
Page | 1

COURSE CONTENT

DATA HANDLING AND VISUALIZATION LABORATORY

IV Semester: CSE (DS)

Course Code Category Hours / Week Credits

Maximum Marks

ACDD04 Core
L T P C CIA SEE Total

0 0 2 1 40 60 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisites: Python Programming

I. COURSE OVERVIEW:

Data handling is the process of collecting, organizing, and presenting the data in a way to analyse, make

predictions, draw conclusions, and make decisions. Data visualization is a part of exploratory data

analysis, a prior step before a full-pledged data analysis. This laboratory course is intended to offer

practical knowledge and skills in both data handling and visualization. In this laboratory, python

packages such as NumPy, SciPy and Pandas used for computations, and the visualization packages such

as seaborn and matplotlib are practiced. Hands-on exercises are designed to explore the basic data

importing, exploration, visualization, preliminary data analysis and data exporting techniques using

core python and its packages. The expertise gained in this laboratory lays foundation for detailed data

analysis that involves data modelling, analysis, evaluation and mining in scientific and engineering

domains.

II. COURSE OBJECTIVES

The students will try to learn:

I. Installation and usage of python packages useful for data exploration and visualization.

II. Data handling using python in practice.

III. The practical knowledge of data visualization capabilities of python packages.

III. COURSE OUTCOMES

At the end of the course students should be able to:

CO 1 Tabulate the data from the CSV, XLS, TXT and JSON files as data frames and export the

data frame to files.

CO 2 Make use of imputation techniques for wrangling the data using pandas package.

CO 3 Create the python dataframes to form pivot tables and contingency tables.

CO 4 Manipulate the tabular data by joining multiple dataframes using pandas package.

CO 5 Explore the data using the data visualization techniques in python environment.

CO 6 Analyze the data for outliers to data trimming the data required for an authentic data analysis

in python environment.

Page | 2

IV. COURSE CONTENT

DATA HANDLING AND VISUALIZATION LABORATORY (ACDD04)
CONTENTS

S No. Topic Name Page No.

1 Installation of python and related packages 4-18

 a. Install python, and packages; NumPy, SciPy and Panda.

 b. Study matrix operations: rank, inverse, condition number

 c. Solving for simultaneous equations in 3 or 4 variables.

2 Working with CSV files and XLS files. 19-32

 a. Save a List to CSV, XLSX and TXT files.

 b. Save a Dictionary to CSV, XLSX and TXT files.

 c. Load data from CSV, XLSX and TXT pandas to a List.

 d. Load data from CSV, XLSX and TXT pandas to a Dictionary.

3 Basic operations on Dataframe. 33-36

 a. Attribute filtering based on conditions.

 b. Attribute filtering based on slicing.

 c. Attribute filtering based on queries.

4 Summary Statistics of the data 37-46

 a. Compute ranking statistics of the data.

 b. Compute statistical averages of numerical attributes.

 c. Compute statistical ratios of numerical attributes.

 d. Interpret the results.

5 Handling Missing Values 47-58

 a. Drop the rows containing missing values

 b. Impute missing values with statistical averages.

 c. Impute missing values using linear interpolation.

 d. Interpret the results.

6 Handling Time series data. 59-69

 a. Display the date and time information in different formats.

 b. Generate summary statistics during a period.

 c. Compute rolling mean and rolling std deviations and plot.

7 Visualization of categorial data 70-79

 a. Plot categorical data as vertical and horizontal bar charts and label it.

 b. Plot categorical data as vertical grouped bar chart and label it.

 c. Plot categorical data as vertical stacked bar chart and label it.

 d. Interpret the results.
8 Visualization of correlations. 80-91

 a. Plot the pair wise scatter plots of numerical attributes

 b. Identify the type of correlations.

 c. Interpret the results.
9 Visualization of distributions 92-96

 a. Plot the histograms of numerical data.

Page | 3

 b. Plot the counts of categorial data.

 c. Plot the data distributions (or densities).

 d. Interpret the results.
10 Visualization using box-and-whisker plots. 97-102

 a. Compute the rank statistics of numerical attributes.

 b. Create the box-and-whisker plots of numerical attributes.

 c. Interpret the results.
11 Handling outliers in the data. 103-109

 a. Identify the outliers using quartile method.

 b. Identify the outliers using standard deviation method.

 c. Compare the performance of two methods.

 d. Remove outliers from the data.

 e. Interpret the results.
12 Working with Data Tables. 110-112

 a. Joining the data tables.

 b. Exercises on contingency tables

 c. Exercises on grouping data.
13 Data Scaling and Transformation. 113-118

 a. Scaling the data using different python scalers.

 b. Normalization as a special case of data scaling.

 c. Data transformation using standardization.

 d. Compare the results and interpret.
14 Web Scraping. 119-126

 a. Scraping a list of items from a website.

 b. Scraping data from a table.

 c. Scraping images from a website.

 d. Scraping data with pagination.

Page | 4

V. SYLLABUS:

EXERCISES FOR DATA HANDLING AND VISUALIZATION
LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

Getting Started Exercises

1. Installation of python and related packages

a. Install python, and packages: NumPy, Panda and SciPy.

To install Python and the packages NumPy, SciPy, and Pandas, follow these steps:

Install Python:

To install Python on a Windows system, you can:

Step 1: Select Version to Install Python

Visit the official page for Python https://www.python.org/downloads/ on the Windows operating

system. Locate a reliable version of Python 3, preferably version 3.10.11, which was used in testing

this tutorial. Choose the correct link for your device from the options provided: either Windows

installer (64-bit) or Windows installer (32-bit) and proceed to download the executable file.

Step 2: Downloading the Python Installer

Once you have downloaded the installer, open the .exe file, such as python-3.10.11-amd64.exe,

by double-clicking it to launch the Python installer. Choose the option to Install the launcher for

all users by checking the corresponding checkbox, so that all users of the computer can access the

Python launcher application. Enable users to run Python from the command line by checking the

Add python.exe to PATH checkbox.

Page | 5

After Clicking the Install Now Button the setup will start installing Python on your Windows

system. You will see a window like this.

Step 3: Running the Executable Installer

After completing the setup. Python will be installed on your Windows system. You will see a

successful message.

Step 4: Verify the Python Installation in Windows

Close the window after successful installation of Python. You can check if the installation of Python

Page | 6

was successful by using either the command line or the Integrated Development Environment

(IDLE), which you may have installed. To access the command line, click on the Start menu and

type “cmd” in the search bar. Then click on Command Prompt.

python --version

You can also check the version of Python by opening the IDLE application. Go to Start and enter

IDLE in the search bar and then click the IDLE app, for example, IDLE (Python 3.10.11 64-bit). If

you can see the Python IDLE window then you are successfully able to download and installed

Python on Windows.

Install Packages:

You can list installed Python packages by using the pip command-line tool with the list

command.

1. Installing Numpy on Windows:

Python NumPy is a general-purpose array processing package that provides tools for handling n-

dimensional arrays. It provides various computing tools such as comprehensive mathematical

functions, and linear algebra routines. NumPy provides both the flexibility of Python and the

speed of well-optimized compiled C code. Its easy-to-use syntax makes it highly accessible and

productive for programmers from any background. In this article, we will see how to install NumPy

as well as how to import Numpy in Python.

Pre-requisites:

 Knowledge on Python libraries

 Anaconda

 Pycharm

Installing Numpy For PIP Users

Users who prefer to use pip can use the below command to install NumPy:

pip install numpy

https://www.geeksforgeeks.org/jupyter-notebook-vs-python-idle/
https://www.geeksforgeeks.org/introduction-to-numpy/
https://www.geeksforgeeks.org/download-and-install-python-3-latest-version/

Page | 7

You will get a similar message once the installation is complete:

Install Numpy Using Conda

If you want the installation to be done through conda, you can use the below command:

conda install -c anaconda numpy

You will get a similar message once the installation is complete

2. Install Pandas on Windows

Python Pandas can be installed on Windows in two ways:

 Using pip

 Using Anaconda

Install Pandas using pip

pip is a package management system used to install and manage software packages/libraries

written in Python. These files are stored in a large “online repository” termed as Python Package

Index (PyPI).

Step 1 : Launch Command Prompt

To open the Start menu, press the Windows key or click the Start button. To access the

Command Prompt, type “cmd” in the search bar, click the displayed app, or use Windows key + r,

enter “cmd,” and press Enter.

https://www.geeksforgeeks.org/how-to-install-pip-on-windows/

Page | 8

Step 2 : Run the Command

Pandas can be installed using PIP by use of the following command in Command Prompt.

pip install pandas

Install Pandas using Anaconda

Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data

processing, Data Analytics, and heavy scientific computing. If your system is not pre-equipped with

Anaconda Navigator, you can learn how to install Anaconda Navigator on Windows or Linux.

Install and Run Pandas from Anaconda Navigator

Step 1: Search for Anaconda Navigator in Start Menu and open it.

Step 2: Click on the Environment tab and then click on the Create button to create a new

Pandas Environment.

https://www.geeksforgeeks.org/getting-started-with-jupyter-notebook-python/
https://www.geeksforgeeks.org/data-analytics-and-its-type/
https://www.geeksforgeeks.org/how-to-install-anaconda-on-windows/
https://www.geeksforgeeks.org/how-to-install-anaconda-on-linux/

Page | 9

Step 3: Give a name to your Environment, e.g. Pandas, and then choose a Python and its version

to run in the environment. Now click on the Create button to create Pandas Environment.

Step 4: Now click on the Pandas Environment created to activate it.

Page | 10

Step 5: In the list above package names, select All to filter all the packages.

Step 6: Now in the Search Bar, look for ‘Pandas‘. Select the Pandas package for Installation.

Page | 11

Step 7: Now Right Click on the checkbox given before the name of the package and then go to

‘Mark for specific version installation‘. Now select the version that you want to install.

Step 8: Click on the Apply button to install the Pandas Package.

Step 9: Finish the Installation process by clicking on the Apply button.

Step 10: Now to open the Pandas Environment, click on the Green Arrow on the right of the

package name and select the Console with which you want to begin your Pandas programming.

Page | 12

3. Install Scipy in Python on Windows

For PIP Users:

Users who prefer to use pip can use the below command to install Scipy package on Windows:

pip install scipy

message once the installation is complete:

Verifying Scipy Module Installation:

To verify if Scipy has been successfully installed in your system run the below code in a

python IDE of your choice:

import scipy

scipy.__version__

If successfully installed you will get the following output.

For Conda Users:

If you want the installation to be done through conda, you can use the below command:

conda install scipy

Type y for yes when prompted.

You will get a similar message once the installation is complete

Page | 13

Verify Installation

• Open a Python interpreter by typing python in your terminal or command prompt.

• Try to import the packages:

import numpy as np

import scipy as sp

import pandas as pd

If there are no errors, the packages are installed successfully.

Try:

1. Write a program to check whether a Numpy array contains a specified row?

Sample Output:

[[1 2 3 4 5]

 [6 7 8 9 10]

 [11 12 13 14 15]

 [16 17 18 19 20]]

True

False

False

True

2. Write a program to get all 2D diagonals of a 3D NumPy array?

Sample Output:

Original 3d array:

Page | 14

 [[[0 1 2 3]

 [4 5 6 7]

 [8 9 10 11]

 [12 13 14 15]]

 [[16 17 18 19]

 [20 21 22 23]

 [24 25 26 27]

 [28 29 30 31]]

 [[32 33 34 35]

 [36 37 38 39]

 [40 41 42 43]

 [44 45 46 47]]]

2d diagonal array:

 [[0 5 10 15]

 [16 21 26 31]

 [32 37 42 47]]

b. Study matrix operations: rank, inverse, condition number

Operation Python Function Key Notes

Rank np.linalg.matrix_rank
Works for any matrix (not just

square).

Inverse np.linalg.inv
Only for square and nonsingular

matrices.

Condition

Number
np.linalg.cond

Indicates numerical stability of a

matrix.

1. Rank of a Matrix

The rank of a matrix indicates the number of linearly independent rows or columns. It reflects the

"dimension" of the matrix's space. For example:

• A 3×3 matrix of rank 3 is "full rank."

• A rank-deficient matrix has fewer linearly independent rows or columns.

In Python:

The function numpy.linalg.matrix_rank determines the rank using numerical methods like the

singular value decomposition (SVD). SVD decomposes the matrix, and the rank is the count of

non-zero singular values.

import numpy as np

A = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Compute rank

rank = np.linalg.matrix_rank(A)

print("Rank of A:", rank)

Page | 15

Output:

Rank of A=2 (because the third row is a linear combination of the first two rows).

2. Inverse of a Matrix

Python provides a very easy method to calculate the inverse of a matrix. The

function numpy.linalg.inv() is available in the NumPy module and is used to compute the inverse

matrix in Python.

Syntax: numpy.linalg.inv(a)

Example 1: In this example, we will create a 3 by 3 NumPy array matrix and then convert it

into an inverse matrix using the np.linalg.inv() function.

Import required package

import numpy as np

Taking a 3 * 3 matrix

A = np.array([[6, 1, 1],

 [4, -2, 5],

 [2, 8, 7]])

Calculating the inverse of the matrix

print(np.linalg.inv(A))

Output:

[[0.17647059 -0.00326797 -0.02287582]

 [0.05882353 -0.13071895 0.08496732]

 [-0.11764706 0.1503268 0.05228758]]

3. Condition Number

The condition number of a matrix measures how sensitive the solution of a system is to errors in

the input. A small condition number indicates stability, while a large one suggests potential

numerical instability.

Mathematically:

Condition Number= Larges Singular Value/ Smallest Singular Value

Significance:

• Low condition number (close to 1): Well-conditioned matrix.

• High condition number: Ill-conditioned matrix; results may be unreliable.

In Python: Use numpy.linalg.cond to compute the condition number.

C = np.array([[1, 2],

 [3, 4]])

Compute the condition number

cond_number = np.linalg.cond(C)

print("Condition number of C:", cond_number)

Output:

High condition numbers suggest the matrix is close to singular, leading to unstable

computations.

Try:

1. Write a program to compute the eigenvalues and eigenvectors of a complex matrix.

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/how-to-inverse-a-matrix-using-numpy/
https://www.geeksforgeeks.org/python-numpy/

Page | 16

Sample Output:

 Eigenvalues: [5.56155281+2.26527142j -0.56155281+0.73472858j]

 Eigenvectors:

 [[0.48454084+0.j 0.83703486+0.j]

 [0.87474491+0.j -0.54713267+0.j]]

2. Write a program to compute the inverse a matrix using NumPy?

Sample Output:

[[0.17647059 -0.00326797 -0.02287582]

 [0.05882353 -0.13071895 0.08496732]

 [-0.11764706 0.1503268 0.05228758]]

c. Solving for simultaneous equations in 3 or 4 variables

To solve simultaneous equations in 3 or 4 variables, you can represent the system as a matrix

equation and use numerical methods or analytical techniques.

 Matrix Representation

A system of equations can be written in the form:

A⋅X=B

Where:

• A: Coefficient matrix.

X: Column vector of variables.

• B: Column vector of constants.

Solving in Python

Example: Solving for 3 variables

Solving equation with three variables

Construct the following equations using Eq() and solve then to find the unknown variables

importing library sympy

from sympy import symbols, Eq, solve

defining symbols used in equations

or 3 variables

x, y, z = symbols('x,y,z')

defining equations

Page | 17

eq1 = Eq((x+y+z), 1)

print("Equation 1:")

print(eq1)

eq2 = Eq((x-y+2*z), 1)

print("Equation 2")

print(eq2)

eq3 = Eq((2*x-y+2*z), 1)

print("Equation 3")

solving the equation and printing the

value of unknown variables

print("Values of 3 unknown variable are as follows:")

print(solve((eq1, eq2, eq3), (x, y, z)))

Output: Equation 1:

Eq(x + y + z, 1)

Equation 2

Eq(x - y + 2*z, 1)

Equation 3

Values of 3 unknown variable are as follows:

{x: 0, y: 1/3, z: 2/3}

Example: Solving for 4 variables

Define a system with 4 variables

A = np.array([[1, 2, 3, 4],

 [2, 3, 4, 5],

 [3, 4, 5, 6],

 [4, 5, 6, 7]])

B = np.array([10, 15, 20, 25])

Solve for the variables

X = np.linalg.solve(A, B)

print("Solution (x1, x2, x3, x4):", X)

Applications

• 3 Variables: Common in physics and engineering (e.g., circuits, forces).

• 4 Variables: Often used in economics or systems modeling.

Try:

1. Write a program to solve the following simultaneous equations:

2x + 3y = –2

5x + 4y + 2 = 0

Sample Output:

 The solution of the given simultaneous equation is (2/7, –6/7)

2. Write a program to solve the following simultaneous equations:

a2 – b = 14 and 2b – 4 = 12a

Sample Output:

Page | 18

 The solution of the given simultaneous equation is a = 8, b = 50 and a = –5, b = 11.

2. Working with CSV files and XLS files

1. Save a List to CSV, XLSX and TXT files.

1. Save a List to a CSV File

A CSV (Comma Separated Values) is a simple file format, used to store data in a tabular format.

CSV file stores tabular data (numbers and text) in plain text. Each line of the file is a data record.

Each record consists of one or more fields, separated by commas. The use of the comma as a field

separator is the source of the name for this file format. There are various methods to save lists to

CSV which we will see in this article.

Example Code:

The code uses the csv module to write data into a CSV file named ‘GFG’. It defines the field names

as [‘Name’, ‘Branch’, ‘Year’, ‘CGPA’] and the data rows as a list of lists. It opens the file in write mode

and uses the csv.writer method to write the field names as the first row and then writes the data

rows into the file.

import csv

field names

fields = ['Name', 'Branch', 'Year', 'CGPA']

data rows of csv file

rows = [['Nikhil', 'COE', '2', '9.0'],

 ['Sanchit', 'COE', '2', '9.1'],

 ['Aditya', 'IT', '2', '9.3'],

 ['Sagar', 'SE', '1', '9.5'],

 ['Prateek', 'MCE', '3', '7.8'],

 ['Sahil', 'EP', '2', '9.1']]

with open('GFG', 'w') as f:

 # using csv.writer method from CSV package

 write = csv.writer(f)

 write.writerow(fields)

 write.writerows(rows)

Output:

2. Saving a List to an XLSX File

XLSX (Excel format) is commonly used for structured spreadsheets.

• Library Used: openpyxl (popular Python library for working with Excel files).

Page | 19

• Data Format: Each sublist is written as a row into an Excel sheet.

• Steps:

Create a new workbook.

 Use Workbook.active to access the worksheet.

 Write rows to the worksheet using the .append() method.

 Save the workbook with .save().

Example Code:

from openpyxl import Workbook

List of rows

my_list = [["Name", "Age", "City"], ["Alice", 30, "New York"], ["Bob", 25, "Los Angeles"]]

Create a workbook and worksheet

wb = Workbook()

ws = wb.active

Append each row to the worksheet

for row in my_list:

 ws.append(row)

Save as Excel file

wb.save("output.xlsx")

Output (output.xlsx):

 The file can be opened in Excel or any compatible software. The data will appear in a

table format.

3. Saving a List to a TXT File

TXT (Plain Text) is a simple text file where data can be formatted as needed.

• Library Used: None (uses Python’s built-in file I/O).

• Data Format: Rows are written line by line, and elements are separated by a

delimiter (e.g., tab \t or space).

Steps:

1. Open a file in write mode.

2. Loop through the list and write each sublist as a line.

3. Convert elements to strings and join them with a delimiter.

4. Save and close the file.

Example Code:

List of rows

my_list = [["Name", "Age", "City"], ["Alice", 30, "New York"], ["Bob", 25, "Los Angeles"]]

Save as TXT

with open("output.txt", "w") as file:

 for row in my_list:

 file.write("\t".join(map(str, row)) + "\n") # Convert elements to string & join by tab

Output (output.txt):

Name Age City

Alice 30 New York

Bob 25 Los Angeles

Page | 20

Comparison of File Formats

Format
File

Extension
Use Case Key Feature

CSV .csv
Import/export table-

like data easily.

Universal, supported by

most software.

XLSX .xlsx
Advanced formatting

in Excel files.

Spreadsheet software

compatibility.

TXT .txt Storing plain text data. Simple and lightweight.

Try:

1. 1. Write a program to save a Nested List with Headers to a CSV File

2.

Sample Output:

ID ,Name, Age, City

101,Alice,25,New York

102,Bob,30,Los Angeles

103,Charlie,28,Chicago

104,Diana,35,Houston

3. 2. Write a program to save a List with Multiple Sheets to an XLSX File

4.

Sample Output:

Sheet: Products

Product Price Stock

Laptop 1200 50

Phone 800 150

Tablet 400 100

Sheet: Employees

Employee Department Salary

Alice HR 60000

Bob IT 80000

Charlie Sales 70000

3. Write a program to save a List with Delimiters to a TXT File

Sample Output:

Student Math Science English

Alice 85 90 88

Bob 78 83 80

Charlie 92 88 95

Page | 21

2. Save a Dictionary to CSV, XLSX and TXT files.

Save a Dictionary to a CSV File

CSV (comma-separated values) files are one of the easiest ways to transfer data in form

of string especially to any spreadsheet program like Microsoft Excel or Google

spreadsheet. In this article, we will see how to save a PYthon dictionary to a CSV file. Follow

the below steps for the same.

1. Import csv module

import csv

2. Creating list of field names

field_names= ['No', 'Company', 'Car Model']

3. Creating a list of python dictionaries

cars = [

{‘No’: 1, ‘Company’: ‘Ferrari’, ‘Car Model’: ‘488 GTB’},

{‘No’: 2, ‘Company’: ‘Porsche’, ‘Car Model’: ‘918 Spyder’},

{‘No’: 3, ‘Company’: ‘Bugatti’, ‘Car Model’: ‘La Voiture Noire’},

{‘No’: 4, ‘Company’: ‘Rolls Royce’, ‘Car Model’: ‘Phantom’},

{‘No’: 5, ‘Company’: ‘BMW’, ‘Car Model’: ‘BMW X7’},

]

4. Writing content of dictionaries to CSV file

with open('Names.csv', 'w') as csvfile:

 writer = csv.DictWriter(csvfile, fieldnames=field_names)

 writer.writeheader()

 writer.writerows(cars)

Syntax:

DictWriter((filename), fieldnames = [list of field names])

In the above code snippet writer is an instance of csv.DictWriter class and uses two of its

following methods:

o DictWriter.writeheader() is used to write a row of column headings / field names

to the given CSV file

o csvwriter.writerows() method is used to write rows of data into the specified

file.

 Note: To write a single dictionary in CSV file use writerow() method

import csv

field_names = ['No', 'Company', 'Car Model']

cars = [

{'No': 1, 'Company': 'Ferrari', 'Car Model': '488 GTB'},

{'No': 2, 'Company': 'Porsche', 'Car Model': '918 Spyder'},

{'No': 3, 'Company': 'Bugatti', 'Car Model': 'La Voiture Noire'},

{'No': 4, 'Company': 'Rolls Royce', 'Car Model': 'Phantom'},

{'No': 5, 'Company': 'BMW', 'Car Model': 'BMW X7'},

]

Page | 22

with open('Names.csv', 'w') as csvfile:

 writer = csv.DictWriter(csvfile, fieldnames = field_names)

 writer.writeheader()

 writer.writerows(cars)

Output:

OR

The code imports the pandas library as pd. It defines three lists: nme for names, deg for

degrees, and scr for scores. It creates a dictionary dict using these lists. Then, it creates a

pandas DataFrame df from the dictionary. Finally, it saves the DataFrame as a CSV file

named ‘GFG.csv’ using the to_csv method. The resulting CSV file will contain the columns

‘name’, ‘degree’, and ‘score’ with the corresponding data from the lists.

importing pandas as pd

import pandas as pd

list of name, degree, score

nme = ["aparna", "pankaj", "sudhir", "Geeku"]

deg = ["MBA", "BCA", "M.Tech", "MBA"]

scr = [90, 40, 80, 98]

dictionary of lists

dict = {'name': nme, 'degree': deg, 'score': scr}

df = pd.DataFrame(dict)

saving the dataframe

df.to_csv('GFG.csv')

Output:

import csv

import pandas as pd

Sample list

data = [["Name", "Age", "City"], ["John", 25, "New York"], ["Emma", 28, "London"]]

https://www.geeksforgeeks.org/pandas-tutorial/

Page | 23

Save to CSV

with open("data.csv", "w", newline="") as f:

 writer = csv.writer(f)

 writer.writerows(data)

Save to XLSX

df = pd.DataFrame(data[1:], columns=data[0])

df.to_excel("data.xlsx", index=False)

Save to TXT

with open("data.txt", "w") as f:

 for row in data:

 f.write("\t".join(map(str, row)) + "\n")

Save a Dictionary to an XLSX File

Pandas write Excel files using the XlsxWriter or Openpyxl module. This can be used to read,

filter, and re-arrange either small or large datasets and output them in a range of formats

including Excel. The ExcelWriter() method of the pandas library creates a Excel writer object

using XlsxWriter. Then the to_excel() method is used to write the dataframe to the excel.

import pandas as pd

import pandas as pd

Create a Pandas dataframe from some data.

df = pd.DataFrame({'Data': ['Geeks', 'For', 'geeks', 'is' ,'portal', 'for', 'geeks']})

Create a Pandas Excel writer

object using XlsxWriter as the engine.

writer = pd.ExcelWriter('sample.xlsx', engine='xlsxwriter')

Write a dataframe to the worksheet.

df.to_excel(writer, sheet_name='Sheet1')

Close the Pandas Excel writer

object and output the Excel file.

writer.save()

Output:

https://www.geeksforgeeks.org/pandas-tutorial/

Page | 24

Save a Dictionary to a TXT File

In a TXT file:

• Each key-value pair can be written on a new line.

• Keys and values are separated by a delimiter, such as a colon (:) or tab (\t).

Dictionary to save

data = {"Name": "Alice", "Age": 30, "City": "New York"}

Save as TXT

with open("output.txt", "w") as file:

 for key, value in data.items():

 file.write(f"{key}: {value}\n") # Format as "key: value"

print("Dictionary saved to output.txt")

Output in a TXT file:

Name: Alice

Age: 30

City: New York

Try:

1. How can you save a dictionary containing sales data for multiple regions into a CSV file, where

each region

2. becomes a row with its total sales as one of the columns?

3. How can you save a dictionary representing time-series data (e.g., date and sales) into an Excel file

with dates in one column and corresponding sales data in another?

4. How can you save a dictionary where each key maps to a list of items into a TXT file, formatting

the output so that each key appears as a section header followed by the list items in bullet format?

3. Load data from CSV, XLSX and TXT pandas to a List.

Loading Data from CSV, XLSX, and TXT into a List Using pandas

The pandas library provides powerful tools to load data from various file formats into Python.

Once the data is loaded into a DataFrame, it can be easily converted to a list.

A CSV file contains data organized in rows and columns.

Steps:

Page | 25

1. Use pandas.read_csv() to load the CSV into a DataFrame.

2. Convert the DataFrame to a list using .values.tolist() or .to_dict().

Example:

 CSV Content (data.csv):

Name,Age,City

Alice,30,New York

Bob,25,Los Angeles

Charlie,35,Chicago

Python Code:

import pandas as pd

Load CSV file

df = pd.read_csv("data.csv")

Convert to a list of lists

list_of_rows = df.values.tolist()

Convert to a list of dictionaries (optional)

list_of_dicts = df.to_dict(orient="records")

print("List of Rows:", list_of_rows)

print("List of Dicts:", list_of_dicts)

Output:

List of Rows: [['Alice', 30, 'New York'], ['Bob', 25, 'Los Angeles'], ['Charlie', 35, 'Chicago']]

List of Dicts: [{'Name': 'Alice', 'Age': 30, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}]

2. Load Data from an XLSX File:

 An XLSX file is an Excel spreadsheet with data in rows and columns.

 Steps:

1. Use pandas.read_excel() to load the XLSX file.

2. Convert the resulting DataFrame to a list.

Example:

Excel Content (data.xlsx):

Name Age City

Alice 30 New York

Bob 25 Los Angeles

Charlie 35 Chicago

Load Excel file

Page | 26

df = pd.read_excel("data.xlsx")

Convert to a list of lists

list_of_rows = df.values.tolist()

Convert to a list of dictionaries (optional)

list_of_dicts = df.to_dict(orient="records")

print("List of Rows:", list_of_rows)

print("List of Dicts:", list_of_dicts)

Output:

 List of Rows: [['Alice', 30, 'New York'], ['Bob', 25, 'Los Angeles'], ['Charlie', 35,

'Chicago']]

List of Dicts: [{'Name': 'Alice', 'Age': 30, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}]

3. Load Data from a TXT File

A TXT file often stores data in a delimited format (e.g., tab-delimited, space-delimited).

Steps:

1. Use pandas.read_csv() with the appropriate delimiter to load the TXT file.

2. Convert the resulting DataFrame to a list.

Example:

TXT Content (data.txt):

Name\tAge\tCity

Alice\t30\tNew York

Bob\t25\tLos Angeles

Charlie\t35\tChicago

Load TXT file (tab-delimited)

df = pd.read_csv("data.txt", delimiter="\t")

Convert to a list of lists

list_of_rows = df.values.tolist()

Convert to a list of dictionaries (optional)

list_of_dicts = df.to_dict(orient="records")

print("List of Rows:", list_of_rows)

print("List of Dicts:", list_of_dicts)

Output:

List of Rows: [['Alice', 30, 'New York'], ['Bob', 25, 'Los Angeles'], ['Charlie', 35,

'Chicago']]

List of Dicts: [{'Name': 'Alice', 'Age': 30, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}]

File Type Pandas Method Convert to List

Page | 27

CSV pd.read_csv("file.csv") .values.tolist() or .to_dict()

XLSX pd.read_excel("file.xlsx") .values.tolist() or .to_dict()

TXT
pd.read_csv("file.txt",

delimiter="\t")
.values.tolist() or .to_dict()

When to Use:

• List of Rows: Use when the data needs to be manipulated as arrays or matrices.

• List of Dictionaries: Use when working with structured data where keys (headers) are

required.

import pandas as pd

Load data from CSV

csv_data = pd.read_csv('your_csv_file.csv')

csv_list = csv_data.values.tolist()

Load data from XLSX

xlsx_data = pd.read_excel('your_xlsx_file.xlsx')

xlsx_list = xlsx_data.values.tolist()

Load data from TXT

txt_data = pd.read_csv('your_txt_file.txt', delimiter='\t') # Assuming tab-delimited

txt_list = txt_data.values.tolist()

Try:

1. Write a program to Load a CSV file containing structured data, handle missing values, and

convert the rows into a list of dictionaries.

2. Write a program to Load data from an Excel file with multiple sheets, combine the sheets, and

convert the combined data into a nested list.

3. Write a program to Load a TXT file with tab-delimited or custom-delimited data and convert it

into a list of lists. Handle irregular spacing and missing columns.

4. Load data from CSV, XLSX and TXT pandas to a Dictionary.

In pandas, when loading data from files (CSV, XLSX, or TXT), the primary goal is often to convert

this data into a structured format that can be easily processed. Dictionaries are a common data

structure for this purpose because they provide key-value pairs, where keys represent column

names, and values represent the data.

Below, provide a detailed walkthrough of loading data from CSV, XLSX, and TXT files into

dictionaries. We'll focus on converting the data into a format where each row is represented as a

dictionary with column headers as keys.

Load Data from a CSV File into a Dictionary

A CSV (Comma-Separated Values) file stores data in a tabular format, with each line representing

a row and columns separated by commas.

Steps:

1. Read the CSV file: We use pandas.read_csv() to load the file into a DataFrame.

2. Convert DataFrame to a Dictionary: After loading the CSV into a DataFrame, we use the

.to_dict() method to convert it into a dictionary. The orient="records" option allows you

to convert each row into a dictionary, with the column names as keys.

Code Example:

Page | 28

CSV Content (data.csv):

Name,Age,City

Alice,30,New York

Bob,25,Los Angeles

Charlie,35,Chicago

Python code:

import pandas as pd

Load CSV file into DataFrame

df = pd.read_csv("data.csv")

Convert DataFrame to a list of dictionaries (each row as a dictionary)

dict_data = df.to_dict(orient="records")

Output the dictionary

print("Dictionary from CSV:", dict_data)

1. pd.read_csv("data.csv"): This reads the data.csv file and loads it into a pandas DataFrame.

2. df.to_dict(orient="records"): This converts the DataFrame into a list of dictionaries. Each

dictionary corresponds to a row in the DataFrame, and the keys of the dictionary are the

column names from the DataFrame.

Output:

Dictionary from CSV: [

 {'Name': 'Alice', 'Age': 30, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}

]

Detailed Explanation:

• The output is a list of dictionaries, where each dictionary represents a row from the original

CSV file.

• The keys of each dictionary are the column names ("Name", "Age", "City"), and the values

are the corresponding entries from each row.

 Load Data from an XLSX File into a Dictionary

An XLSX (Excel) file is a spreadsheet that can store data in tables, formulas, and various formats.

Steps:

1. Read the XLSX file: We use pandas.read_excel() to load the file into a DataFrame.

2. Convert DataFrame to Dictionary: After loading the data, we again use .to_dict() with

orient="records" to convert the DataFrame into a dictionary.

Code Example:

Excel Content (data.xlsx):

Name Age City

Alice 30 New York

Bob 25 Los Angeles

Charlie 35 Chicago

Page | 29

Load Excel file into DataFrame

df = pd.read_excel("data.xlsx")

Convert DataFrame to a list of dictionaries

dict_data = df.to_dict(orient="records")

Output the dictionary

print("Dictionary from XLSX:", dict_data)

Explanation:

• pd.read_excel("data.xlsx"): Reads the Excel file into a pandas DataFrame.

• df.to_dict(orient="records"): Converts the DataFrame into a list of dictionaries, where each

dictionary represents a row.

Output:

Dictionary from XLSX: [

 {'Name': 'Alice', 'Age': 30, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}

]

Detailed Explanation:

• This is similar to the CSV conversion, except we are working with an Excel file.

• The result is a list of dictionaries, where each row in the Excel sheet is represented as a

dictionary.

Load Data from a TXT File into a Dictionary

A TXT file may store data in various formats, such as space-delimited or tab-delimited. We can use

pandas' read_csv() method to read delimited data from a TXT file, specifying the appropriate

delimiter.

Steps:

1. Read the TXT file: Use pandas.read_csv() with the correct delimiter (e.g., tab \t or space).

2. Convert DataFrame to Dictionary: Use .to_dict() with orient="records" to convert the

DataFrame to a list of dictionaries.

Code Example:

TXT Content (data.txt) (tab-delimited):

Name Age City

Alice 30 New York

Bob 25 Los Angeles

Charlie 35 Chicago

Load TXT file with tab delimiter into DataFrame

df = pd.read_csv("data.txt", delimiter="\t")

Convert DataFrame to a list of dictionaries

dict_data = df.to_dict(orient="records")

Output the dictionary

print("Dictionary from TXT:", dict_data)

Output:

Page | 30

Dictionary from TXT: [

 {'Name': 'Alice', 'Age': 30, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}

]

Explanation:

• pd.read_csv("data.txt", delimiter="\t"): This reads the tab-delimited file into a pandas

DataFrame.

• df.to_dict(orient="records"): Converts the DataFrame into a list of dictionaries, where each

dictionary represents a row.

• Detailed Explanation:

• The data in the TXT file is loaded into a pandas DataFrame by specifying the delimiter (tab

\t).

• Each row in the file is converted into a dictionary, and the result is a list of dictionaries.

• Summary of to_dict() Orientations

File

Type
Pandas Method Convert to Dictionary Explanation

CSV pd.read_csv("file.csv") .to_dict(orient="records")
Converts each row into a

dictionary.

XLSX pd.read_excel("file.xlsx") .to_dict(orient="records")
Converts each row into a

dictionary.

TXT pd.read_csv("file.txt") .to_dict(orient="records")

For delimited files (e.g.,

tab-separated), converts

each row into a dictionary.

Try:

1. Write a program a CSV file contains millions of rows, and you need to load and convert

it into a dictionary

2. Write a program to read and convert only specific columns from an Excel file into a

dictionary

3. Write a program a TXT file contains structured logs or tabular data, how can you parse

it into a dictionary dynamically without knowing the delimiter beforehand?

3. Basic operations on Dataframe.

a. Attribute filtering based on conditions.

This method selects rows of a DataFrame that satisfy one or more conditions. It involves Boolean

indexing, where a condition applied to a column returns True or False for each row.

Steps:

1. Apply a condition on a column.

2. Use the resulting Boolean mask to filter rows.

Example:

import pandas as pd

Create a DataFrame

data = {

Page | 31

 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],

 'Age': [23, 35, 45, 28, 60],

 'Salary': [50000, 60000, 80000, 55000, 90000]

}

df = pd.DataFrame(data)

Filter rows where Age is greater than 30

age_condition = df[df['Age'] > 30]

print("Rows where Age > 30:")

print(age_condition)

Filter rows where Salary is less than 60000

salary_condition = df[df['Salary'] < 60000]

print("\nRows where Salary < 60000:")

print(salary_condition)

Output:

Rows where Age > 30:

 Name Age Salary

1 Bob 35 60000

2 Charlie 45 80000

4 Eve 60 90000

Rows where Salary < 60000:

 Name Age Salary

0 Alice 23 50000

3 David 28 55000

Explanation:

• df['Age'] > 30 creates a Boolean mask [False, True, True, False, True].

• Using this mask as df[df['Age'] > 30] filters rows where the condition is True.

Try:
1. Write a program to filter rows after grouping by a column and applying an aggregation function

(e.g., sum, mean)?"

2. Write a program to filter new rows of data in real-time as they are appended to a DataFrame?"

b. Attribute Filtering Based on Slicing.

Slicing involves selecting a subset of rows or columns using positional or label-based indexing. This

is done with .iloc[] (position-based) or .loc[] (label-based).

Steps:

1. Use .iloc[] to slice rows/columns by position.

2. Use .loc[] to slice rows/columns by labels.

Example:

Slicing rows and columns using iloc

subset_iloc = df.iloc[:3, :2] # First 3 rows, first 2 columns

print("Using iloc (rows and columns):")

print(subset_iloc)

Slicing rows and columns using loc

subset_loc = df.loc[1:3, ['Name', 'Age']] # Rows with labels 1 to 3, columns 'Name' and

'Age'

Page | 32

print("\nUsing loc (rows and specific columns):")

print(subset_loc)

Output:

Using iloc (rows and columns):

 Name Age

0 Alice 23

1 Bob 35

2 Charlie 45

Using loc (rows and specific columns):

 Name Age

1 Bob 35

2 Charlie 45

3 David 28

Explanation:

• .iloc[:3, :2]: Slices the first 3 rows (:3) and first 2 columns (:2) by position.

• .loc[1:3, ['Name', 'Age']]: Slices rows with labels 1 to 3 and specific columns 'Name' and 'Age'.

Try:
1. Write a program slice rows based on specific conditions and combine slicing with filtering?

2. Write a program slice column’s based on specific conditions and combine slicing with filtering?

3. Write a program slice rows or columns in a DataFrame with a multi-level index?

c. Attribute Filtering Based on Queries.

The .query() method in pandas allows SQL-like filtering of rows using a query expression. This

method is very readable for complex conditions.

Steps:

1. Pass a query string as an argument to .query().

2. Reference columns directly in the query string.

Example:

Filter rows where Age > 30 and Salary > 60000

query_result = df.query('Age > 30 and Salary > 60000')

print("Rows where Age > 30 and Salary > 60000:")

print(query_result)

Filter rows where Name is 'Alice' or 'Eve'

name_condition = df.query('Name == "Alice" or Name == "Eve"')

print("\nRows where Name is 'Alice' or 'Eve':")

print(name_condition)

Output:

Rows where Age > 30 and Salary > 60000:

 Name Age Salary

2 Charlie 45 80000

4 Eve 60 90000

Rows where Name is 'Alice' or 'Eve':

 Name Age Salary

0 Alice 23 50000

4 Eve 60 90000

Explanation:

Page | 33

• .query('Age > 30 and Salary > 60000'): Filters rows where both conditions are true.

• .query('Name == "Alice" or Name == "Eve"'): Filters rows where the Name is either "Alice" or

"Eve".

Try:
1. Write a program filter rows where the column 'age' is greater than 30 using the query() method?

2. Write a program filter rows where 'age' is greater than 30 and 'salary' is less than 50000 using the

query() method?

3. Write a program use query() to filter rows where a string column contains a specific value (e.g.,

'category' is 'A')?

Comparison of Methods

Method Description Example Code

Condition-based

Filtering

Filters rows using boolean

indexing with conditions.
df[df['Age'] > 30]

Slicing-based

Filtering

Select rows and columns using

integer or label-based slicing.

df.iloc[:3, :2], df.loc[1:3,

...]

Query-based Filtering
Filters rows using SQL-like query

strings.

df.query('Age > 30 and

Salary > 60000')

When to Use Each Method:

1. Condition-based filtering is best for straightforward column-based conditions.

2. Slicing-based filtering is useful for extracting specific rows and columns by position or label.

3. Query-based filtering is ideal for complex and readable filtering conditions involving

multiple columns.

Key Benefits of Dynamic Filtering

1. Flexibility: Adapt to runtime inputs or changes in filtering criteria.

2. Scalability: Easily handle complex conditions and multiple filtering scenarios.

3. User Interaction: Accept filtering criteria from users via forms or command-line.

4. Summary Statistics of the data.

Python provides some statistic libraries that are comprehensive, widely used, and powerful. These

libraries help us to smooth working with the data

Statistic is a way of collection of the data, tabulation, and interpolation of numeric data. It allows

us to describe, summarize, and represent of data visually. Statistic is a field of applied mathematics

concern with interpolation, visual representation of data, and data collection analysis. There are

two types of statistic - Descriptive statistic and inferential statistic

Some Python Statistics Libraries:

Python provides many libraries that can be used in statistic but we will describe some most

important and widely used libraries.

o Numpy - This library is widely used for numerical computing, and optimized for scientific

calculation. It is a third-party library helpful to working with the single and multidimensional

arrays. The ndarray is a primary array type. It comes with the many methods for statistical

analysis.

o SciPy - It is a third-party library used for scientific computation based on Numpy. It extends the

Numpy features including scipy.stats for statistical analysis.

Page | 34

o Pandas - It is based on the Numpy library. It is also used for the numerical computation. It

outshines in handling labeled one-dimensional 1D data with the Series The two-dimensional

(2D) is labeled with the DataFrame objects.

o Matplotlib - This library works more effectively in combination with the Scipy, NumPy, and

Pandas.

o Python built-in statistics Library - It is Python's built-in library used for descriptive statistic. It

performs effectively if the dataset is small or if we can't depend on importing other libraries.

a. Compute ranking statistics of the data.

Statistics, in general, is the method of collection of data, tabulation, and interpretation of

numerical data. It is an area of applied mathematics concerned with data collection analysis,

interpretation, and presentation. With statistics, we can see how data can be used to solve complex

problems.

Ranking statistics involve determining the ranks of rows based on specific column values.

Steps:

• Use the .rank() method to compute ranks.

• Specify ranking methods like 'average', 'min', 'max', 'dense', or 'first'.

Example:

import pandas as pd

Sample DataFrame

data = {

 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],

 'Age': [23, 35, 45, 28, 60],

 'Salary': [50000, 60000, 80000, 55000, 90000]

}

df = pd.DataFrame(data)

Rank based on Age (ascending order)

df['Age_Rank'] = df['Age'].rank(method='min')

Rank based on Salary (descending order)

df['Salary_Rank'] = df['Salary'].rank(method='min', ascending=False)

print("Ranking Statistics:")

print(df)

Output:

 Name Age Salary Age_Rank Salary_Rank

0 Alice 23 50000 1.0 5.0

1 Bob 35 60000 3.0 4.0

2 Charlie 45 80000 4.0 2.0

3 David 28 55000 2.0 5.0

4 Eve 60 90000 5.0 1.0

OR

import statistics

Sample data

data = [

 {"Name": "Alice", "Age": 23, "Salary": 50000},

 {"Name": "Bob", "Age": 35, "Salary": 60000},

https://www.geeksforgeeks.org/introduction-of-statistics-and-its-types/

Page | 35

 {"Name": "Charlie", "Age": 45, "Salary": 80000},

 {"Name": "David", "Age": 28, "Salary": 55000},

 {"Name": "Eve", "Age": 60, "Salary": 90000}

]

Extract Age and Salary into separate lists

ages = [item["Age"] for item in data]

salaries = [item["Salary"] for item in data]

Compute ranks for Age (ascending)

sorted_ages = sorted((value, index) for index, value in enumerate(ages))

age_ranks = [0] * len(ages)

for rank, (value, index) in enumerate(sorted_ages, start=1):

 age_ranks[index] = rank

Compute ranks for Salary (descending)

sorted_salaries = sorted((-value, index) for index, value in enumerate(salaries))

salary_ranks = [0] * len(salaries)

for rank, (_, index) in enumerate(sorted_salaries, start=1):

 salary_ranks[index] = rank

Add ranks to data

for i, item in enumerate(data):

 item["Age_Rank"] = age_ranks[i]

 item["Salary_Rank"] = salary_ranks[i]

Display results

print("Ranking Statistics:")

for item in data:

 print(item)

Try:
1. Write a program to compute rankings for rows based on multiple columns in a pandas

DataFrame?

2. Write a program to rank the values in a pandas DataFrame column in ascending order. If there

are ties, assign the average rank

3. Write a program to rank values in a pandas DataFrame column while handling ties by using the

'min' ranking method.

4. Write a program to compute the rank within each group in a DataFrame (e.g., ranking 'value'

within each 'category').

b. Compute statistical averages of numerical attributes

Statistical averages include mean, median, and mode, computed using pandas aggregation

functions.

Measure of Central Tendency

The measure of central tendency is a single value that attempts to describe the whole set of data.

There are three main features of central tendency:

• Mean

• Median

• Median Low

• Median High

Page | 36

• Mode

Mean

It is the sum of observations divided by the total number of observations. It is also defined as

average which is the sum divided by count.

Mean(x‾)=∑x/n

The mean() function returns the mean or average of the data passed in its arguments. If the passed

argument is empty, StatisticsError is raised.

Example: Python code to calculate mean

Python code to demonstrate the working of

mean()

importing statistics to handle statistical

operations

import statistics

initializing list

li = [1, 2, 3, 3, 2, 2, 2, 1]

using mean() to calculate average of list

elements

print ("The average of list values is : ",end="")

print (statistics.mean(li))

Output: The average of list values is : 2

Median

It is the middle value of the data set. It splits the data into two halves. If the number of elements in

the data set is odd then the center element is the median and if it is even then the median would

be the average of two central elements. it first sorts the data i=and then performs the median

operation

For Odd Numbers:

n+1/2

For Even Numbers:

(n/2+(n/2+1))/2

The median() function is used to calculate the median, i.e middle element of data. If the passed

argument is empty, StatisticsError is raised.

Example: Python code to calculate Median

Python code to demonstrate the

working of median() on various

range of data-sets

importing the statistics module

https://www.geeksforgeeks.org/python-statistics-mean-function/
https://www.geeksforgeeks.org/python-statistics-median/

Page | 37

from statistics import median

Importing fractions module as fr

from fractions import Fraction as fr

tuple of positive integer numbers

data1 = (2, 3, 4, 5, 7, 9, 11)

tuple of floating point values

data2 = (2.4, 5.1, 6.7, 8.9)

tuple of fractional numbers

data3 = (fr(1, 2), fr(44, 12),

 fr(10, 3), fr(2, 3))

tuple of a set of negative integers

data4 = (-5, -1, -12, -19, -3)

tuple of set of positive

and negative integers

data5 = (-1, -2, -3, -4, 4, 3, 2, 1)

Printing the median of above datasets

print("Median of data-set 1 is % s" % (median(data1)))

print("Median of data-set 2 is % s" % (median(data2)))

print("Median of data-set 3 is % s" % (median(data3)))

print("Median of data-set 4 is % s" % (median(data4)))

print("Median of data-set 5 is % s" % (median(data5)))

Output:

Median of data-set 1 is 5

Median of data-set 2 is 5.9

Median of data-set 3 is 2

Median of data-set 4 is -5

Median of data-set 5 is 0.0

Median Low

The median_low() function returns the median of data in case of odd number of elements, but in

case of even number of elements, returns the lower of two middle elements. If the passed argument

is empty, StatisticsError is raised

Example: Python code to calculate Median Low

Python code to demonstrate the

working of median_low()

importing the statistics module

import statistics

simple list of a set of integers

set1 = [1, 3, 3, 4, 5, 7]

Print median of the data-set

Median value may or may not

https://www.geeksforgeeks.org/median_low-python-statistics/

Page | 38

lie within the data-set

print("Median of the set is % s"

 % (statistics.median(set1)))

Print low median of the data-set

print("Low Median of the set is % s "

 % (statistics.median_low(set1)))

Output:

Median of the set is 3.5

Low Median of the set is 3

Median High

The median_high() function returns the median of data in case of odd number of elements, but in

case of even number of elements, returns the higher of two middle elements. If passed argument

is empty, StatisticsError is raised.

Example: Python code to calculate Median High

Working of median_high() and median() to

demonstrate the difference between them.

importing the statistics module

import statistics

simple list of a set of integers

set1 = [1, 3, 3, 4, 5, 7]

Print median of the data-set

Median value may or may not

lie within the data-set

print("Median of the set is %s"

 % (statistics.median(set1)))

Print high median of the data-set

print("High Median of the set is %s "

 % (statistics.median_high(set1)))

Output:

Median of the set is 3.5

High Median of the set is 4

Mode

It is the value that has the highest frequency in the given data set. The data set may have no mode

if the frequency of all data points is the same. Also, we can have more than one mode if we

encounter two or more data points having the same frequency.

The mode() function returns the number with the maximum number of occurrences. If the passed

argument is empty, StatisticsError is raised.

Example: Python code to calculate Mode

Python code to demonstrate the

working of mode() function

on a various range of data types

Importing the statistics module

from statistics import mode

https://www.geeksforgeeks.org/python-statistics-median_high/
https://www.geeksforgeeks.org/python-statistics-mode-function/

Page | 39

Importing fractions module as fr

Enables to calculate harmonic_mean of a

set in Fraction

from fractions import Fraction as fr

tuple of positive integer numbers

data1 = (2, 3, 3, 4, 5, 5, 5, 5, 6, 6, 6, 7)

tuple of a set of floating point values

data2 = (2.4, 1.3, 1.3, 1.3, 2.4, 4.6)

tuple of a set of fractional numbers

data3 = (fr(1, 2), fr(1, 2), fr(10, 3), fr(2, 3))

tuple of a set of negative integers

data4 = (-1, -2, -2, -2, -7, -7, -9)

tuple of strings

data5 = ("red", "blue", "black", "blue", "black", "black", "brown")

Printing out the mode of the above data-sets

print("Mode of data set 1 is % s" % (mode(data1)))

print("Mode of data set 2 is % s" % (mode(data2)))

print("Mode of data set 3 is % s" % (mode(data3)))

print("Mode of data set 4 is % s" % (mode(data4)))

print("Mode of data set 5 is % s" % (mode(data5)))

Output:

Mode of data set 1 is 5

Mode of data set 2 is 1.3

Mode of data set 3 is 1/2

Mode of data set 4 is -2

Mode of data set 5 is black

Try:
1. Write a Python program that computes the mean (average) of the 'value' column in a pandas

DataFrame

2. Write a Python program that computes the median and mode of the 'value' column in a pandas

DataFrame

3. Write a Python program that computes the weighted average of the 'value' column using the

'weight' column

4. Write a Python program to compute the range (difference between max and min) of the 'value'

column in a pandas DataFrame

c. Compute statistical ratios of numerical attributes.

Statistical ratios are valuable tools for comparing and analyzing numerical data. They provide

insights into the relationships between different variables or groups within a dataset. Here are

some common statistical ratios and how to compute them:

1. Ratio

Definition: A simple comparison of two quantities, often expressed as a fraction or with a colon.

Formula: Ratio = Quantity 1 / Quantity 2

Page | 40

Example: If a class has 15 boys and 10 girls, the ratio of boys to girls is 15:10 or 3:2.

2. Proportion

Definition: A type of ratio that expresses a part of a whole.

Formula: Proportion = Part / Whole

Example: If a survey of 100 people shows that 60 prefer coffee, the proportion of coffee drinkers

is 60/100 or 0.6.

3. Rate

Definition: A ratio that compares two quantities with different units.

Formula: Rate = Quantity 1 / Quantity 2

Example: Speed is a rate, often expressed as miles per hour (mph) or kilometers per hour (kph).

4. Percentage

Definition: A proportion expressed as a fraction of 100.

Formula: Percentage = (Part / Whole) * 100%

Example: If a student scores 80 out of 100 on a test, their score is 80%.

5. Coefficient of Variation (CV)

Definition: A measure of relative variability, often used to compare the dispersion of different

datasets.

Formula: CV = (Standard Deviation / Mean) * 100%

Example: A higher CV indicates greater variability relative to the mean.

6. Signal-to-Noise Ratio (SNR)

Definition: A measure of the ratio of a signal's strength to the background noise level.

Formula: SNR = Signal Power / Noise Power

Example: A higher SNR indicates a stronger signal relative to the noise.

7. Odds Ratio

Definition: A measure of the association between two binary variables.

Formula: Odds Ratio = (Odds of event in group 1) / (Odds of event in group 2)

Example: In medical research, it might compare the odds of developing a disease between an

exposed and unexposed group.

Computing Ratios in Python

Here's a Python example demonstrating how to calculate some of these ratios:

import numpy as np

Sample data (replace with your actual data)

data = np.array([10, 15, 20, 25, 30])

Calculate mean and standard deviation

mean = np.mean(data)

std_dev = np.std(data)

Calculate coefficient of variation

cv = (std_dev / mean) * 100

print("Coefficient of Variation:", cv)

Calculate ratio of first to last element

ratio = data[0] / data[-1]

print("Ratio of first to last element:", ratio)

Calculate odds ratio (assuming two groups of data)

Replace with your actual data for the two groups

group1 = np.array([10, 20, 30])

group2 = np.array([5, 15, 25])

Page | 41

odds_ratio = (group1.sum() / (1 - group1.sum())) / (group2.sum() / (1 - group2.sum()))

print("Odds Ratio:", odds_ratio)

Calculate signal-to-noise ratio (SNR)

Assuming some noise is added to the original data

noise = np.random.normal(0, 5, size=len(data))

noisy_data = data + noise

signal_power = np.mean(data**2)

noise_power = np.mean(noise**2)

snr = 10 * np.log10(signal_power / noise_power)

print("Signal-to-Noise Ratio (in dB):", snr)

Output:

Coefficient of Variation: 40.0

Ratio of first to last element: 0.3333333333333333

Odds Ratio: 1.7142857142857142

Signal-to-Noise Ratio (in dB): 11.48796613333959

Try:
1. Write a program to compute the ratio of two numerical columns ('value1' and 'value2') in a

pandas DataFrame

2. Write a program that computes the ratio of the maximum value to the minimum value in a

numerical column ('value')

3. Write a program to compute the ratio of 'value1' to 'value2', but only for rows where 'value1' is

greater than 20

d. Interpret the results.

• Ranking Statistics: Percentiles, quartiles, and the IQR provide insights into the distribution of

the data and the location of specific values within the distribution.

• Statistical Averages: The mean, median, and mode provide different measures of central

tendency, which can be used to summarize the data and identify typical values.

• Statistical Ratios: The CV, SNR, and odds ratio provide insights into the relative variability, signal

strength, and association between variables, respectively.

Example using Python:

import numpy as np

data = np.array([10, 15, 20, 25, 30])

Calculate ranking statistics

percentiles = np.percentile(data, [25, 50, 75])

print("Percentiles:", percentiles)

q1, q2, q3 = np.percentile(data, [25, 50, 75])

iqr = q3 - q1

print("Interquartile Range:", iqr)

Calculate statistical averages

mean = np.mean(data)

median = np.median(data)

Page | 42

mode = np.argmax(np.bincount(data))

print("Mean:", mean)

print("Median:", median)

print("Mode:", mode)

Calculate statistical ratios (assuming some noise is added to the data)

noise = np.random.normal(0, 5, size=len(data))

noisy_data = data + noise

signal_power = np.mean(data**2)

noise_power = np.mean(noise**2)

snr = 10 * np.log10(signal_power / noise_power)

print("Signal-to-Noise Ratio (in dB):", snr)

Output:

Percentiles: [12.5 20. 27.5]

Interquartile Range: 15.0

Mean: 20.0

Median: 20.0

Mode: 10

Signal-to-Noise Ratio (in dB): 11.48796613333959

Interpretation:

• Ranking Statistics:

o The 25th, 50th, and 75th percentiles are 12.5, 20, and 27.5, respectively. This means that 25% of the

data falls below 12.5, 50% falls below 20, and 75% falls below 27.5.

o The interquartile range (IQR) is 15, indicating that the middle 50% of the data is spread over a

range of 15 units.

• Statistical Averages:

o The mean and median are both 20, suggesting that the data is relatively symmetrically distributed.

o The mode is 10, indicating that 10 is the most frequent value in the data.

• Signal-to-Noise Ratio:

o The SNR is approximately 11.49 dB. This suggests that the signal is relatively strong compared to

the background noise.

Try

Find the suitable case study for interpret the results (e.g. sales analysis, ordering management system)

5. Handling Missing Values

values are a common issue in machine learning. This occurs when a particular variable lacks data points,

resulting in incomplete information and potentially harming the accuracy and dependability of your

models. It is essential to address missing values efficiently to ensure strong and impartial results in your

machine-learning projects.

Missing values are data points that are absent for a specific variable in a dataset. They can be

represented in various ways, such as blank cells, null values, or special symbols like “NA” or “unknown.”

These missing data points pose a significant challenge in data analysis and can lead to inaccurate or

biased results.

Page | 43

Missing Values

Missing values can pose a significant challenge in data analysis, as they can:

• Reduce the sample size: This can decrease the accuracy and reliability of your analysis.

• Introduce bias: If the missing data is not handled properly, it can bias the results of your

analysis.

• Make it difficult to perform certain analyses: Some statistical techniques require complete

data for all variables, making them inapplicable when missing values are present

• It’s important to understand the reasons behind missing data:

• Identifying the type of missing data: Is it Missing Completely at Random (MCAR), Missing at

Random (MAR), or Missing Not at Random (MNAR)?

• Evaluating the impact of missing data: Is the missingness causing bias or affecting the

analysis?

• Choosing appropriate handling strategies: Different techniques are suitable for different

types of missing data.

Methods for Identifying Missing Data

Locating and understanding patterns of missingness in the dataset is an important step in

addressing its impact on analysis. Working with Missing Data in Pandas there are several useful

functions for detecting, removing, and replacing null values in Pandas DataFrame.

Functions Descriptions

.isnull() Identifies missing values in a Series or DataFrame.

.notnull()

check for missing values in a pandas Series or DataFrame. It

returns a boolean Series or DataFrame, where True indicates

non-missing values and False indicates missing values.

.info()
Displays information about the DataFrame, including data

types, memory usage, and presence of missing values.

.isna()
similar to notnull() but returns True for missing values and

False for non-missing values.

https://www.geeksforgeeks.org/working-with-missing-data-in-pandas/

Page | 44

Functions Descriptions

dropna()
Drops rows or columns containing missing values based on

custom criteria.

fillna()
Fills missing values with specific values, means, medians, or

other calculated values.

replace()
Replaces specific values with other values, facilitating data

correction and standardization.

drop_duplicates() Removes duplicate rows based on specified columns.

unique() Finds unique values in a Series or DataFrame

Effective Strategies for Handling Missing Values in Data Analysis

Missing values are a common challenge in data analysis, and there are several strategies for handling

them. Here’s an overview of some common approaches:

Impact of Handling Missing Values:

Missing values are a common occurrence in real-world data, negatively impacting data analysis and

modeling if not addressed properly. Handling missing values effectively is crucial to ensure the accuracy

and reliability of your findings.

Here are some key impacts of handling missing values:

1. Improved data quality: Addressing missing values enhances the overall quality of the dataset. A

cleaner dataset with fewer missing values is more reliable for analysis and model training.

2. Enhanced model performance: Machine learning algorithms often struggle with missing

data, leading to biased and unreliable results. By appropriately handling missing values, models

can be trained on a more complete dataset, leading to improved performance and accuracy.

3. Preservation of Data Integrity: Handling missing values helps maintain the integrity of the

dataset. Imputing or removing missing values ensures that the dataset remains consistent and

suitable for analysis.

4. Reduced bias: Ignoring missing values may introduce bias in the analysis or modeling process.

Handling missing data allows for a more unbiased representation of the underlying patterns in the

data.

5. Descriptive statistics, such as means, medians, and standard deviations, can be more accurate when

missing values are appropriately handled. This ensures a more reliable summary of the dataset.

6. Increased efficiency: Efficiently handling missing values can save you time and effort during data

analysis and modeling.

a. Drop the rows containing missing values

Sample Data with Missing Values

import pandas as pd

import numpy as np

Creating a sample DataFrame with missing values

Page | 45

data = {

 'School ID': [101, 102, 103, np.nan, 105, 106, 107, 108],

 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank', 'Grace', 'Henry'],

 'Address': ['123 Main St', '456 Oak Ave', '789 Pine Ln', '101 Elm St', np.nan, '222 Maple

Rd', '444 Cedar Blvd', '555 Birch Dr'],

 'City': ['Los Angeles', 'New York', 'Houston', 'Los Angeles', 'Miami', np.nan, 'Houston',

'New York'],

 'Subject': ['Math', 'English', 'Science', 'Math', 'History', 'Math', 'Science', 'English'],

 'Marks': [85, 92, 78, 89, np.nan, 95, 80, 88],

 'Rank': [2, 1, 4, 3, 8, 1, 5, 3],

 'Grade': ['B', 'A', 'C', 'B', 'D', 'A', 'C', 'B']

}

df = pd.DataFrame(data)

print("Sample DataFrame:")

print(df)

Output:

Sample Data with Missing Values:

Schoo

l ID Name Address City

Subjec

t

Mark

s

Ran

k

Grad

e

0
101 Alice 123 Main St

Los

Angeles Math 85 2 B

1 102 Bob 456 Oak Ave New York English 92 1 A

2
103

Charli

e 789 Pine Ln Houston

Scienc

e 78 4 C

3
Na

N David 101 Elm St

Los

Angeles Math 89 3 B

4 105 Eva NaN Miami History NaN 8 D

5 106 Frank 222 Maple Rd NaN Math 95 1 A

6
107 Grace

444 Cedar

Blvd Houston

Scienc

e 80 5 C

7 108 Henry 555 Birch Dr New York English 88 3 B

Removing Rows with Missing Values

• Simple and efficient: Removes data points with missing values altogether.

• Reduces sample size: Can lead to biased results if missingness is not random.

• Not recommended for large datasets: Can discard valuable information.

In this example, we are removing rows with missing values from the original DataFrame (df) using

the dropna() method and then displaying the cleaned DataFrame (df_cleaned).

Removing rows with missing values

df_dropped = df.dropna()

Displaying the DataFrame after removing missing values

print("\nDataFrame after removing rows with missing values:")

print(df_dropped)

Output:

Schoo

l ID Name Address City

Subjec

t

Mark

s

Ran

k

Grad

e

Page | 46

0
10

1 Alice 123 Main St

Los

Angeles Math 85 2 B

1
10

2 Bob 456 Oak Ave New York English 92 1 A

2
10

3

Charli

e 789 Pine Ln Houston

Scienc

e 78 4 C

6
10

7 Grace

444 Cedar

Blvd Houston

Scienc

e 80 5 C

7
10

8 Henry 555 Birch Dr New York English 88 3 B

Try:

1. Write a program and consider the above dataframe with missing values, calculate the

percentage of missing values in each column and create a summary table showing the columns

with the highest percentage of missing values.

2. Write a program and consider the above dataframe, calculate and display the number of

missing values in each column individually. Sort the columns by the number of missing values

in descending order.

3. Write a program and consider the above dataframe, calculate and display the number of

missing values in each row individually. Sort the rows by the number of missing values in

ascending order.

4. Write a program and consider above dataframe with missing values, remove all columns

containing missing values. Display the resulting dataframe.

5. Write a program and consider above dataframe, remove rows that have more than a specified

number of missing values. Display the resulting dataframe.

6. Write a program to create a summary report that includes information about the number of

rows and columns removed due to missing values after removal operations.

b. Impute missing values with statistical averages

Here are some common imputation methods:

1- Mean, Median, and Mode Imputation:

• Replace missing values with the mean, median, or mode of the relevant variable.

• Simple and efficient: Easy to implement.

• Can be inaccurate: Doesn’t consider the relationships between variables.

In this example, we are explaining the imputation techniques for handling missing values in the

‘Marks’ column of the DataFrame (df). It calculates and fills missing values with the mean, median,

and mode of the existing values in that column, and then prints the results for observation.

1. Mean Imputation: Calculates the mean of the ‘Marks’ column in the DataFrame (df).

• df['Marks'].fillna(...): Fills missing values in the ‘Marks’ column with the mean value.

• mean_imputation: The result is stored in the variable mean_imputation.

2. Median Imputation: Calculates the median of the ‘Marks’ column in the DataFrame (df).

• df['Marks'].fillna(...): Fills missing values in the ‘Marks’ column with the median value.

• median_imputation: The result is stored in the variable median_imputation.

3. Mode Imputation: Calculates the mode of the ‘Marks’ column in the DataFrame (df). The result is

a Series.

• .iloc[0]: Accesses the first element of the Series, which represents the mode.

• df['Marks'].fillna(...): Fills missing values in the ‘Marks’ column with the mode value.

Page | 47

Mean, Median, and Mode Imputation

mean_imputation = df['Marks'].fillna(df['Marks'].mean())

median_imputation = df['Marks'].fillna(df['Marks'].median())

mode_imputation = df['Marks'].fillna(df['Marks'].mode().iloc[0])

print("\nImputation using Mean:")

print(mean_imputation)

print("\nImputation using Median:")

print(median_imputation)

print("\nImputation using Mode:")

print(mode_imputation)

Output:

Imputation using Mean:

0 85.000000

1 92.000000

2 78.000000

3 89.000000

4 86.714286

5 95.000000

6 80.000000

7 88.000000

Name: Marks, dtype: float64

Imputation using Median:

0 85.0

1 92.0

2 78.0

3 89.0

4 88.0

5 95.0

6 80.0

7 88.0

Name: Marks, dtype: float64

Imputation using Mode:

0 85.0

1 92.0

2 78.0

3 89.0

4 78.0

5 95.0

6 80.0

7 88.0

Name: Marks, dtype: float64

Try:

1. Write a program and consider given dataframe with missing values in a numerical column,

impute the missing values in that column with the median of the non-missing values.

2. Write a program and consider given dataframe with missing values in a numerical column,

Page | 48

impute the missing values in that column with the median of the non-missing values.

3. Write a program and consider given dataframe with missing values, impute missing values in a

specific column with a constant value of your choice (e.g., 0).

c. Impute missing values using linear interpolation

Imputation Methods

▪ Replacing missing values with estimated values.

▪ Preserves sample size: Doesn’t reduce data points.

▪ Can introduce bias: Estimated values might not be accurate.

a. Interpolation Techniques

▪ Estimate missing values based on surrounding data points using techniques like linear

interpolation or spline interpolation.

▪ More sophisticated than mean/median imputation: Captures relationships between variables.

▪ Requires additional libraries and computational resources.

▪ These interpolation techniques are useful when the relationship between data points can be

reasonably assumed to follow a linear or quadratic pattern. The method parameter in

the interpolate() method allows to specify the interpolation strategy.

1. Linear Interpolation

▪ df['Marks'].interpolate(method='linear'): This method performs linear interpolation on the

‘Marks’ column of the DataFrame (df). Linear interpolation estimates missing values by

considering a straight line between two adjacent non-missing values.

▪ linear_interpolation: The result is stored in the variable linear_interpolation.

2. Quadratic Interpolation

▪ df['Marks'].interpolate(method='quadratic'): This method performs quadratic interpolation on

the ‘Marks’ column. Quadratic interpolation estimates missing values by considering a quadratic

curve that passes through three adjacent non-missing values.

▪ quadratic_interpolation: The result is stored in the variable quadratic_interpolation.

Interpolation Techniques

linear_interpolation = df['Marks'].interpolate(method='linear')

quadratic_interpolation = df['Marks'].interpolate(method='quadratic')

print("\nLinear Interpolation:")

print(linear_interpolation)

print("\nQuadratic Interpolation:")

print(quadratic_interpolation)

Output:

Linear Interpolation:

0 85.0

1 92.0

2 78.0

3 89.0

4 92.0

5 95.0

6 80.0

7 88.0

Name: Marks, dtype: float64

Quadratic Interpolation:

https://www.geeksforgeeks.org/quadratic-interpolation/

Page | 49

0 85.00000

1 92.00000

2 78.00000

3 89.00000

4 98.28024

5 95.00000

6 80.00000

7 88.00000

Name: Marks, dtype: float64

Note:

▪ Linear interpolation assumes a straight line between two adjacent non-missing values.

▪ Quadratic interpolation assumes a quadratic curve that passes through three adjacent non-

missing values.

2. Forward and Backward Fill

▪ Replace missing values with the previous or next non-missing value in the same variable.

▪ Simple and intuitive: Preserves temporal order.

▪ Can be inaccurate: Assumes missing values are close to observed values

▪ These fill methods are particularly useful when there is a logical sequence or order in the data,

and missing values can be reasonably assumed to follow a pattern. The method parameter

in fillna() allows to specify the filling strategy, and here, it’s set to ‘ffill’ for forward fill and ‘bfill’

for backward fill.

1. Forward Fill (forward_fill)

▪ df['Marks'].fillna(method='ffill'): This method fills missing values in the ‘Marks’ column of the

DataFrame (df) using a forward fill strategy. It replaces missing values with the last observed

non-missing value in the column.

▪ forward_fill: The result is stored in the variable forward_fill.

2. Backward Fill (backward_fill)

▪ df['Marks'].fillna(method='bfill'): This method fills missing values in the ‘Marks’ column using a

backward fill strategy. It replaces missing values with the next observed non-missing value in

the column.

▪ backward_fill: The result is stored in the variable backward_fill.

Forward and Backward Fill

forward_fill = df['Marks'].fillna(method='ffill')

backward_fill = df['Marks'].fillna(method='bfill')

print("\nForward Fill:")

print(forward_fill)

print("\nBackward Fill:")

print(backward_fill)

Output:

Forward Fill:

0 85.0

1 92.0

2 78.0

3 89.0

4 89.0

5 95.0

6 80.0

7 88.0

Page | 50

Name: Marks, dtype: float64

Backward Fill:

0 85.0

1 92.0

2 78.0

3 89.0

4 95.0

5 95.0

6 80.0

7 88.0

Name: Marks, dtype: float64

Note

▪ Forward fill uses the last valid observation to fill missing values.

▪ Backward fill uses the next valid observation to fill missing values.

Try:
1. Write a program to define a custom interpolation function that takes into account domain-

specific knowledge or specific data characteristics to impute missing values in a dataframe.

2. Write a program and consider above dataframe with time-ordered data and a numerical column

containing missing values, use interpolation techniques that consider the time steps between

observations to impute missing values more accurately.

3. Write a program and consider given dataframe with time-ordered data and a numerical column

containing missing values, impute the missing values in that column. Ensure that missing values

are filled with the previously available value in the column. Perform Forward Fill using forward

fill (.ffill()) method

4. Write a program and consider given a dataframe with multiple columns, use forward fill to

impute missing values in specific columns of your choice while keeping other columns

unaffected.

5. Write a program to create a summary report that includes information about the number of

missing values before and after forward fill and backward fill operations, as well as any specific

patterns or trends observed.

d. Interpret the results.

Interpret the results of handling missing values using the methods mentioned earlier: dropping

rows, imputing with mean, median, mode and linear interpolation. The code will display the

DataFrame after each operation.

import pandas as pd

import numpy as np

Sample data with missing values

data = {

 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'],

 'Age': [23, np.nan, 45, 28, 60],

 'Salary': [50000, 60000, np.nan, 55000, 90000],

 'Experience': [2, 5, 8, np.nan, 12]

}

Create DataFrame

df = pd.DataFrame(data)

print("Original DataFrame with Missing Values:")

print(df)

Page | 51

1. Drop rows with missing values

df_dropped = df.dropna()

print("\nDataFrame after Dropping Rows with Missing Values:")

print(df_dropped)

2. Impute missing values with the mean of the column

df_imputed_mean = df.fillna(df.mean())

print("\nDataFrame after Imputing Missing Values with Mean:")

print(df_imputed_mean)

3. Impute missing values with the median of the column

df_imputed_median = df.fillna(df.median())

print("\nDataFrame after Imputing Missing Values with Median:")

print(df_imputed_median)

4. Impute missing values with the mode of the column

df_imputed_mode = df.apply(lambda x: x.fillna(x.mode()[0]), axis=0)

print("\nDataFrame after Imputing Missing Values with Mode:")

print(df_imputed_mode)

5. Impute missing values using linear interpolation

df_interpolated = df.interpolate(method='linear')

print("\nDataFrame after Linear Interpolation:")

print(df_interpolated)

INTERPRETATION SECTION:

print("\nINTERPRETATION OF RESULTS:")

Interpretation for Dropping Rows:

print("\n1. Dropping Rows with Missing Values:")

print("Rows containing missing values were completely removed, which led to a loss of

data (Bob, Charlie, and David were removed)."

 " This may result in the loss of important information if the missing data is

substantial.")

Interpretation for Imputing Mean:

print("\n2. Imputing Missing Values with Mean:")

print("Missing values were replaced with the mean of the respective columns (Age: 39,

Salary: 68750, Experience: 6.3)."

 " This approach preserves the data but may introduce bias if the data is skewed,

especially with large outliers or non-normal distributions.")

Interpretation for Imputing Median:

print("\n3. Imputing Missing Values with Median:")

print("The missing values were replaced with the median of the respective columns (Age:

39, Salary: 60000, Experience: 6.5)."

 " Median imputation is less sensitive to outliers compared to mean imputation and

may be a better choice for skewed distributions.")

Interpretation for Imputing Mode:

Page | 52

print("\n4. Imputing Missing Values with Mode:")

print("The missing values were replaced with the mode (most frequent value) of the

respective columns."

 " For example, if there are multiple occurrences of a particular value, the missing value

is replaced with that value."

 " Mode imputation works well when the data has repeating values, but it might distort

the distribution if the mode is not representative.")

Interpretation for Linear Interpolation:

print("\n5. Imputing Missing Values Using Linear Interpolation:")

print("The missing values were estimated based on neighboring values using linear

interpolation. "

 "For example, Bob's Age was interpolated to 34 (between Alice and Charlie), and

Charlie's Salary was interpolated to 72500 (between Bob and David). "

 "This method works well for ordered data, like time-series or sequential datasets, and

avoids bias introduced by simple mean imputation.")

Sample Output:

Original DataFrame with Missing Values:

 Name Age Salary Experience

0 Alice 23.0 50000.0 2.0

1 Bob NaN 60000.0 5.0

2 Charlie 45.0 NaN 8.0

3 David 28.0 55000.0 NaN

4 Eve 60.0 90000.0 12.0

DataFrame after Dropping Rows with Missing Values:

 Name Age Salary Experience

0 Alice 23.0 50000.0 2.0

4 Eve 60.0 90000.0 12.0

DataFrame after Imputing Missing Values with Mean:

 Name Age Salary Experience

0 Alice 23.0 50000.0 2.0

1 Bob 39.0 60000.0 5.0

2 Charlie 45.0 68750.0 8.0

3 David 28.0 55000.0 6.3

4 Eve 60.0 90000.0 12.0

DataFrame after Imputing Missing Values with Median:

 Name Age Salary Experience

0 Alice 23.0 50000.0 2.0

1 Bob 39.0 60000.0 5.0

2 Charlie 45.0 60000.0 8.0

3 David 28.0 55000.0 6.5

4 Eve 60.0 90000.0 12.0

DataFrame after Imputing Missing Values with Mode:

 Name Age Salary Experience

0 Alice 23.0 50000.0 2.0

1 Bob 23.0 60000.0 5.0

2 Charlie 45.0 50000.0 8.0

3 David 28.0 55000.0 2.0

Page | 53

4 Eve 60.0 90000.0 12.0

DataFrame after Linear Interpolation:

 Name Age Salary Experience

0 Alice 23.0 50000.0 2.0

1 Bob 34.0 60000.0 5.0

2 Charlie 45.0 72500.0 8.0

3 David 28.0 55000.0 10.0

4 Eve 60.0 90000.0 12.0

INTERPRETATION OF RESULTS:

1. Dropping Rows with Missing Values:

Rows containing missing values were completely removed, which led to a loss of data (Bob, Charlie,

and David were removed). This may result in the loss of important information if the missing data

is substantial.

2. Imputing Missing Values with Mean:

Missing values were replaced with the mean of the respective columns (Age: 39, Salary: 68750,

Experience: 6.3). This approach preserves the data but may introduce bias if the data is skewed,

especially with large outliers or non-normal distributions.

3. Imputing Missing Values with Median:

The missing values were replaced with the median of the respective columns (Age: 39, Salary:

60000, Experience: 6.5). Median imputation is less sensitive to outliers compared to mean

imputation and may be a better choice for skewed distributions.

4. Imputing Missing Values with Mode:

The missing values were replaced with the mode (most frequent value) of the respective columns.

For example, if there are multiple occurrences of a particular value, the missing value is replaced

with that value. Mode imputation works well when the data has repeating values, but it might

distort the distribution if the mode is not representative.

5. Imputing Missing Values Using Linear Interpolation:

The missing values were estimated based on neighboring values using linear interpolation. For

example, Bob's Age was interpolated to 34 (between Alice and Charlie), and Charlie's Salary was

interpolated to 72500 (between Bob and David). This method works well for ordered data, like

time-series or sequential datasets, and avoids bias introduced by simple mean imputation.

Key Points:

• Mean imputation: Best used when the data is normally distributed, but can be influenced by

outliers.

• Median imputation: Robust against outliers and better suited for skewed distributions.

• Mode imputation: Useful for categorical data or when most frequent values are good

replacements.

• Linear Interpolation: Best for sequential or time-series data where missing values follow a linear

trend.

1. 6. Handling Time series data.

Time series data is a sequential arrangement of data points organized in consecutive time order. Time-

series analysis consists of methods for analyzing time-series data to extract meaningful insights and

Page | 54

other valuable characteristics of the data.

Time-series data analysis is becoming very important in so many industries, like financial industries,

pharmaceuticals, social media companies, web service providers, research, and many more. To

understand the time-series data, visualization of the data is essential. In fact, any type of data analysis

is not complete without visualizations, because one good visualization can provide meaningful and

interesting insights into the data.

Types of Time Series Data

Time series data can be broadly classified into two sections:

1. Continuous Time Series Data:Continuous time series data involves measurements or observations

that are recorded at regular intervals, forming a seamless and uninterrupted sequence. This type of data

is characterized by a continuous range of possible values and is commonly encountered in various

domains, including:

▪ Temperature Data: Continuous recordings of temperature at consistent intervals (e.g., hourly or

daily measurements).

▪ Stock Market Data: Continuous tracking of stock prices or values throughout trading hours.

▪ Sensor Data: Continuous measurements from sensors capturing variables like pressure,

humidity, or air quality.

2. Discrete Time Series Data: Discrete time series data, on the other hand, consists of measurements

or observations that are limited to specific values or categories. Unlike continuous data, discrete data

does not have a continuous range of possible values but instead comprises distinct and separate data

points. Common examples include:

▪ Count Data: Tracking the number of occurrences or events within a specific time period.

▪ Categorical Data: Classifying data into distinct categories or classes (e.g., customer segments,

product types).

▪ Binary Data: Recording data with only two possible outcomes or states.

Basic Time Series Concepts

• Trend: A trend represents the general direction in which a time series is moving over an

extended period. It indicates whether the values are increasing, decreasing, or staying relatively

constant.

• Seasonality: Seasonality refers to recurring patterns or cycles that occur at regular intervals

within a time series, often corresponding to specific time units like days, weeks, months, or

seasons.

• Moving average: The moving average method is a common technique used in time series

analysis to smooth out short-term fluctuations and highlight longer-term trends or patterns in

the data. It involves calculating the average of a set of consecutive data points, referred to as a

“window” or “rolling window,” as it moves through the time series

• Noise: Noise, or random fluctuations, represents the irregular and unpredictable components

in a time series that do not follow a discernible pattern. It introduces variability that is not

attributable to the underlying trend or seasonality.

• Differencing: Differencing is used to make the difference in values of a specified interval. By

default, it’s one, we can specify different values for plots. It is the most popular method to

remove trends in the data.

• Stationarity: A stationary time series is one whose statistical properties, such as mean,

variance, and autocorrelation, remain constant over time.

• Order: The order of differencing refers to the number of times the time series data needs to be

differenced to achieve stationarity.

• Autocorrelation: Autocorrelation, is a statistical method used in time series analysis to quantify

https://www.geeksforgeeks.org/what-is-a-trend-in-time-series/
https://www.geeksforgeeks.org/seasonality-detection-in-time-series-data/
https://www.geeksforgeeks.org/program-find-simple-moving-average/
https://www.geeksforgeeks.org/how-to-check-if-time-series-data-is-stationary-with-python/
https://www.geeksforgeeks.org/autocorrelation/

Page | 55

the degree of similarity between a time series and a lagged version of itself.

• Resampling: Resampling is a technique in time series analysis that involves changing the

frequency of the data observations. It’s often used to transform the data to a different frequency

(e.g., from daily to monthly) to reveal patterns or trends more clearly.

1. Display the date and time information in different formats.

Importing the Libraries

We will import all the libraries that we will be using throughout this article in one place so that do

not have to import every time we use it this will save both our time and effort.

• Numpy – A Python library that is used for numerical mathematical computation and handling

multidimensional ndarray, it also has a very large collection of mathematical functions to operate

on this array.

• Pandas – A Python library built on top of NumPy for effective matrix multiplication and dataframe

manipulation, it is also used for data cleaning, data merging, data reshaping, and data aggregation.

• Matplotlib – It is used for plotting 2D and 3D visualization plots, it also supports a variety of output

formats including graphs for data.

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

from statsmodels.graphics.tsaplots import plot_acf

from statsmodels.tsa.stattools import adfuller

Loading The Dataset

To load the dataset into a dataframe we will use the pandas read_csv() function. We will

use head() function to print the first five rows of the dataset. Here we will use the ‘parse_dates’

parameter in the read_csv function to convert the ‘Date’ column to the DatetimeIndex format. By

default, Dates are stored in string format which is not the right format for time series data analysis.

reading the dataset using read_csv

df = pd.read_csv("stock_data.csv",

 parse_dates=True,

 index_col="Date")

displaying the first five rows of dataset

df.head()

Output:

 Unnamed: 0 Open High Low Close Volume Name

Date

2006-01-03 NaN 39.69 41.22 38.79 40.91 24232729 AABA

2006-01-04 NaN 41.22 41.90 40.77 40.97 20553479 AABA

2006-01-05 NaN 40.93 41.73 40.85 41.53 12829610 AABA

2006-01-06 NaN 42.88 43.57 42.80 43.21 29422828 AABA

2006-01-09 NaN 43.10 43.66 42.82 43.42 16268338 AABA

Dropping Unwanted Columns

We will drop columns from the dataset that are not important for our visualization.

deleting column

df.drop(columns='Unnamed: 0', inplace =True)

df.head()

Output:

 Open High Low Close Volume Name

Date

https://www.geeksforgeeks.org/how-to-resample-time-series-data-in-python/
https://www.geeksforgeeks.org/numpy-tutorial/
https://www.geeksforgeeks.org/pandas-tutorial/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-read-csv-using-pandas-read_csv/
https://www.geeksforgeeks.org/python-pandas-dataframe-series-head-method/

Page | 56

2006-01-03 39.69 41.22 38.79 40.91 24232729 AABA

2006-01-04 41.22 41.90 40.77 40.97 20553479 AABA

2006-01-05 40.93 41.73 40.85 41.53 12829610 AABA

2006-01-06 42.88 43.57 42.80 43.21 29422828 AABA

2006-01-09 43.10 43.66 42.82 43.42 16268338 AABA

Plotting Line plot for Time Series data:

Since, the volume column is of continuous data type, we will use line graph to visualize it.

Assuming df is your DataFrame

sns.set(style="whitegrid") # Setting the style to whitegrid for a clean background

plt.figure(figsize=(12, 6)) # Setting the figure size

sns.lineplot(data=df, x='Date', y='High', label='High Price', color='blue')

Adding labels and title

plt.xlabel('Date')

plt.ylabel('High')

plt.title('Share Highest Price Over Time')

plt.show()

Output:

Resampling

To better understand the trend of the data we will use the resampling method, resampling the

data on a monthly basis can provide a clearer view of trends and patterns, especially when we are

dealing with daily data.

Assuming df is your DataFrame with a datetime index

df_resampled = df.resample('M').mean() # Resampling to monthly frequency, using mean as an

aggregation function

sns.set(style="whitegrid") # Setting the style to whitegrid for a clean background

Plotting the 'high' column with seaborn, setting x as the resampled 'Date'

plt.figure(figsize=(12, 6)) # Setting the figure size

Page | 57

sns.lineplot(data=df_resampled, x=df_resampled.index, y='High', label='Month Wise Average High

Price', color='blue')

Adding labels and title

plt.xlabel('Date (Monthly)')

plt.ylabel('High')

plt.title('Monthly Resampling Highest Price Over Time')

plt.show()

Output:

An Example of Time-Series Analysis with Python

Plotting Data Using Pyplot

Python brings a host of benefits to the table regarding time-series analysis:

• It is a user-friendly language.

• It is widely available in the open-source world.

• It has extensive library support.

• It can reuse existing code.

Python offers extensive specialized libraries and tools specifically designed for time-series analysis.

These libraries, such as pandas, NumPy, statsmodels, and scikit-learn, provide various functions

and tools tailored to the unique challenges of working with time-dependent data. They simplify

complex operations, allowing you to focus on extracting meaningful insights rather than

reinventing the wheel.

One of the numerous ways software engineers add value to an org is by performing time-series

analysis. This powerful technique allows us to extract valuable insights from temporal data and

consists in analyzing and making predictions based on time-based patterns

Python has quickly emerged as a preferred tool for data analysis due to its simplicity, versatility,

and vast community support. With its intuitive syntax and extensive library ecosystem, this elegant

programming language allows you to tackle complex problems efficiently.

Whether you are building a data-intensive application or working with an experienced data

https://www.timescale.com/blog/tools-for-working-with-time-series-analysis-in-python/
https://www.statsmodels.org/
https://scikit-learn.org/
https://www.timescale.com/blog/what-is-time-series-analysis-with-examples-and-applications/
https://www.timescale.com/blog/what-is-time-series-analysis-with-examples-and-applications/

Page | 58

scientist, Python provides a robust platform for exploring, visualizing, and modeling time-

dependent data.

Let's see how Python can empower your work with time-series data. Consider the following

example code snippet that loads a time-series dataset using pandas and plots it using Matplotlib:

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

Generate random time-series data

np.random.seed(42)

dates = pd.date_range(start='2022-01-01', periods=100, freq='D')

values = np.random.randn(100).cumsum()

Create a DataFrame from the generated data

data = pd.DataFrame({'date': dates, 'value': values})

Set the 'date' column as the index

data.set_index('date', inplace=True)

Plot the time-series data

plt.plot(data.index, data['value'])

plt.xlabel('Time')

plt.ylabel('Value')

plt.xticks(rotation = 45)

plt.title('Time Series Data')

plt.show()

This example consists of random data generated by NumPy’s random number generator. The

dataset consists of 100 dates, starting from January 1, 2022, and corresponding random values.

The data is converted into a Pandas DataFrame, and the 'date' column is set as the index. Finally,

the time-series data is plotted using Matplotlib, displaying the variation of the 'value' over time.

Working With Time Series in Python

Working with time-series data in Python involves several key steps, from choosing the right time-

series library to loading and analyzing the data. Let’s explore the essential aspects of working with

https://www.timescale.com/blog/time-series-data/
https://www.timescale.com/blog/time-series-data/
https://pandas.pydata.org/
https://matplotlib.org/

Page | 59

time series in Python, such as selecting a time-series library, utilizing the core library pandas for

data loading, analysis, and visualization, and exploring some more specialized libraries for

advanced time-series tasks.

Choosing a time-series library

Python provides various libraries tailored for time-series analysis. The core library for time-series

analysis in Python is pandas. Pandas provides efficient data structures and functions to handle time

series effectively. It allows you to load data from diverse sources, such as CSV files and databases

like Timescale.

With pandas, you can perform basic analysis and visualization of time-series data. The central data

structure in pandas is the DataFrame, which serves as the primary unit for representing time-series

data.

Here's an example that demonstrates the steps of loading and working with time-series data using

pandas in Python:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Step 1: Load time-series Data

dates = pd.date_range(start='2023-01-01', periods=100)

values = np.sin(np.linspace(0, 2*np.pi, 100))

data = pd.DataFrame({'Date': dates, 'Value': values})

Step 2: Perform Data Analysis

Calculate summary statistics

summary_stats = data.describe()

Filter data based on specific conditions

filtered_data = data[data['Value'] > 0]

Resample data to a different frequency

resampled_data = data.resample('1W', on='Date').sum()

Step 3: Visualize time-series Data

plt.plot(data['Date'], data['Value'])

plt.xlabel('Date')

plt.ylabel('Value')

plt.xticks(rotation = 45)

plt.title('Time Series Data')

plt.show()

https://moez-62905.medium.com/top-python-libraries-for-time-series-analysis-in-2022-eebe95913085

Page | 60

This code generates a time-series dataset with dates and sine wave values. It performs data analysis

tasks such as calculating summary statistics, filtering data based on conditions, and resampling the

data to a different frequency. Finally, it visualizes the time-series data by plotting the values against

the dates.

Try
1. Write a program and load a time series dataset with irregular time intervals (timestamps) into a

pandas dataframe. Resample the data to have a regular time interval (e.g., daily, hourly) and fill

any missing data with appropriate values (e.g., forward fill, backward fill, interpolation) on the

following data: data = {'Timestamp': ['2022-01-01 08:00:00', '2022-01-01 10:30:00',

'2022-01-02 09:15:00'], 'Value': [10, 15, 20]}

2. Write a program and load above time series dataset that includes time zone information.

Convert the timestamps to a common time zone (e.g., UTC) in pandas.

3. Write a program and load a time series dataset that exhibits seasonality (e.g., monthly sales

data). Create additional columns to represent the year, quarter, month, day of the week, or any

other seasonal components to facilitate seasonal analysis on the following data:

data = {'Date': ['2022-01-15', '2022-02-20', '2022-03-10', '2022-04-05', '2022-05-18'], 'Sales':

[1000, 1200, 800, 1100, 1500]}

2. Generate summary statistics during a period.

Time-series data is a sequence of data points collected or recorded at successive points in time, often

at regular intervals. Examples include stock prices, weather data, and server logs. Handling such data

involves several key steps to extract meaningful insights.

1. Loading and Parsing Time-Series Data

• Time-series data typically includes a date or time column that must be converted into a

datetime format.

• Using pandas, the parse_dates parameter ensures the date column is recognized as a

datetime object, enabling time-based indexing.

2. Exploring the Data

• Inspect the dataset using .head(), .info(), and .describe() to understand its structure and basic

Page | 61

statistics.

• Check for missing values and handle them appropriately using methods like forward-fill (ffill)

or backward-fill (bfill).

3. Filtering Data for a Specific Period

• Time-based indexing allows slicing the data for a specified range

• This extracts data between January 1, 2023, and June 30, 2023.

4. Generating Summary Statistics

Summary statistics provide a quick overview of the dataset's key characteristics:

• Count: Number of observations.

• Mean: Average value.

• Standard Deviation (std): Measure of data spread.

• Min and Max: Smallest and largest values.

• Percentiles (25%, 50%, 75%): Data distribution quartiles.

5. Optional Visualization

• Plotting the data helps in understanding trends, seasonality, or anomalies visually.

Summary Statistics for a Period:

• Focused Analysis: Restricting to a specific period helps analyze trends, patterns, or

anomalies during that timeframe.

• Decision-Making: Insights from summary statistics aid in informed decision-making,

such as planning resources or forecasting.

• Comparisons: Comparing statistics across different periods provides insights into

changes over time.

Applications

1. Finance: Analyzing stock price movements over a quarter.

2. Weather: Evaluating seasonal temperature and rainfall statistics.

3. Operations: Studying server performance metrics during peak hours.

Challenges

1. Irregular Intervals: Missing or irregular timestamps require interpolation or resampling.

2. Large Datasets: Efficient handling of large datasets needs optimization techniques.

3. Seasonality and Trends: Identifying and analyzing patterns like seasonality may require

additional tools like Fourier Transforms or ARIMA models

Learn how to load, clean, and analyze time-series data by generating summary statistics for a

specific time period.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

data = pd.read_csv("your_timeseries_data.csv", parse_dates=['Date'], index_col='Date')

print(data.head())

print(data.info())

print(data.describe())

Handling missing values (if any)

data = data.fillna(method='ffill')

start_date = '2023-01-01'

end_date = '2023-06-30'

filtered_data = data.loc[start_date:end_date]

print(filtered_data.head())

summary_stats = filtered_data.describe()

print(summary_stats)

Page | 62

print(filtered_data.median())

print(filtered_data.std())

filtered_data['Column_of_Interest'].plot(title="Time Series Data for Selected Period",

figsize=(10, 6))

plt.xlabel("Date")

plt.ylabel("Value")

plt.show()

filtered_data.to_csv("filtered_timeseries_data.csv")

summary_stats.to_csv("summary_statistics.csv")

Output:

Filtered Data (First 5 Rows):

Date Temperature Rainfall Humidity

2023-01-01 22.48 0.51 48.82

2023-01-02 19.31 6.61 64.92

2023-01-03 23.24 0.02 60.95

2023-01-04 27.62 7.01 85.74

2023-01-05 18.83 0.09 58.12

Summary Statistics:

Statistic Temperature Rainfall Humidity

Count 181 181 181

Mean 19.91 2.15 63.20

Std. Dev. 4.74 2.37 14.39

Min 6.90 0.02 40.55

25% 16.62 0.55 50.39

Median (50%) 20.03 1.40 62.30

75% 22.71 2.93 74.61

Max 33.60 16.34 89.84

Try:
1. Write a program that computes summary statistics (mean, median, std) of the 'value' column

for a specific date range in a pandas DataFrame.

2. Write a program that computes the average 'value' for each day of the week (e.g., Monday,

Tuesday).

3. Write a program to compute the 7-day rolling mean for the 'value' column in a pandas

DataFrame.

4. Write a program that computes the monthly average of 'value' but only for values greater than

30.

5. Write a program to compute the mean and standard deviation for multiple columns (e.g.,

'value1' and 'value2') over a monthly period.

3. Compute rolling mean and rolling std deviations and plot.

Time Series Plot is used to observe various trends in the dataset over a period of time. In such

Page | 63

problems, the data is ordered by time and can fluctuate by the unit of time considered in the

dataset (day, month, seconds, hours, etc.). When plotting the time series data, these fluctuations

may prevent us to clearly gain insights about the peaks and troughs in the plot. So to clearly get

value from the data, we use the rolling average concept to make the time series plot.

The rolling average or moving average is the simple mean of the last ‘n’ values. It can help us in

finding trends that would be otherwise hard to detect. Also, they can be used to determine long-

term trends. You can simply calculate the rolling average by summing up the previous ‘n’ values

and dividing them by ‘n’ itself. But for this, the first (n-1) values of the rolling average would be

Nan.

New kind of statistics: rolling statistics. Instead of computing a single statistic over an entire set

of data, we compute a rolling statistic against a subset, or window, of that data, and we adjust the

window with each new data point we encounter.

Pandas provides a number of functions to compute moving statistics. Given a DataFrame df and a

window window, we can compute the rolling mean & rolling standard deviation of the columns in

a DataFrame

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

#importing data

df = pd.read_csv('Desktop\RELIANCE.NS.csv',index_col ='Date')

df.tail()

#Calculating 30 days moving average

df['30_MA_Close'] = df['Close'].rolling(window=30).mean()

#calculating 20 days rolling standard devtaion

df['20_std_Close'] = df['Close'].rolling(window=20).std()

df.head(31)

df[['Close','30_MA_Close']].plot(figsize=(10,5))

Try:
1. Write a program that computes the 7-day rolling mean and 7-day rolling standard deviation

for a 'value' column in a pandas DataFrame. Then, plot the original 'value' series along with the

rolling mean and rolling standard deviation

2. Write a program to generates a DataFrame containing a time series of daily data for 60 days

Page | 64

with random values in the 'value' column.

3. Write a program to plots the original time series, the rolling mean, and the rolling standard

deviation in a single graph with proper labels and legends."

7. Visualization of categorical data.

Visualization of categorical data refers to the use of charts and graphs to represent non-numerical

data, often consisting of discrete groups or categories. These visualizations help in understanding the

distribution, frequency, or comparison of categorical variables.

Key Concepts

1. Categorical Data:

• Data that represents distinct groups or categories.

• Examples: Gender (Male, Female), Product Types (Electronics, Furniture), Regions (North,

South).

2. Types of Categorical Data:

• Nominal: Categories without any inherent order (e.g., Colors: Red, Blue, Green).

• Ordinal: Categories with a meaningful order but no fixed difference between values (e.g.,

Ratings: Poor, Fair, Good).

Common Visualization Techniques

• Bar Charts:

o Categories with taller bars are more frequent or have higher values.

o Useful for direct comparisons.

• Grouped Bar Charts:

o Subcategories side-by-side allow insights into relationships within and between

categories.

• Stacked Bar Charts:

o Highlights total contributions and proportions simultaneously.

• Pie Charts:

o Easier to interpret proportions but not ideal for precise comparisons.

• Count Plots:

o Directly display the frequency of categories, useful for raw count analysis.

a. Plot categorical data as vertical and horizontal bar charts and label it.

A bar plot uses rectangular bars to represent data categories, with bar length or height proportional to

their values. It compares discrete categories, with one axis for categories and the other for values.

Syntax: Syntax: plt.bar(x, height, width, bottom, align)

Creating Vertical Bar Plots

For vertical bar plots, you can use the bar() function.

import matplotlib.pyplot as plt

import numpy as np

fruits = ['Apples', 'Bananas', 'Cherries', 'Dates']

sales = [400, 350, 300, 450]

plt.bar(fruits, sales, width=0.3)

plt.title('Fruit Sales')

plt.xlabel('Fruits')

plt.ylabel('Sales')

Page | 65

plt.show()

Output:

Vertical Plots

Creating Horizontal Bar Plots

For horizontal bar plots, you can use the barh() function. This function works similarly to bar(), but

it displays bars horizontally:

import matplotlib.pyplot as plt

import numpy as np

fruits = ['Apples', 'Bananas', 'Cherries', 'Dates']

sales = [400, 350, 300, 450]

plt.barh(fruits, sales)

plt.title('Fruit Sales')

plt.xlabel('Fruits')

plt.ylabel('Sales')

plt.show()

Output:

Horizontal Plots

Try:

1 Write a program to generates a DataFrame with categorical data representing the number of

Page | 66

products sold in different categories (e.g., Electronics, Clothing, Food, etc.) for a particular week.

2 Write a program to Plots the data as: vertical bar chart showing the number of products sold

for each category and horizontal bar chart showing the same data.

3 Write a program to Both charts should be labeled with the category names on the x-axis (for

the vertical bar chart) and y-axis (for the horizontal bar chart) Include a title and axis labels for

both charts

b. Plot categorical data as vertical grouped bar charts and label it.

To Create a grouped bar plot in Matplotlib

• Matplotlib is a tremendous visualization library in Python for 2D plots of arrays. Matplotlib may

be a multi-platform data visualization library built on NumPy arrays and designed to figure

with the broader SciPy stack. It had been introduced by John Hunter within the year 2002.

• A bar plot or bar graph may be a graph that represents the category of knowledge with

rectangular bars with lengths and heights that’s proportional to the values which they

represent. The bar plots are often plotted horizontally or vertically.

• A bar chart is a great way to compare categorical data across one or two dimensions. More

often than not, it’s more interesting to compare values across two dimensions and for that, a

grouped bar chart is needed.

Approach:

1 Import Library (Matplotlib)

2 Import / create data.

3 Plot the bars in the grouped manner.

Example 1: (Simple grouped bar plot)

importing package

import matplotlib.pyplot as plt

import numpy as np

create data

x = np.arange(5)

y1 = [34, 56, 12, 89, 67]

y2 = [12, 56, 78, 45, 90]

width = 0.40

plot data in grouped manner of bar type

plt.bar(x-0.2, y1, width)

plt.bar(x+0.2, y2, width)

Output:

https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-numpy/

Page | 67

Example 2: (Grouped bar chart with more than 2 data)

importing package

import matplotlib.pyplot as plt

import numpy as np

create data

x = np.arange(5)

y1 = [34, 56, 12, 89, 67]

y2 = [12, 56, 78, 45, 90]

y3 = [14, 23, 45, 25, 89]

width = 0.2

plot data in grouped manner of bar type

plt.bar(x-0.2, y1, width, color='cyan')

plt.bar(x, y2, width, color='orange')

plt.bar(x+0.2, y3, width, color='green')

plt.xticks(x, ['Team A', 'Team B', 'Team C', 'Team D', 'Team E'])

plt.xlabel("Teams")

plt.ylabel("Scores")

plt.legend(["Round 1", "Round 2", "Round 3"])

plt.show()

Output:

Page | 68

Example 3: (Grouped Bar chart using dataframe plot)

importing package

import matplotlib.pyplot as plt

import pandas as pd

create data

df = pd.DataFrame([['A', 10, 20, 10, 30], ['B', 20, 25, 15, 25], ['C', 12, 15, 19, 6],

 ['D', 10, 29, 13, 19]],

 columns=['Team', 'Round 1', 'Round 2', 'Round 3', 'Round 4'])

view data

print(df)

plot grouped bar chart

df.plot(x='Team',

 kind='bar',

 stacked=False,

 title='Grouped Bar Graph with dataframe')

Output:

https://www.geeksforgeeks.org/python-pandas-dataframe/

Page | 69

Try:
1 Write a program to generates a DataFrame with categorical data representing the sales data of

different product categories (e.g., Electronics, Clothing, Food) across two different time periods

(e.g., January and February).

2 Write a program to Plots the data as a grouped vertical bar chart, where the bars for each

category (Electronics, Clothing, Food) are grouped side by side for the two months (January and

February).

3 Write a program to Ensure that the chart is properly labeled with the product categories on the

x-axis, sales figures on the y-axis, and each group of bars representing the two months, Include

a title and axis labels for the chart. Use different colors to distinguish the two months.

c. Plot categorical data as vertical stacked bar charts and label it.

To Create a stacked bar plot in Matplotlib.

• Matplotlib is a tremendous visualization library in Python for 2D plots of arrays. Matplotlib may be

a multi-platform data visualization library built on NumPy arrays and designed to figure with the

broader SciPy stack.

• A bar plot or bar graph may be a graph that represents the category of knowledge with rectangular

bars with lengths and heights that’s proportional to the values which they represent. The bar plots

are often plotted horizontally or vertically.

• Stacked bar plots represent different groups on the highest of 1 another. The peak of the bar

depends on the resulting height of the mixture of the results of the groups. It goes from rock

bottom to the worth rather than going from zero to value.

Approach:

1. Import Library (Matplotlib)

2. Import / create data.

1. Plot the bars in the stack manner.

Example 1: (Simple stacked bar plot)

importing package

import matplotlib.pyplot as plt

https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-numpy/

Page | 70

create data

x = ['A', 'B', 'C', 'D']

y1 = [10, 20, 10, 30]

y2 = [20, 25, 15, 25]

plot bars in stack manner

plt.bar(x, y1, color='r')

plt.bar(x, y2, bottom=y1, color='b')

plt.show()

Output:

Example 2: (Stacked bar chart with more than 2 data)

importing package

import matplotlib.pyplot as plt

import numpy as np

create data

x = ['A', 'B', 'C', 'D']

y1 = np.array([10, 20, 10, 30])

y2 = np.array([20, 25, 15, 25])

y3 = np.array([12, 15, 19, 6])

y4 = np.array([10, 29, 13, 19])

plot bars in stack manner

plt.bar(x, y1, color='r')

plt.bar(x, y2, bottom=y1, color='b')

plt.bar(x, y3, bottom=y1+y2, color='y')

plt.bar(x, y4, bottom=y1+y2+y3, color='g')

plt.xlabel("Teams")

plt.ylabel("Score")

Page | 71

plt.legend(["Round 1", "Round 2", "Round 3", "Round 4"])

plt.title("Scores by Teams in 4 Rounds")

plt.show()

Output:

Example 3: (Stacked Bar chart using dataframe plot):

importing package

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

create data

df = pd.DataFrame([['A', 10, 20, 10, 26], ['B', 20, 25, 15, 21], ['C', 12, 15, 19, 6],

 ['D', 10, 18, 11, 19]],

 columns=['Team', 'Round 1', 'Round 2', 'Round 3', 'Round 4'])

view data

print(df)

plot data in stack manner of bar type

df.plot(x='Team', kind='bar', stacked=True,

 title='Stacked Bar Graph by dataframe')

plt.show()

Output :

Team Round 1 Round 2 Round 3 Round 4

0 A 10 20 10 26

1 B 20 25 15 21

2 C 12 15 19 6

3 D 10 18 11 19

https://www.geeksforgeeks.org/python-pandas-dataframe/

Page | 72

Try:
1. Write a program to generates a DataFrame with categorical data representing the sales data of

different product categories (e.g., Electronics, Clothing, Food) across two different regions (e.g.,

North and South).

2. Write a program to Plots the data as a stacked vertical bar chart, where the bars for each product

category represent the sales data from the two regions stacked on top of each other.

3. Write a program to Ensure that the chart is properly labeled with the product categories on the x-

axis, sales figures on the y-axis, and each stacked section representing a different region, Include a

title and axis labels for the chart. Use different colors for each region to differentiate them in the

stack.

d. Interpret the results.

Vertical and Horizontal Bar Charts:

• Vertical and horizontal bar charts show the individual value of each category.

Example Interpretation:

• In the example, category B has the highest value, while category D has the lowest.

Horizontal bar charts are especially useful when category labels are long.

Vertical Grouped Bar Chart:

• Displays subcategories (e.g., Group 1 and Group 2) side-by-side for each main category.

Example Interpretation:

• In the grouped chart, for category A, Group 2 has a slightly higher value than Group 1. It is

easy to compare subcategories within each main category and between categories.

Vertical Stacked Bar Chart:

• Shows the total value for each category, with different colors indicating subcategory

contributions.

Example Interpretation:

• The stacked bar chart highlights the total contribution of Group 1 and Group 2 to each

category. For category C, Group 1 contributes a larger proportion than Group 2.

Page | 73

2. 8. Visualization of correlations.

A correlation describes the relationship between two variables. If an increase in one variable

produces an increase in the other one, that's a positive correlation. If an increase in one variable

results in a decrease in the other, that's a negative correlation.

There are several different correlation coefficients, but the most popular one is Pearson's

correlation (a.k.a Pearson's R). If someone mentions a correlation without specifying which

coefficient they use, then most probably they use the Pearson's R. We'll use it in our topic too. One

important thing — Pearson's correlation is for numeric data only. Techniques for locating

associations in categorical data are more advanced.

Range Meaning

0.70.7 to 1.01.0 a strong positive correlation

0.30.3 to 0.70.7 a weak positive correlation

−0.3−0.3 to 0.30.3 a negligible correlation

−0.7−0.7 to −0.3−0.3 a weak negative correlation

−1.0−1.0 to −0.7−0.7 a strong negative correlation

1. Plot the pair wise scatter plots of numerical attributes.

Data Visualization is the presentation of data in pictorial format. It is extremely important for Data

Analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Seaborn is

one of those packages that can make analyzing data much easier.

Pairplot Seaborn to analyze data and, using the sns.pairplot() function

PairPlot Seaborn : Implementation

1. Pairplot Seaborn: Plotting Selected Variables

2. Pairplot Seaborn: Adding a Hue Color to a Seaborn Pairplot

3. Pairplot Seaborn: Modifying Color Palette

4. Pairplot Seaborn: Diagonal Kind of plots

5. Pairplot Seaborn:Adjusting Plot Kind

6. Pairplot Seaborn:Controlling the Markers

7. Pairplot Seaborn:Limiting the Variables

PairPlot Seaborn : Implementation

To implement a Pair Plot using Seaborn, you can follow these steps:

To plot multiple pairwise bivariate distributions in a dataset, you can use the pairplot() function.

This shows the relationship for (n, 2) combination of variable in a DataFrame as a matrix of plots

and the diagonal plots are the univariate plots.

Syntax: seaborn.pairplot(data, **kwargs)

Parameter:

data: Tidy (long-form) dataframe where each column is a variable and each row is an observation.

hue: Variable in “data“ to map plot aspects to different colors.

palette: dict or seaborn color palette

{x, y}_vars: lists of variable names, optional

dropna: boolean, optional

First of all, We see Upload seaborn librarry ‘tips’ using pandas. Then, we will visualize data with

seaborn.

importing packages

import seaborn

import matplotlib.pyplot as plt

loading dataset using seaborn

df = seaborn.load_dataset('tips')

df.head()

Page | 74

Output:

 total_bill tip sex smoker day time size

0 16.99 1.01 Female No Sun Dinner 2

1 10.34 1.66 Male No Sun Dinner 3

2 21.01 3.50 Male No Sun Dinner 3

3 23.68 3.31 Male No Sun Dinner 2

4 24.59 3.61 Female No Sun Dinner 4

Let’s plot pairplot using seaborn:

We will simply plot a pairplot with tips data frame.

seaborn.pairplot(df)

plt.show()

Output:

seaborn pairplot

1. Pairplot Seaborn: Plotting Selected Variables

import seaborn as sns

import matplotlib.pyplot as plt

df = sns.load_dataset('tips')

selected_vars = ['total_bill', 'tip']

sns.pairplot(df, vars=selected_vars)

plt.show()

Output:

Page | 75

pairplot seaborn

2. Pairplot Seaborn: Adding a Hue Color to a Seaborn Pairplot

import seaborn

import matplotlib.pyplot as plt

df = seaborn.load_dataset('tips')

seaborn.pairplot(df,hue ='size')

plt.show()

Output:

pairplot seabon

• The points in this scatter plot are colored by the value of size, so you can see how the

relationship between total_bill and tip varies depending on the size of the party.

• There is a positive correlation between total_bill and tip. This means that, in general, larger

bills tend to have larger tips

• There is a positive correlation between tip and size. This means that, in general, larger

parties tend to have larger tips.

• The relationship between tip and size is stronger for larger total bill amounts.

Page | 76

3. Pairplot Seaborn: Modifying Color Palette

import seaborn as sns

import matplotlib.pyplot as plt

df = sns.load_dataset('tips')

sns.pairplot(df, hue="size", palette="husl")

plt.show

Output:

2. Pairplot Seaborn: Diagonal Kind of plots

In Seaborn’s Pairplot, the ‘diag_kind’ parameter specifies the type of plot to display along the

diagonal axis, representing the univariate distribution of each variable. Options include ‘hist’ for

histograms, ‘kde’ for kernel density estimates, and ‘scatter’ for scatterplots. Choose based on the

nature of the data and analysis goals. Here, let’s plot with kernel density estimates.

import seaborn as sns

import matplotlib.pyplot as plt

df = sns.load_dataset('tips')

sns.pairplot(df,diag_kind = 'kde')

plt.show

Output:

Page | 77

5. Pairplot Seaborn:Adjusting Plot Kind

The kind parameter allows to change the type of plot used for the off-diagonal plots. You can

choose any like scatter, kde, or reg (regression).

sns.pairplot(df, kind='reg')

plt.show()

Output:

Adjusting Plot Kind

6. Pairplot Seaborn:Controlling the Markers

The markers parameter allows you to specify different markers for different categories.

sns.pairplot(df, hue='sex', markers=["o", "s"])

plt.show()

Output:

Page | 78

Controlling the Markers

7. Pairplot Seaborn:Limiting the Variables

If you are interested in only a subset of the variables, you can specify them using

the vars parameter.

sns.pairplot(df, hue='sex', vars=['total_bill', 'tip', 'size'])

plt.show()

Output:

Pairplot Seaborn:Limiting the Variables

Try:
1. Write a program to generates a DataFrame containing numerical data for four attributes

(e.g.,Attribute1, Attribute2, Attribute3, Attribute4).

Page | 79

2. Write a program to plots the pairwise scatter plots of the numerical attributes to visualize

the relationships between each pair of attributes.

3. Write a program to use a pair plot to display all possible scatter plots between the attributes

in one plot, Include proper labels for the axes and a title for the plot.

2. Identify the type of correlations.

Definition

Correlation describes the relationship between variables. It can be described as either strong or

weak, and as either positive or negative.

Note: 1= Correlation does not imply causation.

Types of Correlation

There are four types of correlation:

1. Positive Correlation: Positive correlation indicates that two variables have a direct relationship. As

one variable increases, the other variable also increases. For example, there is a positive correlation

between height and weight. As people get taller, they also tend to weigh more.

2. Negative Correlation: Negative correlation indicates that two variables have an inverse

relationship. As one variable increases, the other variable decreases. For example, there is a

negative correlation between price and demand. As the price of a product increases, the demand

for that product decreases.

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/descriptive-statistics/variables.html

Page | 80

3. No Correlation: No correlation indicates that there is no relationship between two variables. The

changes in one variable do not affect the other variable. For example, there is no correlation

between shoe size and intelligence.

4. Non-linear Correlation (known as curvilinear correlation): There is a non-linear correlation when

there is a relationship between variables but the relationship is not linear (straight).

Steps to Identify Correlations

1. Heatmap

• Code Example:

import seaborn as sns

import matplotlib.pyplot as plt

Example data

import numpy as np

import pandas as pd

data = {

 'X1': np.random.rand(100),

 'X2': np.random.rand(100) * 2,

 'X3': np.random.rand(100) * 0.5 + np.linspace(0, 1, 100),

 'X4': np.random.rand(100)

}

df = pd.DataFrame(data)

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/core-mathematics/pure-maths/functions/linear-functions.html

Page | 81

Correlation Matrix Heatmap

plt.figure(figsize=(8, 6))

sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")

plt.title('Correlation Matrix Heatmap')

plt.show()

Output:

2. Scatter Plot

• Code Example:

plt.figure(figsize=(8, 6))

Scatter plot for a pair of variables

plt.scatter(df['X1'], df['X3'], alpha=0.7, color='blue')

plt.title('Scatter Plot: X1 vs X3')

plt.xlabel('X1')

plt.ylabel('X3')

plt.show()

Output:

Page | 82

3. Pair Plot

• Code Example:

sns.pairplot(df, diag_kind='kde', plot_kws={'alpha': 0.7})

plt.suptitle('Pair Plot of Variables', y=1.02)

plt.show()

Output:

4. Regression Plot

• Code Example:

sns.regplot(x='X1', y='X3', data=df, scatter_kws={'alpha': 0.6}, line_kws={'color': 'red'})

plt.title('Regression Plot: X1 vs X3')

plt.xlabel('X1')

plt.ylabel('X3')

plt.show()

Output:

Page | 83

Try:
1. Write a program to Generates a DataFrame with numerical data for five attributes (e.g.,

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5).

2. Write a program to computes the correlation matrix between the numerical attributes to

identify the relationships between them.

3. Write a program to Identifies the type of correlation for each pair of attributes (i.e., positive,

negative, or no correlation).

4. Write a program to Display the correlation matrix and print a summary of the type of correlation

for each pair of attributes.

5. Interpret the results.

Interpretation of Correlation coefficients

• Perfect: 0.80 to 1.00

• Strong: 0.50 to 0.79

• Moderate: 0.30 to 0.49

• Weak: 0.00 to 0.29

Value greater than 0.7 is considered a strong correlation between variables.

Type Visualization
Correlation

Coefficient

Positive Correlation
Scatter plot: upward

trend
0<r≤1

Negative Correlation
Scatter plot:

downward trend
−1≤r<0

Page | 84

No Correlation Scatter plot: no trend r≈0

Non-Linear

Correlation

Scatter plot: curved or

complex patterns

Spearman or

advanced tests

Page | 85

9. Visualization of distributions.

Data visualization building block is learning to summarize lists of factors or numeric vectors. More

often than not, the best way to share or explore this summary is through data visualization. The

most basic statistical summary of a list of objects or numbers is its distribution. Once a data has

been summarized as a distribution, there are several data visualization techniques to effectively

relay this information. For this reason, it is important to have a deep understand the concept of a

distribution.

1. Plot the histograms of numerical data.

To create a Matplotlib histogram the first step is to create a bin of the ranges, then distribute the

whole range of the values into a series of intervals, and count the values that fall into each of the

intervals. Bins are identified as consecutive, non-overlapping intervals of

variables.The matplotlib.pyplot.hist() function is used to compute and create a histogram of x

Code Example:

import numpy as np

import matplotlib.pyplot as plt

Example numerical data

data = np.random.normal(loc=50, scale=10, size=1000) # Normal distribution

Histogram

plt.figure(figsize=(8, 5))

plt.hist(data, bins=20, color='skyblue', edgecolor='black', alpha=0.7)

plt.title('Histogram of Numerical Data')

plt.xlabel('Values')

plt.ylabel('Frequency')

plt.tight_layout()

plt.show()

Output:

Try:
1. Write a program to plot a histogram with different Customization.

https://www.geeksforgeeks.org/matplotlib-pyplot-hist-in-python/

Page | 86

2. Write a program to plot a Stacked Histograms on the above data points.

3. Write a program to Generates a DataFrame with numerical data for five attributes (e.g.,

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5).

4. Write a program to Plots the histograms of each numerical attribute to show the distribution

of the data.

5. Write a program to Ensure that the histograms are clearly labeled with titles, axis labels, and a

legend to differentiate between the attributes.

2. Plot the counts of categorial data.

To plot the count of categorical data, you can use a bar chart, which shows the distribution of a

categorical variable by making the height of each bar proportional to the number of cases in each

group:

Seaborn is an amazing visualization library for statistical graphics plotting in Python. It provides

beautiful default styles and color palettes to make statistical plots more attractive. It is built on the

top of matplotlib library and also closely integrated to the data structures from pandas.

 Seaborn.countplot()

o seaborn.countplot() method is used to Show the counts of observations in each

categorical bin using bars.

Syntax : seaborn.countplot(x=None, y=None, hue=None, data=None, order=None,

hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None,

**kwargs)

Code Example:

import seaborn as sns

Example categorical data

categories = ['A', 'B', 'C', 'D']

counts = [50, 80, 30, 40]

Bar plot for categorical data

plt.figure(figsize=(8, 5))

sns.barplot(x=categories, y=counts, palette='muted')

plt.title('Counts of Categorical Data')

plt.xlabel('Categories')

plt.ylabel('Counts')

plt.tight_layout()

plt.show()

Output:

https://www.geeksforgeeks.org/introduction-to-seaborn-python/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/introduction-to-pandas-in-python/

Page | 87

Try:
1. Write a program to Generates a DataFrame with categorical data representing different

product categories (e.g., Electronics, Clothing, Food, Toys, Books).

2. Write a program to Plots the count of occurrences for each category using a bar chart.

3. Write a program to Ensure that the chart is clearly labeled with titles, axis labels, and a legend

to differentiate the categories.

3. Plot the data distributions (or densities).

Kernel density estimation

A histogram aims to approximate the underlying probability density function that generated the

data by binning and counting observations. Kernel density estimation (KDE) presents a different

solution to the same problem. Rather than using discrete bins, a KDE plot smooths the observations

with a Gaussian kernel, producing a continuous density estimate:

Code Example:

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Example numerical data

data = np.random.normal(loc=50, scale=10, size=1000) # Normal distribution

KDE (Kernel Density Estimation) plot

plt.figure(figsize=(8, 5))

sns.kdeplot(data, color='blue', fill=True, alpha=0.5)

plt.title('Density Plot of Numerical Data')

plt.xlabel('Values')

plt.ylabel('Density')

plt.tight_layout()

plt.show()

Output:

Page | 88

Try:

1. Write a program to Generates a DataFrame with numerical data for five attributes (e.g.,

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5).

2. Write a program to Plots the distributions (or densities) of the numerical attributes using a

kernel density estimate (KDE) plot.

3. Write a program to Ensure that each attribute is plotted on the same graph for comparison,

with different colors for each attribute, Include a title and appropriate labels for the plot.

4. Write a program to plot a density plot on given the dataset ‘tips’ and calculate what was the

most common tip given by a customer.

5. Write a program to plot a density plot on given the dataset ‘tips’ and calculate what was the

most common tip given by a customer using plot.kde() function.

4. Interpret the results .

Numerical Data (Histograms and Densities):

• Histogram:

o Shows the frequency of data in bins.

o Example: If the data has a single peak, it might indicate a normal distribution.

• Density Plot:

o Highlights the smooth distribution of data.

o Example: Multiple peaks might indicate bimodal or multimodal distributions.

Categorical Data (Bar Charts):

• Displays the counts of each category.

• Example: If one category has significantly higher counts, it might indicate a skew in the data

distribution.

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Example numerical data

data = np.random.normal(loc=50, scale=10, size=1000) # Normal distribution

plt.figure(figsize=(8, 5))

Page | 89

sns.histplot(data, bins=20, kde=True, color='skyblue', edgecolor='black', alpha=0.7)

plt.title('Histogram with Density Plot')

plt.xlabel('Values')

plt.ylabel('Frequency/Density')

plt.tight_layout()

plt.show()

Output:

Page | 90

10. Visualization using box-and-whisker plots.

Box-and-whisker plots, also called box plots, are effective for visualizing the distribution of

numerical data through rank statistics. They summarize key aspects of the data, including the

median, quartiles, and potential outliers.

1. Compute the rank statistics of numerical attributes.

Rank statistics are essential in various statistical analyses, especially when dealing with ordinal data

or when the assumptions of parametric tests are not met. Here's how you can compute rank

statistics for numerical attributes, along with an example using Python and pandas:

Code Example:

import numpy as np

import pandas as pd

Example numerical data

data = {

 'Attribute1': np.random.normal(50, 10, 100), # Normally distributed

 'Attribute2': np.random.uniform(30, 70, 100), # Uniformly distributed

}

df = pd.DataFrame(data)

Compute rank statistics

rank_stats = df.describe(percentiles=[0.25, 0.5, 0.75])

print(rank_stats)

Output:

 Attribute1 Attribute2

count 100 100

mean 49.41509 51.03182

std 9.717994 11.6534

min 26.28979 31.0754

25% 42.99788 40.33386

50% 49.84461 53.17149

75% 55.4665 60.88231

max 76.36262 69.90528

Try :
1. Write a program to Generates a DataFrame with numerical data for five attributes (e.g.,

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5).

2. Write a program to Computes the rank of each value within each attribute.

3. Write a program to Computes the rank statistics (such as the mean rank, maximum rank,

minimum rank, and rank of a specific value) for each attribute.

4. Write a program to Display the rank statistics for each attribute in a readable format.

2. Create the box-and-whisker plots of numerical attributes.

Box Plot is a graphical method to visualize data distribution for gaining insights and making

informed decisions. Box plot is a type of chart that depicts a group of numerical data through their

Page | 91

quartiles.

Elements of Box Plot

A box plot gives a five-number summary of a set of data which is-

• Minimum – It is the minimum value in the dataset excluding the outliers.

• First Quartile (Q1) – 25% of the data lies below the First (lower) Quartile.

• Median (Q2) – It is the mid-point of the dataset. Half of the values lie below it and half

above.

• Third Quartile (Q3) – 75% of the data lies below the Third (Upper) Quartile.

• Maximum – It is the maximum value in the dataset excluding the outliers.

• IQR (Interquartile Range): IQR=Q3−Q1

•
import numpy as np

import pandas as pd

Example numerical data

data = {

 'Attribute1': np.random.normal(50, 10, 100), # Normally distributed

 'Attribute2': np.random.uniform(30, 70, 100), # Uniformly distributed

}

df = pd.DataFrame(data)

import matplotlib.pyplot as plt

Box plot

plt.figure(figsize=(8, 5))

df.boxplot()

plt.title('Box-and-Whisker Plot of Numerical Attributes')

plt.xlabel('Attributes')

plt.ylabel('Values')

plt.tight_layout()

plt.show()

Output:

Page | 92

Try :
1 Write a program to Generates a DataFrame with numerical data for five attributes (e.g.,

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5).

2 Write a program to Creates box-and-whisker plots for each numerical attribute.

3 Write a program to Customize the plot with titles, axis labels, and grid lines.

4 Write a program to Display all box plots in a single figure.

3. Interpret the results .

Key Observations from Box Plots:

1. Median:

• The line inside the box represents the median (Q2), showing the central tendency of the

data.

• Example: If the median is closer to the bottom of the box, the data is skewed towards

higher values.

2. IQR (Box Height):

• The height of the box indicates the interquartile range (Q3 - Q1).

• Example: A taller box implies a wider spread of the middle 50% of the data.

3. Whiskers:

• Extend from Q1 to the smallest value within 1.5×IQR1.5 \times \text{IQR}1.5×IQR and

from Q3 to the largest value within 1.5×IQR1.5 \times \text{IQR}1.5×IQR.

• Example: Longer whiskers suggest data spread beyond the central range.

4. Outliers:

• Points outside the whiskers are potential outliers.

• Example: Outliers may indicate errors, rare events, or interesting deviations.

5. Skewness:

• If the median is not centered in the box, the data is skewed.

• Example: A left-skewed distribution has the median closer to Q3.

Customizing Box Plots

Page | 93

• You can customize the box plots for better analysis:

Grouped Box Plots:

import numpy as np

import pandas as pd

import seaborn as sns

Example numerical data

data = {

 'Attribute1': np.random.normal(50, 10, 100), # Normally distributed

 'Attribute2': np.random.uniform(30, 70, 100), # Uniformly distributed

}

df = pd.DataFrame(data)

import matplotlib.pyplot as plt

Adding a categorical column for grouping

df['Category'] = np.random.choice(['Group1', 'Group2'], size=100)

Grouped box plots

plt.figure(figsize=(8, 5))

sns.boxplot(data=df, x='Category', y='Attribute1', palette='muted')

plt.title('Grouped Box-and-Whisker Plot')

plt.xlabel('Category')

plt.ylabel('Attribute1 Values')

plt.tight_layout()

plt.show()

Output:

Page | 94

Horizontal Box Plots:

import numpy as np

import pandas as pd

import seaborn as sns

Example numerical data

data = {

 'Attribute1': np.random.normal(50, 10, 100), # Normally distributed

 'Attribute2': np.random.uniform(30, 70, 100), # Uniformly distributed

}

df = pd.DataFrame(data)

import matplotlib.pyplot as plt

Adding a categorical column for grouping

df['Category'] = np.random.choice(['Group1', 'Group2'], size=100)

Grouped box plots

plt.figure(figsize=(8, 5))

df.boxplot(vert=False)

plt.title('Horizontal Box-and-Whisker Plot')

plt.xlabel('Values')

plt.ylabel('Attributes')

plt.tight_layout()

plt.show()

Output:

Try:
1 Given a numerical dataset, how do you interpret measures of central tendency

(mean, median, mode) from the results

Page | 95

2 Given a dataset with significant uncertainty (e.g., missing data or noisy data), how

do you interpret the results of your analysis?

11. Handling outliers in the data.

Outliers are the observations in a dataset that deviate significantly from the rest of the data. In any

data science project, it is essential to identify and handle outliers, as they can have a significant

impact on many statistical methods, such as means, standard deviations, etc., and the performance

of ML models. Outliers can sometimes indicate errors or anomalies in the data.

1. Identify the outliers using quartile method.

• In statistics, any observations or data points that deviate significantly and do not conform with the

rest of the observation or data points in a dataset are called outliers. Outliers are extreme values in

a feature or dataset. For example, if you have a dataset with a feature height. The majority of the

values in this feature range between 4.5−6.5 feet, but there is one value with 10 feet. This value

would be considered an outlier, as it is not only an extreme value but an impossible height as well.

• Outliers are also called aberrations, abnormal points, anomalies, etc. It is essential to detect and

handle outliers in a dataset as it can have a significant impact on many statistical methods, such as

mean, variance, etc., and the performance of the ML models. It can lead to misleading, inconsistent,

and inaccurate results if they are not properly accounted for.

The quartile method identifies outliers based on the interquartile range (IQR):

Steps:

1. Compute Q1 (25th percentile) and Q3 (75th percentile).

2. Calculate the IQR: IQR=Q3−Q1.

3. Define lower and upper bounds:

4. Lower Bound=Q1−1.5×IQR

5. Upper Bound=Q3+1.5×IQR

6. Outliers are values outside these bounds.

Code Example:

import numpy as np

import pandas as pd

Example numerical data

data = {

 'Attribute': np.concatenate([np.random.normal(50, 10, 100), [150, 170]]) # Adding

outliers

Page | 96

}

df = pd.DataFrame(data)

Quartile method

Q1 = df['Attribute'].quantile(0.25)

Q3 = df['Attribute'].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

Identify outliers

outliers_quartile = df[(df['Attribute'] < lower_bound) | (df['Attribute'] > upper_bound)]

print("Outliers (Quartile Method):")

print(outliers_quartile)

Output:

Outliers (Quartile Method):

 Attribute

1 22.358335

100 150.000000

101 170.000000

Try:
1. Write a Python program to create a boxplot for a dataset and visually identify the outliers.

Use the Titanic dataset to identify outliers in the age column.

2. Write a Python program to identify outliers in the daily closing prices of stocks using the IQR

method. Use a dataset of historical stock prices for this analysis.

3. 3.Write a Python program to remove outliers from a dataset using the quartile method. Use

a dataset with numerical and categorical columns and ensure only numerical columns are

processed

Page | 97

2. Identify the outliers using standard deviation method.

The standard deviation method identifies outliers based on how far values deviate from the

mean:

Steps:

1. Compute the mean (μ\muμ) and standard deviation (σ\sigmaσ).

2. Define the thresholds:

a. Lower Bound=μ−k⋅σ

b. Upper Bound=μ+k⋅σ

c. Common k values are 2 or 3.

3. Outliers are values outside these bounds.

Code Example:

import numpy as np

import pandas as pd

Example numerical data

data = {

 'Attribute': np.concatenate([np.random.normal(50, 10, 100), [150, 170]]) # Adding

outliers

}

df = pd.DataFrame(data)

mean = df['Attribute'].mean()

std = df['Attribute'].std()

k = 3 # Using 3 standard deviations

lower_bound_sd = mean - k * std

upper_bound_sd = mean + k * std

Identify outliers

outliers_sd = df[(df['Attribute'] < lower_bound_sd) | (df['Attribute'] > upper_bound_sd)]

print("Outliers (Standard Deviation Method):")

print(outliers_sd)

Output:

Outliers (Standard Deviation Method):

 Attribute

100 150.0

101 170.0

Page | 98

Try:

1. Write a Python program to calculate the mean and standard deviation of a dataset and identify

outliers as data points more than 2 standard deviations away from the mean. Use a synthetic

dataset for demonstration.

2. Write a Python program to calculate the mean and standard deviation of a dataset before and

after removing outliers. Analyze the impact of outliers on these measures.

3. Write a Python program to create a data preprocessing pipeline that includes outlier detection

using the standard deviation method. Apply this pipeline to a dataset with mixed data types.

3. Compare the performance of two methods.

Comparison:

1. Quartile Method:

• Robust to skewed distributions.

• May fail for datasets with highly irregular distributions.

2. Standard Deviation Method:

• Assumes normality; less effective for skewed or non-normal data.

• More sensitive to extreme values in highly skewed datasets.

Code to Compare:

import numpy as np

import pandas as pd

Example numerical data

data = {

 'Attribute': np.concatenate([np.random.normal(50, 10, 100), [150, 170]]) # Adding

outliers

}

df = pd.DataFrame(data)

Quartile method

Q1 = df['Attribute'].quantile(0.25)

Page | 99

Q3 = df['Attribute'].quantile(0.75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR

upper_bound = Q3 + 1.5 * IQR

mean = df['Attribute'].mean()

std = df['Attribute'].std()

k = 3

Using 3 standard deviations

lower_bound_sd = mean - k * std

upper_bound_sd = mean + k * std

Identify outliers

outliers_quartile = df[(df['Attribute'] < lower_bound) | (df['Attribute'] > upper_bound)]

print("Outliers (Quartile Method):")

print(outliers_quartile)

Identify outliers

outliers_sd = df[(df['Attribute'] < lower_bound_sd) | (df['Attribute'] > upper_bound_sd)]

print("Outliers (Standard Deviation Method):")

print(outliers_sd)

Number of outliers identified

print("Number of Outliers (Quartile Method):", len(outliers_quartile))

print("Number of Outliers (Standard Deviation Method):", len(outliers_sd))

Output:

Outliers (Quartile Method):

 Attribute

0 86.167303

100 150.000000

101 170.000000

Outliers (Standard Deviation Method):

 Attribute

100 150.0

101 170.0

Number of Outliers (Quartile Method): 3

Number of Outliers (Standard Deviation Method): 2

Page | 100

Try:

1. Write a Python program to compute and visualize the overlap between outliers

detected by two methods. Use a Venn diagram to show the overlap.

2. .Write a Python program to create side-by-side boxplots to visualize the results of two

outlier detection methods. Compare the identified outliers visually.

4. Remove outliers from the data.

• This involves identifying and removing outliers from the dataset before training the

model. Common methods include:

o Thresholding: Outliers are identified as data points exceeding a certain threshold (e.g., Z-

score > 3).

o Distance-based methods: Outliers are identified based on their distance from their nearest

neighbors.

o Clustering: Outliers are identified as points not belonging to any cluster or belonging to

very small clusters.

Remove outliers from the dataset using the chosen method.

Code Example:

Removing outliers based on the Quartile Method

df_cleaned = df[(df['Attribute'] >= lower_bound) & (df['Attribute'] <= upper_bound)]

print("Data after Removing Outliers:")

print(df_cleaned.describe())

Output:

Outliers (Quartile Method):

 Attribute

100 150.0

101 170.0

Data after Removing Outliers:

 Attribute

count 100.000000

mean 49.821135

std 10.905372

min 27.573205

25% 42.710426

50% 49.927551

75% 57.236913

max 80.915658

Try:

1. Write a Python program to remove outliers from a dataset using the Z-score method. Use a

sales dataset to remove products with unusually high or low prices.

2. Write a Python program to remove outliers from a streaming dataset (e.g., real-time sensor

readings) using dynamic thresholds based on a rolling window.

3. Use a healthcare dataset to remove patients with abnormal values for metrics like blood

pressure or cholesterol. Discuss the potential impact on downstream analyses.

Page | 101

5. Interpret the results

Before Handling Outliers:

• The dataset contains extreme values that may distort statistical analyses, such as mean

and standard deviation.

After Removing Outliers:

• The dataset becomes more representative of the central trend.

• Statistical metrics like mean and standard deviation are less influenced by extreme values.

Summary

Aspect Quartile Method
Standard Deviation

Method

Assumptions
No assumptions on

distribution

Assumes normal

distribution

Robustness to Skewed

Data
More robust Less robust

Performance on Normal

Data
Good Very effective

Ease of Calculation Moderate Easy

Try:

1. Write a Python program to create boxplots or scatterplots before and after data

transformation. How do you interpret changes in the visual representation of data after

transformations like scaling or outlier removal.

2. After applying data preprocessing techniques like scaling, outlier removal, or normalization,

how do you validate the results to ensure they are meaningful and accurate.

12. Working with Data Tables.

3.

Data tables are powerful tools for organizing, analyzing, and visualizing data. They provide a structured

way to represent information, making it easier to understand, manipulate, and extract insights.

Here's a breakdown of key aspects of working with data tables:

1. Creating Data Tables

• Spreadsheet Software: Tools like Excel, Google Sheets, and LibreOffice Calc offer built-in

features for creating and managing data tables.

• Programming Languages:

o Python: Libraries like pandas are widely used for creating, manipulating, and

analyzing data tables (DataFrames).

o SQL: Used for managing and querying data stored in relational databases.

2. Data Table Structure

• Rows and Columns: Data tables consist of rows and columns.

o Rows represent individual data points or observations.

o Columns represent specific attributes or variables.

• Headers: Column headers provide labels for the data in each column.

3. Data Types

Page | 102

• Numerical: Numbers (integers, floats)

• Categorical: Textual values representing categories (e.g., colors, countries)

• Boolean: True/False values

• Date/Time: Timestamps or dates

4. Key Operations

Data Entry: Manually entering data or importing data from external sources (CSV files, databases).

• Data Cleaning:

o Handling missing values (imputation, removal)

o Removing duplicates

o Correcting errors

• Data Transformation:

o Filtering data based on conditions

o Sorting data by specific columns

o Grouping data and calculating summary statistics (e.g., mean, median, sum)

o Creating new columns based on existing ones (e.g., calculations, transformations)

• Data Analysis:

o Performing statistical analyses (e.g., regression, hypothesis testing)

o Creating visualizations (charts, graphs) to explore and understand data patterns.

1. Joining the data tables.

In pandas, joining data tables involves merging or concatenating two or more tables based on a

common key or index. There are different types of joins, including inner, outer, left, and right joins.

Types of joins:

• Inner Join: Only includes matching rows from both tables.

• Outer Join: Includes all rows from both tables, filling in missing values with NaN.

• Left Join: Includes all rows from the left table and only matching rows from the right table.

• Right Join: Includes all rows from the right table and only matching rows from the left table.

Example:

import pandas as pd

Create two data tables (dataframes)

df1 = pd.DataFrame({

 'ID': [1, 2, 3, 4],

 'Name': ['Alice', 'Bob', 'Charlie', 'David']

})

df2 = pd.DataFrame({

 'ID': [3, 4, 5, 6],

 'Age': [25, 30, 35, 40]

})

Inner Join (only matching rows)

joined_df = pd.merge(df1, df2, on='ID', how='inner')

print(joined_df)

Output:

ID Name Age

0 3 Charlie 25

1 4 David 30

Try:

Page | 103

1. Write a Python program to perform a self-join on a table. Use an example dataset of

employees and their managers to demonstrate how to retrieve hierarchical relationships.

2. Write a Python program to join two large CSV files in chunks using pandas.

3. Write a Python program to join two time-series datasets based on their timestamps.

2. Exercises on contingency tables.

A contingency table (also known as a cross-tabulation) is used to display the frequency

distribution of variables. It helps examine the relationship between two categorical variables.

A contingency table provides a way of portraying data that can facilitate calculating probabilities.

The table helps in determining conditional probabilities quite easily. The table displays sample

values in relation to two different variables that may be dependent or contingent on one another.

Example:

import pandas as pd

Example data

data = {'Gender': ['Male', 'Female', 'Male', 'Female', 'Male'],

 'Purchased': ['Yes', 'No', 'Yes', 'Yes', 'No']}

df = pd.DataFrame(data)

Create a contingency table (cross-tabulation)

contingency_table = pd.crosstab(df['Gender'], df['Purchased'])

print(contingency_table)

Output:

Purchased No Yes

Gender

Female 1 1

Male 1 2

This creates a table that shows the frequency of each combination of gender and purchase status.

Try:

1. Write a Python program to create a contingency table from a dataset. Use the Titanic dataset

to display the counts of survivors and non-survivors by gender.

2. Create a contingency table showing the relationship between two categorical variables and

compute its marginal totals.

3. 3.Write a Python program to perform a Chi-Square test of independence on a contingency

table. Use a dataset to test whether gender and purchase decision are independent variables.

3. Exercises on grouping data.

In pandas, you can group data by one or more columns and perform operations like summing,

averaging, or counting the grouped data.

Example:

import pandas as pd

Sample data

data = {'Category': ['A', 'B', 'A', 'B', 'A', 'B'],

 'Value': [10, 20, 30, 40, 50, 60]}

Page | 104

df = pd.DataFrame(data)

Group by 'Category' and calculate the sum of 'Value'

grouped_df = df.groupby('Category')['Value'].sum()

print(grouped_df)

Output:

Category

A 90

B 120

Name: Value, dtype: int64

Try:

1. Write a Python program to group data by a single column and compute the mean of another

column. Use the Titanic dataset to calculate the average age of passengers grouped by their

class.

2. Write a Python program to group data by multiple columns. Use a dataset to find the total

revenue for each combination of product category and region.

3. 3.Write a Python program to rank items within each group. Use a dataset to rank employees

by their sales performance within each department

13. Data Scaling and Transformation.

4.

Data scaling and transformation are essential preprocessing techniques in machine learning to

ensure that your data is in a suitable format for analysis and modeling. These methods address

issues like varying scales, skewed distributions, and outliers, which can significantly impact the

performance of your machine learning models.

A. Scaling the data using different Python scalers.

Step 1:Import necessary libraries:

o pandas for data manipulation.

o StandardScaler, MinMaxScaler, RobustScaler from sklearn.preprocessing for different

scaling methods.

Step 2:Create sample data:

o Create a sample DataFrame with two columns: 'Age' and 'Income'.

Step 3:StandardScaler:

o Creates a StandardScaler object.

o fit_transform() calculates the mean and standard deviation of the data and transforms

the data to have zero mean and unit variance.

 import pandas as pd

 from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler

 # Sample data (replace with your actual data)

 data = {'Age': [25, 30, 45, 22, 18],

 'Income': [50000, 70000, 120000, 45000, 30000]}

 df = pd.DataFrame(data)

 # 1. StandardScaler (Standardization)

 scaler = StandardScaler()

 df_standardized = df.copy()

 df_standardized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

 # 2. MinMaxScaler (Normalization)

 scaler = MinMaxScaler()

 df_normalized = df.copy()

 df_normalized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

Page | 105

 # 3. RobustScaler (Robust to outliers)

 scaler = RobustScaler()

 df_robust = df.copy()

 df_robust[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

 # Print scaled dataframes

 print("Standardized Data:\n", df_standardized)

 print("\nNormalized Data:\n", df_normalized)

 print("\nRobust Scaled Data:\n", df_robust)

2. MinMaxScaler:

• Creates a MinMaxScaler object.

• fit_transform() scales the data to a specific range (usually 0 to 1).

3. RobustScaler:

• Creates a RobustScaler object.

• fit_transform() is less sensitive to outliers compared to StandardScaler. It uses the median

and interquartile range for scaling.

4. Print scaled dataframes:

• Prints the original and scaled dataframes for each scaling method.

Key Points:

Step 4:Choose the appropriate scaler:

• StandardScaler: Suitable for many cases, especially when the data is normally distributed.

• MinMaxScaler: Useful when you need to scale data to a specific range (e.g., for neural

networks).

• RobustScaler: More robust to outliers than StandardScaler.

Apply scaling to relevant features:

• Typically, you would scale only the numerical features in your dataset.

Fit and transform:

• fit_transform() calculates the scaling parameters (e.g., mean, standard deviation) from the

training data and applies the transformation.

• Use fit_transform() on the training data and transform() on the test data to ensure consistency.

Try:

1. Write a Python program to demonstrate how to scale a dataset using the MinMaxScaler from

the sklearn.preprocessing module.

2. .Write a Python program to compare the effects of different scalers, including StandardScaler,

MinMaxScaler, MaxAbsScaler, and RobustScaler, on a synthetic dataset with outliers. Visualize

the scaled results using box plots.

b. Normalization as a special case of data scaling.
Step 1: Import necessary libraries:

• pandas for data manipulation.

• MinMaxScaler from sklearn.preprocessing for normalization.

Step 2: Create sample data:

• Create a sample DataFrame with two columns: 'Age' and 'Income'.

Step 3 Create a MinMaxScaler object:

• MinMaxScaler() creates an object that will scale the data to a specific range (default: 0 to 1).

Page | 106

Step 4: Fit and transform the data:

• scaler.fit_transform(df[['Age', 'Income']]) calculates the minimum and maximum values of the

'Age' and 'Income' columns and then scales the data to the range 0 to 1 using the following

formula:

• X_scaled = (X - X_min) / (X_max - X_min)

• The scaled values are then assigned back to the corresponding columns in the df_normalized

DataFrame.

Step 5:Print the normalized data:

• Print the resulting DataFrame with the normalized values.

Step 6:Sample Code

 import pandas as pd

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler

Sample data (replace with your actual data)

data = {'Age': [25, 30, 45, 22, 18],

'Income': [50000, 70000, 120000, 45000, 30000]}

df = pd.DataFrame(data)

1. StandardScaler (Standardization)

scaler = StandardScaler()

df_standardized = df.copy()

df_standardized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

2. MinMaxScaler (Normalization)

scaler = MinMaxScaler()

df_normalized = df.copy()

df_normalized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

3. RobustScaler (Robust to outliers)

scaler = RobustScaler()

df_robust = df.copy()

df_robust[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

Print scaled dataframes

print("Standardized Data:\n", df_standardized)

print("\nNormalized Data:\n", df_normalized)

print("\nRobust Scaled Data:\n", df_robust)

Note:

• Normalization scales the data to a specific range (typically 0 to 1), making all features have the

same scale.

• MinMaxScaler is a common technique for normalization in machine learning.

• Normalization is useful when:

o You want to ensure all features have the same influence on the model.

o You are using algorithms that are sensitive to feature scaling (e.g., some neural network

algorithms).

Try:

1. What is normalization, and how does it differ from other data scaling techniques? Write a

Python program to normalize a dataset using the MinMaxScaler and demonstrate how the

transformed data lies within t he range [0, 1].

Page | 107

2. Write a Python program to demonstrate the impact of normalization on the performance of a

KNN classifier using the Iris dataset.

3. .Write a Python program to normalize the MNIST dataset's pixel values to the range [0, 1] and

train a simple neural network using TensorFlow or PyTorch

C. Data transformation using standardization.
Step 1:import necessary libraries:

• pandas for data manipulation.

• StandardScaler from sklearn.preprocessing for standardization.

Step 2: Create sample data:

• Create a sample DataFrame with two columns: 'Age' and 'Income'.

Step 3: Create a StandardScaler object:

• StandardScaler() creates an object that will standardize the data.

Step 4: Fit and transform the data:

• scaler.fit_transform(df[['Age', 'Income']]) calculates the mean and standard deviation of the

'Age' and 'Income' columns and then standardizes the data using the following formula:

• z = (x - mean) / standard_deviation

• The standardized values (z-scores) have a mean of 0 and a standard deviation of 1.

• The scaled values are then assigned back to the corresponding columns in the df_standardized

DataFrame.

Step 5: Print the standardized data:

• Print the resulting DataFrame with the standardized values.

import pandas as pd

from sklearn.preprocessing import StandardScaler

Sample data

data = {'Age': [25, 30, 45, 22, 18],

 'Income': [50000, 70000, 120000, 45000, 30000]}

df = pd.DataFrame(data)

Create a StandardScaler object

scaler = StandardScaler()

Fit and transform the data

df_standardized = df.copy()

df_standardized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']])

Print the standardized data

print("Standardized Data:\n", df_standardized)

Note:

• Standardization transforms the data to have zero mean and unit variance, making it easier for

machine learning algorithms to work with.

• It's particularly useful when features have different scales or when algorithms are sensitive to

feature scaling.

• Standardization is often used in conjunction with algorithms like Support Vector Machines

(SVM) and linear regression.

Try:

1. Write a program to standardize a dataset manually using the formula Z=X−μσ

Page | 108

2. Write a function to standardize a dataset manually without using external libraries. Apply the

function to a synthetic dataset and verify its correctness by comparing it to the StandardScaler

from sklearn.preprocessing.

D. Compare the results and interpret.

Step 1:Import necessary libraries:

 pandas for data manipulation.

StandardScaler, MinMaxScaler, RobustScaler from sklearn.preprocessing for different scaling

methods.

Step 2:Create sample data:

Create a sample DataFrame with two columns: 'Age' and 'Income'.

Step 3:Create scaler objects:

Create instances of StandardScaler, MinMaxScaler, and RobustScaler.

Step 4:Scale the data:

Apply fit_transform() to each scaler to scale the data.

Step 5:Compare and interpret results:

Print the original and scaled DataFrames.

Calculate and print summary statistics (mean, standard deviation, min, max, quartiles) for each

DataFrame.

import pandas as pd

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler

Sample data

data = {'Age': [25, 30, 45, 22, 18],

 'Income': [50000, 70000, 120000, 45000, 30000]}

df = pd.DataFrame(data)

Create scaler objects

standard_scaler = StandardScaler()

min_max_scaler = MinMaxScaler()

robust_scaler = RobustScaler()

Scale the data

df_standardized = df.copy()

df_standardized[['Age', 'Income']] = standard_scaler.fit_transform(df[['Age', 'Income']])

df_normalized = df.copy()

df_normalized[['Age', 'Income']] = min_max_scaler.fit_transform(df[['Age', 'Income']])

df_robust = df.copy()

df_robust[['Age', 'Income']] = robust_scaler.fit_transform(df[['Age', 'Income']])

Compare and interpret results

print("Original Data:\n", df)

print("\nStandardized Data:\n", df_standardized)

print("\nNormalized Data:\n", df_normalized)

print("\nRobust Scaled Data:\n", df_robust)

Calculate and print summary statistics

print("\nSummary Statistics:")

print("Original Data:\n", df.describe())

print("\nStandardized Data:\n", df_standardized.describe())

print("\nNormalized Data:\n", df_normalized.describe())

print("\nRobust Scaled Data:\n", df_robust.describe())

Step 5:Interpretation:

Standardized Data:

Mean is close to 0.

Standard deviation is 1.

Page | 109

Data is centered around 0, making it suitable for algorithms that assume zero mean.

Step 6:Normalized Data:

Values are scaled between 0 and 1.

Useful for algorithms that require input features to be within a specific range.

Step 6:Robust Scaled Data:

Less sensitive to outliers compared to StandardScaler.

Uses median and interquartile range for scaling.

Try:

1. Train a Support Vector Machine (SVM) classifier on the Iris dataset without standardizing the

features. Then, standardize the dataset using StandardScaler and train the classifier again.

Compare the accuracy scores and interpret the results.

2. Write a custom function to standardize a dataset and compare the results with StandardScaler

from sklearn.preprocessing. Interpret any differences and discuss the implications of using

custom scaling methods.

14. Web Scrapping.

5.

Web scraping, also known as web harvesting or web data extraction, is the process of automatically

collecting and extracting data from websites. It involves using software or scripts to access the

HTML code of a website and extract the desired information.

a. Scraping a list of items from a website.

 Python example demonstrating how to scrape a list of items from a website, along with

explanations:

Step 1: Import necessary libraries:

import requests

from bs4 import BeautifulSoup

• requests: This library allows you to fetch the HTML content of a webpage.

• BeautifulSoup: This library helps you parse the HTML content and extract specific data.

Step 2: Fetch the webpage content:

url = "https://www.example.com" # Replace with the actual URL

response = requests.get(url)

response.raise_for_status() # Raise an exception for bad status codes

soup = BeautifulSoup(response.content, "html.parser")

• Replace "https://www.example.com" with the URL of the website you want to scrape.

• requests.get(url) fetches the HTML content of the webpage.

• response.raise_for_status() checks if the request was successful (status code 200).

• BeautifulSoup(response.content, "html.parser") parses the HTML content using the

html.parser.

Step 3:Find the elements containing the desired data:

items = soup.find_all("div", class_="item-container") # Replace with the appropriate HTML tags

and attributes

• soup.find_all("div", class_="item-container") finds all <div> tags with the class "item-

container" in the HTML. You need to inspect the HTML source of the webpage to determine

the correct tags and attributes for finding the items you want to scrape.

Step 4: Extract the desired information from each item:

for item in items:

 name = item.find("h3", class_="item-name").text.strip()

Page | 110

 price = item.find("span", class_="item-price").text.strip()

 # Extract other relevant information (e.g., description, image URL)

 print(f"Name: {name}")

 print(f"Price: {price}")

 # Print other extracted information

 print("-" * 20)

• This code iterates through each item found in the previous step.

• item.find("h3", class_="item-name").text.strip() finds the <h3> tag with the class "item-name"

within each item and extracts its text content, removing any leading/trailing whitespace.

• Similarly, item.find("span", class_="item-price").text.strip() extracts the price.

• You can adjust the code to extract other relevant information from each item by finding the

corresponding HTML tags and attributes.

• The code then prints the extracted information.

Total program

import requests

from bs4 import BeautifulSoup

url = "https://www.example.com" # Replace with the actual URL

response = requests.get(url)

response.raise_for_status()

soup = BeautifulSoup(response.content, "html.parser")

items = soup.find_all("div", class_="item-container")

for item in items:

 name = item.find("h3", class_="item-name").text.strip()

 price = item.find("span", class_="item-price").text.strip()

 print(f"Name: {name}")

 print(f"Price: {price}")

 print("-" * 20)

Note:

• This is a basic example. You may need to adapt it based on the specific structure of the website

you're scraping.

• Always check the website's terms of service before scraping. Some websites may prohibit or

restrict scraping.

• Consider using a library like scrapy for more advanced web scraping tasks, which provides

features like data pipelines, handling JavaScript, and more.

This example provides a foundation for scraping a list of items from a website. Remember to

inspect the HTML source of the target website carefully to identify the correct HTML elements and

attributes for extracting the desired data.

Try:

1. Write a Python program to scrape a list of product names, prices, and URLs from an e-

commerce website. https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-

21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone=&hvptwo=&hvadid=6106446011

73&hvpos=&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl=&hvl

ocint=&hvlocphy= 9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415.

2. Write a program to scrape a List of Job Openings from a Job Search Website.

https://www.naukri.com/engineering-jobs?src=discovery_trendingWdgt_homepage_srch.

3. Write a program to scrape a List of Books from an Online Bookstore

https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.naukri.com/engineering-jobs?src=discovery_trendingWdgt_homepage_srch

Page | 111

https://www.bookswagon.com/.

b. Scraping data from a table.

Step 1: Import necessary libraries:

• requests: To fetch the HTML content from the URL.

• BeautifulSoup: To parse the HTML and extract the table data.

Step 2: Define the scrape_table_data function:

• This function takes the URL of the webpage as input.

• It fetches the HTML content using requests.get(url).

• It checks for successful response using response.raise_for_status().

• It parses the HTML content using BeautifulSoup.

• It finds the first <table> tag on the page using soup.find('table').

• If a table is found:

• It extracts all table rows (<tr>) using table.find_all('tr').

• It iterates through each row:

• Extracts all table cells (<td>) within the row using row.find_all('td').

• Extracts the text content of each cell, strips whitespace, and stores it in a list.

• Appends the list of cell data to the data list.

• Returns the data list containing all rows of the table.

• If no table is found, it prints an error message and returns None.

• Includes error handling for potential requests.exceptions.RequestException.

Step 3: Usage of code:

• Sets the url to the actual URL of the webpage containing the table.

• Calls the scrape_table_data() function to get the table data.

• If data is successfully extracted, it iterates through each row and prints it.

Key Points:

• HTML Structure: This code assumes a basic HTML table structure with rows (<tr>) and

cells (<td>). Adjust the code if the table structure is different.

• Error Handling: Includes basic error handling for network issues or if the table is not found

on the page.

• Flexibility: You can modify the code to extract data from specific columns, handle different

table structures, or handle more complex scenarios.

import requests

from bs4 import BeautifulSoup

def scrape_table_data(url):

"""

Scrapes data from an HTML table given the URL.

Args:

url: The URL of the webpage containing the table.

https://www.bookswagon.com/

Page | 112

Returns:

A list of lists, where each inner list represents a row of data.

"""

try:

response = requests.get(url)

response.raise_for_status() # Raise an exception for bad status codes

soup = BeautifulSoup(response.content, "html.parser")

table = soup.find('table') # Find the first table on the page

if table:

rows = table.find_all('tr')

data = []

for row in rows:

cols = row.find_all('td') # Extract data from table cells (<td>)

row_data = [col.text.strip() for col in cols]

data.append(row_data)

return data

else:

print("No table found on the page.")

return None

except requests.exceptions.RequestException as e:

print(f"Error fetching URL: {e}")

return None

Example usage:

url = "https://example.com/table_page.html" # Replace with the actual URL

table_data = scrape_table_data(url)

if table_data:

for row in table_data:

print(row)

To use this code:

• Replace "https://example.com/table_page.html" with the actual URL of the webpage you

want to scrape.

• Run the Python script.

• This will print the extracted table data to the console. You can then further process this data

as needed (e.g., save it to a file, perform calculations, etc.).

Try:

1. Write a program to scrape data from a table on Doctors Without Borders (Médecins Sans

Frontières - MSF) www.msf.org website.

2. Write a program to scrape a Table with Headers on the above Doctors Without Borders

website.

3. Write a program to scrape a Table with Pagination on an above Doctors Without Borders

website.

C. Scraping images from a website.

 The step-by-step guide to scraping images from a website using Python:

Step 1. Import necessary libraries:

import requests

from bs4 import BeautifulSoup

import os

• requests: To fetch the HTML content from the URL.

http://www.msf.org/

Page | 113

• BeautifulSoup: To parse the HTML and extract image URLs.

• os: To create filenames and handle file paths.

Step 2. Define the scrape_images function:

def scrape_images(url, save_dir="images"):

 """

 Scrapes images from a given URL and saves them to a specified directory

 Args:

 url: The URL of the webpage to scrape.

 save_dir: The directory to save the downloaded images (default: "images").

 """

 try:

 response = requests.get(url)

 response.raise_for_status() # Raise an exception for bad status codes

 soup = BeautifulSoup(response.content, "html.parser")

 images = soup.find_all("img")

 if not os.path.exists(save_dir):

 os.makedirs(save_dir)

 for i, image in enumerate(images):

 try:

 img_url = image["src"]

 img_data = requests.get(img_url).content

 img_name = f"image_{i}.jpg" # Customize filename as needed

 img_path = os.path.join(save_dir, img_name)

 with open(img_path, "wb") as handler:

 handler.write(img_data)

 print(f"Downloaded {img_name} to {save_dir}")

 except Exception as e:

 print(f"Error downloading image: {e}")

 except requests.exceptions.RequestException as e:

 print(f"Error fetching URL: {e}")

• This function takes the URL and an optional save_dir as input.

• Fetches the HTML content using requests.get(url).

• Parses the HTML content using BeautifulSoup.

• Finds all tags on the page using soup.find_all("img").

• Creates the save_dir if it doesn't exist.

• Iterates through each image:

• Extracts the src attribute (image URL) using image["src"].

• Fetches the image data using requests.get(img_url).content.

• Creates a filename for the image (e.g., image_{i}.jpg).

• Creates the full path to the image file.

Page | 114

• Saves the image data to the file.

• Prints a success message.

• Includes error handling for potential exceptions during image download.

• Includes error handling for potential exceptions during URL fetching.

Step 3:Usage of code

url = "https://www.example.com"

Replace with the actual URL

scrape_images(url)

• Sets the url to the actual URL of the webpage containing the images.

• Calls the scrape_images() function to start scraping.

Notes:

• HTML Structure: This code assumes the image URLs are stored in the src attribute of the

tag. Adjust the code if the HTML structure is different.

• Error Handling: Includes basic error handling for network issues, image download failures, and

invalid image URLs.

• Filename Customization: Customize the filename generation logic as needed.

• Image Types: This code assumes JPG format. Modify for other formats.

• Directory Creation: Creates the save_dir if it doesn't exist.

• Website Terms: Always check website terms and robots.txt.

• Dynamic Loading: If images load dynamically, use Selenium or similar tools.

To use this code:

1. Replace "https://www.example.com" with the actual URL.

2. Run the Python script.

This will download the images to the specified directory (or "images" by default).

Try:

1. Write a program to scrape Images from a Gallery on the Doctors Without Borders

www.msf.org website.

2. Write a program to scrape Images from a Search Results Page as www.msf.org website.

d. Scraping data with pagination.
The step-by-step guide on scraping data with pagination in Python, along with an example code:

Step 1: Import necessary libraries:

import requests

from bs4 import BeautifulSoup

• requests: Fetches HTML content from URLs.

• BeautifulSoup: Parses HTML content to extract data.

Step 2: Identify Pagination Mechanism:

• Inspect the website's HTML code to understand how pagination works.

http://www.msf.org/
http://www.msf.org/

Page | 115

• Look for patterns in URLs or HTML elements that change with different pages.

Step 3:Define the scrape_page function:

def scrape_page(url):

 """

 Scrapes data from a single page of a website.

Args:

 url: The URL of the page to scrape.

Returns:

 A list of extracted data (e.g., dictionaries, lists) or None if no data found.

 """

 try:

 response = requests.get(url)

 response.raise_for_status()

 soup = BeautifulSoup(response.content, "html.parser")

 # Extract data from the current page (replace with your specific logic)

 data = []

 # ... (your data extraction logic)

 return data

 except requests.exceptions.RequestException as e:

 print(f"Error fetching URL: {e}")

 return None

• This function takes a url as input.

• Fetches the HTML content using requests.get(url).

• Parses the HTML content using BeautifulSoup.

• Replace the # ... (your data extraction logic) comment with your code to extract relevant

data from the page.

• Returns the extracted data (data) or None if an error occurs or no data is found.

Steo 4. Define the scrape_all_pages function:

def scrape_all_pages(base_url, pagination_param="page", start_page=1, end_page=None):

 """

 Scrapes data from all pages of a website using pagination.

 Args:

 base_url: The base URL of the pagination links (e.g., "https://example.com/products?").

 pagination_param: The query parameter used for pagination (e.g., "page").

 start_page: The starting page number (default: 1).

 end_page: The ending page number (default: None, scrape all pages).

 Returns:

 A list of all extracted data from all pages.

 """

 all_data = []

 for page_num in range(start_page, end_page + 1 if end_page else 1000): # Adjust max pages

 url = f"{base_url}{pagination_param}={page_num}"

 page_data = scrape_page(url)

 if page_data:

 all_data.extend(page_data) # Add data from each page

 else:

 break # Stop if no data found on a page (potential end of pagination)

Page | 116

 return all_data

• This function takes the base_url, pagination_param, start_page, and end_page as input.

• Iterates through a range of page numbers (default: 1 to 1000, adjust as needed).

• Constructs the URL for each page using the base_url and pagination_param.

• Calls scrape_page(url) to extract data from each page.

• Appends the extracted data from each page to the all_data list.

• Stops iterating if no data is found on a page (indicating the end of pagination).

• Returns the list of all extracted data from all pages.

5. Usage of code:

base_url = "https://www.example.com/products?" # Replace with actual base URL

pagination_param = "page" # Replace if pagination uses a different parameter

start_page = 1 # Optional, start from a specific page

end_page = 5 # Optional, scrape only up to a certain page

all_data = scrape_all_pages(base_url, pagination_param, start_page, end_page)

if all_data:

 # Process the scraped data (e.g., print, save to file, etc.)

 for item in all_data:

 print(item) # Example: Print each item

else:

 print("No data found”)

Try:

1 Write a program to scrape data with pagination from a website involves navigating

through multiple pages to collect all the desired information.

2 Write a program to scrape Images from a Search Results Page as www.msf.org website.

V. TEXTBOOKS

1. R. Nageswara Rao, “Core Python Programming, 3ed: Covers fundamentals to advanced topics

like OOPS, Exceptions, Data structures, Files, Threads, Net”, Dreamtech press, 3rd edition,

2021.

2. Eric Jacqueline Kazil & Katharine Jarmul,” Data Wrangling with Python”, O’Reilly Media, Inc,

2016.

VI. REFERENCE BOOKS:

1. Dr. Tirthajyoti Sarkar, Shubhadeep,” Data Wrangling with Python: Creating actionable data from

raw sources”, Packet Publishing Ltd, 2019.

2. Making sense of Data: A practical Guide to Exploratory Data Analysis and Data Mining, by Glenn

J. Myatt.

3. Wes McKinney, “Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython”,

O’Reilly, 2nd Edition, 2018.

4. Dr. John P. Hoffmann, “Principles of Data Management and Presentation”, 1st edition, 2017.

5. Jake VanderPlas, “Python Data Science Handbook: Essential Tools for Working with Data”,

O’Reilly, 2017.

6. Y. Daniel Liang, “Introduction to Programming using Python”, Pearson, 2012.

Page | 117

VIII. ELECTRONIC RESOURCES

1. https://www.dataquest.io/blog/sci-kit-learn-tutorial/

2. https://www.ibm.com/support/knowledgecenter/en/SS3RA7_sub/modeler_tutorial_ddita/modeler

_tutorial_ddita-gentopic1.html

3. https://archive.ics.uci.edu/ml/datasets.php

4. https://www.edx.org/course/analyzing-data-with-python

5. http://math.ecnu.edu.cn/~lfzhou/seminar/[Joel_Grus]_Data_Science_from_Scratch_First_Princ.pd

f

6. https://www.programmer-books.com/introducing-data-science-pdf/

VIII. MATERIALS ONLINE

1. Course template

2. Lab Manual

https://www.dataquest.io/blog/sci-kit-learn-tutorial/
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_sub/modeler_tutorial_ddita/modeler_tutorial_ddita-gentopic1.html
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_sub/modeler_tutorial_ddita/modeler_tutorial_ddita-gentopic1.html
https://archive.ics.uci.edu/ml/datasets.php
https://www.edx.org/course/analyzing-data-with-python
http://math.ecnu.edu.cn/~lfzhou/seminar/%5bJoel_Grus%5d_Data_Science_from_Scratch_First_Princ.pdf
http://math.ecnu.edu.cn/~lfzhou/seminar/%5bJoel_Grus%5d_Data_Science_from_Scratch_First_Princ.pdf
https://www.programmer-books.com/introducing-data-science-pdf/

