .1923

229 .44483 .478

225 .35975 .8546

237 .99309 31.1356 1. 4.08463
224 .42611 359.418 1. 17.0167
237 .70308 24.1921 1. 3.71991
254 .27991 30.4315 1.13381 4.13556

. 73556
808222
. 96889
.19556
84222
.56
.38889
. 14667
.33333
.64444 2
@.5089

3
3
3
4
4
Lo
6
7
8
9
1

Try: Building two bots to play Hexapawn against each other.

48

12. Exercises on Genetic Algorithms

12.1 Building a bot to play Last Coin Standing

This is a game where we have a pile of coins, and each player takes turns to take a number of coins from

the pile. There is a lower and an upper bound on the number of coins that can be taken from the pile. The
goal of the game is to avoid taking the last coin in the pile.

Input: A class handling all the operations of the game, define who starts the game, overall number of coins
in the pile, maximum number of coins per move, and possible moves.

Move #5: player 1 plays 2 :
11 coins left in the pile

C

Player 2 what do you play 7 4

Move #6: player 2 plays 4
7 coins left in the pile

m:
m:
m:
m:

Move #7: player 1 plays 1 :
6 coins left in the pile

m:4

left in the pile

FPlayer 2 what do you play ? 2

: player 1 plays 4 :
left in the pile

M # player
4 s left in the

what do you play 7 1 Move #0: player 1 plays 3

; 1 coins left in the pile
Mowve #2: player 2 plays 1 :
28 coins left in the pile Player 2 what do you play 7 1
: player 1 plays 4 :
s left in the pile

Move #1@: player 2 plays 1 :
@ coins left in the pile

Hints

/* Create a new Python file and import the following: */

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI Player from easyAI.AI
import TT

/* Create a class to handle all the operations of the game */

/* Define who is going to start the game */

/* Define the number of coins in the pile, define the maximum number of coins that can
be taken out in any move */

/* Define all the possible moves, define a method to remove the coins and keep track
of the number of coins remaining in the pile */

/* Check if anyone won the game by checking the number of coins remaining and stop the
game after someone wins its. */

/* Compute the score and define a method to show the current status of the pile */

Try: Solve the same game using iterative deepening algorithm by determining who can win a game using
all the paths.

49

12.2 Building a bot to play Tic-Tac-Toe.

Tic-Tac-Toe (Noughts and Crosses) is probably one of the most famous games. Here the goal is to build a
game where the computer can play against the user.

Input: A 3x3 board numbered from one to nine row-wise, all possible moves, and updates the board moves
until some player has lost the game.

Output:

Player 1 what do you play 7 5 Player 1 what do you play 7 4
Hove #1: player 1 plays 5 : Move #7: player 1 plays 4 :
X0X
0o0.
. K0
Move #8: player 2 plays 6 :

20X
00X
.

Player 1 what do you play ? 7

Move #9: player 1 plays 7 :

Hints

Create a new Python file and import the following packages:
from easyAI import TwoPlayersGame, AI_Player, Negamax
from easyAI.Player import Human_Player

Define a class that contains all the methods to play the game. Start by defining the
players and who starts the game

Define a method to compute all the possible moves
Define a method to update the board after making a move
Define a method to see if somebody has lost the game

Define a method to show the current progress and compute the score using the
loss_condition method

12.3 Building Two Bots to Play Connect Four against each other.

Connect Four™ is a popular two-player game sold under the Milton Bradley trademark. It is also known by
other names such as Four in a Row or Four Up. In this game, the players take turns dropping discs into a
vertical grid consisting of six rows and seven columns. The goal is to get four discs in a line. This is a variant
of the Connect Four recipe given in the easyAl library. In this recipe, instead of playing against the computer,
create two bots that will play against each other. We will use a different algorithm for each to see which
one wins.

Input: A board with six rows and seven columns, define the who is going to start the games, define the
positions, and define all the possible legal moves.

50

Output: Compute the score and print the results. Get the following output on your Terminal at the
beginning and towards the end.

000X00 .

Move #35: player 1 plays 6 :

yer 1 plays @ :

2: player 2 plays @ :

Hints

Create a new Python file and import the following packages:

import numpy as np from easyAIl

import TwoPlayersGame, Human_Player, AI Player, \ Negamax, SSS

Define a class that contains all the methods needed to play the game

Define the board with six rows and seven columns

Define who's going to start the game. In this case, let's have player one starts the
game and define the position as:

Define the positions
self.pos_dir = np.array([[[1i, @], [0, 1]]

for i in range(6)] + [[[@, i], [1, @]]

for i in range(7)] + [[[i, @], [1, 1]]

for i in range(1, 3)] + [[[@, i], [1, 1]]

for i in range(4)] + [[[i, 6], [1, -1]]

for i in range(1, 3)] + [[[@, i], [1, -1]] for i in range(3, 7)])

Define a method to get all the possible moves, define a method to control how to
make a move, and define a method to show the current status.

Try: Building two bots to play Hex pawn against each other.

13. Exercises on Robotics

13.1 Two-Persons, Perfect Information Games

Consider games with just two outcomes: win and Loss. Games where a draw is a possible outcome can be
reduced to two outcomes: win, not win. The two players will be called 'us' and 'them’. 'Us' can win in a non-
terminal 'us-to-move' position if there is a legal move that leads to a won position. On the other hand, a
non-terminal ‘them-to-move' position is won for ‘us' if all the legal moves from this position lead to won
positions. These rules correspond to AND/OR tree representation of problems. The goal of this exercise is
to find whether an us-to-move position is won.

Input: Rules corresponding to AND/OR trees that can be adopted for searching game trees.

51

Output: Find whether an us-to-move position

Hints

Create a new Python file and import the following packages:

import numpy as np from easyAI

import TwoPlayersGame, Human_Player, AI Player, \ Negamax, SSS

Define a class that contains all the methods needed to play the game

Define the board with six rows and seven columns

Define who's going to start the game. In this case, let's have player one starts the
game and define the position as:

Define the positions
self.pos_dir = np.array([[[i, @], [0, 1]]

for i in range(6)] + [[[©@, i], [1, ©@]]

for i in range(7)] + [[[i, @], [1, 1]]

for i in range(1, 3)] + [[[0, i], [1, 1]]

for i in range(4)] + [[[i, 6], [1, -1]]

for i in range(1, 3)] + [[[©, i], [1, -1]] for i in range(3, 7)])

Define a method to get all the possible moves, define a method to control how to
make a move, and Define a method to show the current status.

Try: Write a program to play some simple game (like nim) using the straightforward AND/OR search
approach.

13.2 The minimax principle

The goal of this exercise is the straightforward implementation of the minimax principle.

Input:

MAX to move

¢ MIN tomove

Static
values

Output: Compute the minimax backed-up value for a given position.

Hints

minimax_simplenim.py
def minimax(state, max_turn):

if state == o:
return 1 if max_turn else -1

52

def minimax(state, max_turn):
if state ==
return 1 if max_turn else -1

possible new_states = [
state - take for take in (1, 2, 3) if take <= state

if max_turn:
scores = [
minimax(new_state, max_turn=False)
for new_state in possible_new_states
return max(scores)
.

Try: You should play a few games of Nim to get a feel for how the new rules change the strategy. Try it with
a different number of piles, say three, four, or five. You don't need a lot of counters in each pile. Between
three and nine is a good starting point.

13.3 Advice Language 0

A broad strategy for winning with the king and rook against the sole opponent's king is to force the king
to the edge, or into a corner if necessary, and deliver mate in a few moves. The goal is to develop a program
that a play a game from a given starting position using knowledge representation in Advice Language 0.

Input: Goal predicates and Move constraint predicates.

A4

|-

BLACK REPLY J

keeproom

BLACK REPLY)

squeeze

Output: Predicate library for king and rock Vs king.

Hints

minimax_simplenim.py
def minimax(state, max_turn):

if state ==
return 1 if max_turn else -1

53

def minimax(state, max_turn):
if state ==
return 1 if max_turn else -1

possible new_states = [
state - take for take in (1, 2, 3) if take <= state

if max_turn:
scores = [
minimax(new_state, max_turn=False)
for new_state in possible_new_states
return max(scores)
.

Try: Consider some other simple chess endgames, such as king and pawn vs. king, and write an ALO
program (together with the corresponding predicate definitions) to play this endgame.

14. Exercises on Neural Networks

14.1 Building a Perceptron Based Classifier
A Perceptron is the building block of an artificial neural network. It is a single neuron that takes inputs,

performs computation on them, and then produces an output. It uses a simple linear function to make the
decision. Let's say we are dealing with an N-dimension input data point. A Perceptron computes the
weighted summation of those N numbers, and it then adds a constant to produce the output. The constant
is called the bias of the neuron. It is remarkable to note that these simple Perceptron’s are used to design
very complex deep neural networks. Develop the python code to build a perceptron-based classifier using

NeurolLab.

Input: Text file data_perceptron.txt

Output: Plot showing the training progress using the error metric.

Hints

Create a new python file and import the following packages:

import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

Load the input data and separate each data into datapoints and labels.
Plot the input data.

Extract the minimum and maximum values for each dimension.

Define a perceptron with 2 input neurons.

54

Train the perceptron using the training data and plot the training progress using
the error metric.

Try: Implement the same code using different datasets.

14.2 Constructing a Single Layer Neural Network

To enable higher accuracy, we need to give more freedom to the neural network. This means that a neural
network needs more than one layer to extract the underlying patterns in the training data. Develop the
python code to create a single layer neural network to extract the training data patterns.

Input: Generate the training data

Output: Error rates for each epoch and test results.

L Figure 1 ®
a Input data sor Training error progress
7 . 75/
.
[70
5 65,
§ H
§4 X - 260
. €
a £
3 55|
2 50
1 o 45
0 40
1 2 3 n 5 0 7] 20) 60 80 100
Dimension 1 Number of epochs
200+« @ ® 200++2@

Epoch: 2@; Error:

Epoch: 4@; Error:

Epoch: 6@; Error:

Epoch: 8@; Error:

Epoch: 10@; Error: 4.0;

The maximum number of train epochs is reached

Test results:

[0.4, 4.3] -—> [@.
[4.4, 8.6] --> [1.
[4.7, 811 -—> [1.

Hint

Create a new python file and import the following packages:

import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

Load the input data and separate each data into datapoints and labels.

Plot the input data.

Extract the minimum and maximum values for each dimension.

55

Define the number of neurons in the output layer.

Define a single layer neural network using above parameters.

Train the neural network using the training data that was generated.

Run the neural network on the training datapoints and plot the training progress.

Plot the training progress.

Define some sample test datapoints and run the network on those points.

Try: Continue training the network and reduce the errors. Verify that the predicted outputs are corrected

by locating the data points on a 2D graph.

14.3 Constructing a Multi-Layer Neural Network

To enable higher accuracy, we need to give more freedom to the neural network. This means that a neural
network needs more than one layer to extract the underlying patterns in the training data. Develop the

python code to create a multilayer neural network to extract the training data patterns.

Input: Generate the training data

Output: Error rates for each epoch.

® Figure 1
05 Input data
020
% s
% s
) s
% s
% s
0.15 Y s
) s
o
€
8
2 o010
g
a
005
0.00
~0.05 N
=20 15 10 -5 0 5 10 15
Dimension 1
200+« & 8

e Figure 2
o Training error progress
40
35
30|
‘E 25)
20
15
10 I
o
LTV
0
200 400 600 800 1000 1200 1400 1600
Number of epochs
00+« @

1800

® Figure 3

020 Actual vs p

Epoch: Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:

Epoch: ; Error:
Epoch: ; Error:
Epoch: ; Error:
Epoch: ; Error:
Epoch: ; Error:
Epoch: ; Error:
Epoch: ; Error:
Epoch: ; Error: ©0.01210866043021068;
The goal of learning is reached

.9247718251621995;
.15723294798079526;
.021680213116912858;
.1381761995539017;
.04392553381948737;
.02975401597014979;
.014228560930227126;
.03460207842970052;
.035934053149433196;

OO —

.01776586425692384;
.04310242610384976;
.03799681296096611;
.02467030041520845;

SO0

56

.025833284445815966;
.013672412879982398;

.010094873168855236;

Hint

Create a new python file and import the following packages:
import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

Generate some sample data points based on the equation y = 3x*2 + 5 and then normalize
the points

Reshape the above variables to create a training dataset:

Plot the input data.

Define a multilayer neural network with two hidden layers.

Set the training algorithm to gradient descent.

Train the neural network using the training data that was generated.

Run the neural network on the training datapoints and plot the training progress.
Plot the predicted output.

Try: Continue training the network and reduce the errors. Try to see that the predicted output will match
the input curve even more accurately.

15. Exercises on Natural Language Processing

15.1 Converting words to their base forms using stemming

Working with text has a lot of variations included in it. We have to deal with different forms of the same
word and enable the computer to understand that these different words have the same base form. For
example, the word sing can appear in many forms such as sang, singer, singing, singer, and so on. We just
saw a set of words with similar meanings. Humans can easily identify these base forms and derive context.
Develop the python code to analyze the text and identify the base forms and derive the context.

Input: Bag of some input words like writing, calves, branded etc.

Output: Extract useful statistics to analyze the input text.

INPUT WORD PORTER LANCASTER SNOWBALL

writing i writ write
calves calv calv
be be be
branded brand brand
horse hors hors

randomize random random random
possibly possibl poss possibl
provision provis provid provis
hospital hospit hospit hospit

kept kept kept kept
scratchy scratchi scratchy scratchi

code code cod code

Hint

Create a new python file and import the following packages.

57

from nltk.stem.porter import PorterStemmer

from nltk.stem.lancaster import LancasterStemmer

from nltk.stem.snowball import SnowballStemmer

Define some input words

Create objects for Porter, Lancaster, and Snowball stemmers.

Create a list of names for table display and format the output text accordingly.

Iterate through the words and stem them using the three stemmers

Try: Implement the code to understand the three stemming algorithms to achieve the same goal.
Converting words to their base forms using lemmatization.

15.2 Dividing text data into chunks

Text data usually needs to be divided into pieces for further analysis. This process is known as chunking.
This is used frequently in text analysis. The conditions that are used to divide the text into chunks can vary
based on the problem at hand. This is not the same as tokenization where we also divide text into pieces.
During chunking, we do not adhere to any constraints and the output chunks need to be meaningful.
Develop the python code to divide the text into chunks to extract meaningful information.

Input: A large text document named brown.
Output: Divide the input text into chunks and display the output.

Number of text chunks = 18

Chunk 1
Chunk 2 . (2) Fulton legislators ‘' work with city of
Chunk 3 . Construction bonds Meanwhile , it was learned th
4
5

The Fulton County Grand Jury said Friday an invest

Chunk , anonymous midnight phone calls and veiled threat

Chunk Harris , Bexar , Tarrant and E1 Paso would be $451

Chunk set it for public hearing on Feb. 22 . The proposa
Chunk College . He has served as a border patrolman and

Chunk of his staff were doing on the address involved co
Chunk plan alone would boost the base to $5,000 a year a
Chunk nursing homes In the area of ‘' community health s
Chunk of its Angola policy prove harsh , there has been
Chunk system which will prevent Laos from being used as
Chunk reform in recipient nations . In Laos , the admini
Chunk . He is not interested in being named a full-time
Chunk said , '' to obtain the views of the general publi
Chunk "' . Mr. Reama , far from really being retired , i
Chunk making enforcement of minor offenses more effectiv
Chunk 18 ==> to tell the people where he stands on the tax issu

Hint

Create a new python file and import the following packages.

import numpy as np
from nltk.corpus import brown

Define a function to divide the input text into chunks.
Iterate through the words and divide them into chunks using the input parameter.
Define the main function and read the input data using the Brown corpus.

Define the number of words in each chunk:

58

Divide the input text into chunks and display the output:

Try: Implement the code to understand the three stemming algorithms to achieve the same goal.
Converting words to their base forms using lemmatization.

15.3 Extracting the frequency of terms using a Bag of Words Model

One of the main goals of text analysis is to convert text into numeric form so that we can use machine
learning on it. Let's consider text documents that contain many millions of words. In order to analyze
these documents, develop the python code to extract the text and convert it into a form of numeric
representation.

Input: Consider the following sentences.

Sentence 1: The children are playing in the hall
Sentence 2: The hall has a lot of space
Sentence 3: Lots of children like playing in an open space

If you consider all the three sentences, we have the following nine unique words: the, children,
are, playing, in, hall, has, a, lot, of, space, like, an, open.

Output: Extract useful statistics to analyze the input text.

INPUT WORD PORTER LANCASTER SNOWBALL

writing
calves
be
branded
horse

randomize random random random
possibly possibl poss possibl
provision provis provid provis
hospital hospit hospit hospit

kept kept kept kept
scratchy scratchi scratchy scratchi

code code cod code

Hint

Create a new python file and import the following packages.

import numpy as np

from sklearn.feature_extraction.text import CountVectorizer
from nltk.corpus import brown

from text_chunker import chunker

Build a bag of words model in NLTK.

Define the number of words in each chunk

Divide the input text into chunks:

Convert the chunks into dictionary items:

Extract the document term matrix where we get the count of each word.

Extract the vocabulary and display it and generate the names for display.

Print the document term matrix.

59

Try: 1. Build a category predictor.
2. Construct a gender identifier.
3. Building a sentiment analyzer

16. Final Notes

The only way to learn programming is program, program, and program on challenging problems. The
problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging problems
available — used in training for various programming contests. Check out these sites:

1. Introduction to Artificial Intelligence with Python, Associated with Harvard University. CS50's
Introduction to Artificial Intelligence with Python | Harvard University

2. NPTEL: An Introduction to Artificial Intelligence, https://nptel.ac.in/courses/106105077/

3. NPTEL: Artificial Intelligence Search Methods for Problem Solving, Artificial Intelligence Search
Methods for Problem Solving - Course (nptel.ac.in).

4. IFACET (iitk.ac.in)

5. Introduction to Artificial Intelligence (Al) | Coursera in association with IBM.
6. http://www.ai.eecs.umich.edu

Student must have any one of the following certifications:

e Competitive Coding with AlphaCode Team - Competitive programming with AlphaCode
(deepmind.com)
e |lIT Hyderabad Certification - Competitive programming with AlphaCode (deepmind.com)

60

https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python
https://nptel.ac.in/courses/106105077/
https://onlinecourses.nptel.ac.in/noc21_cs79/preview
https://onlinecourses.nptel.ac.in/noc21_cs79/preview
https://ifacet.iitk.ac.in/professional-certificate-course-in-ai-and-machine-learning/?utm_source=google&utm_medium=cpc&utm_term=ai%20certification&utm_content=20161035334-154966829171-661014543750&utm_device=c&utm_campaign=Search-DataCluster-PG-DSAI-AIML-CAIML-IITK-Main-IITKDomain-IN-AllDevice-Core-adgroup-CAIML-IITK-Core-Keywords&gclid=EAIaIQobChMIpqzx9MXHgQMVoxF7Bx1w6QEuEAAYAyAAEgLHuvD_BwE
https://www.coursera.org/learn/introduction-to-ai
https://www.deepmind.com/blog/competitive-programming-with-alphacode
https://www.deepmind.com/blog/competitive-programming-with-alphacode
https://www.deepmind.com/blog/competitive-programming-with-alphacode

