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COURSE CONTENT 

 

DATA HANDLING AND VISUALIZATION LABORATORY 

IV Semester: CSE (DS)  

Course Code Category Hours / Week Credits  

Maximum Marks 

ACDD04 Core 
L T P C CIA SEE Total 

0 0 2 1 40 60 100 

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45 

Prerequisites: Python Programming 

I. COURSE OVERVIEW: 

Data handling is the process of collecting, organizing, and presenting the data in a way to analyse, make 

predictions, draw conclusions, and make decisions. Data visualization is a part of exploratory data 

analysis, a prior step before a full-pledged data analysis. This laboratory course is intended to offer 

practical knowledge and skills in both data handling and visualization. In this laboratory, python 

packages such as NumPy, SciPy and Pandas used for computations, and the visualization packages such 

as seaborn and matplotlib are practiced. Hands-on exercises are designed to explore the basic data 

importing, exploration, visualization, preliminary data analysis and data exporting techniques using 

core python and its packages. The expertise gained in this laboratory lays foundation for detailed data 

analysis that involves data modelling, analysis, evaluation and mining in scientific and engineering 

domains. 

 

II. COURSE OBJECTIVES 

The students will try to learn:  

I. Installation and usage of python packages useful for data exploration and visualization.  

II. Data handling using python in practice.  

III. The practical knowledge of data visualization capabilities of python packages.  

 

III. COURSE OUTCOMES 

At the end of the course students should be able to: 

 

CO 1 Tabulate the data from the CSV, XLS, TXT and JSON files as data frames and export the 

data frame to files. 

CO 2 Make use of imputation techniques for wrangling the data using pandas package. 

CO 3 Create the python dataframes to form pivot tables and contingency tables. 

CO 4 Manipulate the tabular data by joining multiple dataframes using pandas package. 

CO 5 Explore the data using the data visualization techniques in python environment. 

CO 6 Analyze the data for outliers to data trimming the data required for an authentic data analysis 

in python environment. 
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IV. COURSE CONTENT 

DATA HANDLING AND VISUALIZATION LABORATORY (ACDD04) 
CONTENTS 

 

S No. Topic Name Page No. 

1 Installation of python and related packages 4-18 

 a. Install python, and packages; NumPy, SciPy and Panda.  

 b. Study matrix operations: rank, inverse, condition number  

 c. Solving for simultaneous equations in 3 or 4 variables.  

2 Working with CSV files and XLS files. 19-32 

 a. Save a List to CSV, XLSX and TXT files.  

 b. Save a Dictionary to CSV, XLSX and TXT files.  

 c. Load data from CSV, XLSX and TXT pandas to a List.  

 d. Load data from CSV, XLSX and TXT pandas to a Dictionary.  

3 Basic operations on Dataframe. 33-36 

 a. Attribute filtering based on conditions.  

 b. Attribute filtering based on slicing.  

 c. Attribute filtering based on queries.  

4 Summary Statistics of the data 37-46 

 a. Compute ranking statistics of the data.  

 b. Compute statistical averages of numerical attributes.  

 c. Compute statistical ratios of numerical attributes.  

 d. Interpret the results.  

5 Handling Missing Values 47-58 

 a. Drop the rows containing missing values  

 b. Impute missing values with statistical averages.  

 c. Impute missing values using linear interpolation.  

 d. Interpret the results.  

6 Handling Time series data. 59-69 

 a. Display the date and time information in different formats.  

 b. Generate summary statistics during a period.  

 c. Compute rolling mean and rolling std deviations and plot.  

7 Visualization of categorial data 70-79 

 a. Plot categorical data as vertical and horizontal bar charts and label it.  

 b. Plot categorical data as vertical grouped bar chart and label it.  

 c. Plot categorical data as vertical stacked bar chart and label it.  

 d. Interpret the results.  
8 Visualization of correlations. 80-91 

 a. Plot the pair wise scatter plots of numerical attributes  

 b. Identify the type of correlations.  

 c. Interpret the results.  
9 Visualization of distributions 92-96 

 a. Plot the histograms of numerical data.  
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 b. Plot the counts of categorial data.  

 c. Plot the data distributions (or densities).  

 d. Interpret the results.  
10 Visualization using box-and-whisker plots. 97-102 

 a. Compute the rank statistics of numerical attributes.  

 b. Create the box-and-whisker plots of numerical attributes.  

 c. Interpret the results.  
11 Handling outliers in the data. 103-109 

 a. Identify the outliers using quartile method.  

 b. Identify the outliers using standard deviation method.  

 c. Compare the performance of two methods.  

 d. Remove outliers from the data.  

 e. Interpret the results.  
12 Working with Data Tables. 110-112 

 a. Joining the data tables.  

 b. Exercises on contingency tables  

 c. Exercises on grouping data.  
13 Data Scaling and Transformation. 113-118 

 a. Scaling the data using different python scalers.  

 b. Normalization as a special case of data scaling.  

 c. Data transformation using standardization.  

 d. Compare the results and interpret.  
14 Web Scraping. 119-126 

 a. Scraping a list of items from a website.  

 b. Scraping data from a table.  

 c. Scraping images from a website.  

 d. Scraping data with pagination.  
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V. SYLLABUS: 

 

EXERCISES FOR DATA HANDLING AND VISUALIZATION 
LABORATORY  

Note: Students are encouraged to bring their own laptops for laboratory 

practice sessions. 

Getting Started Exercises 

1. Installation of python and related packages  

a. Install python, and packages: NumPy, Panda and SciPy. 
 

To install Python and the packages NumPy, SciPy, and Pandas, follow these steps: 

Install Python: 

To install Python on a Windows system, you can:  

Step 1: Select Version to Install Python 

Visit the official page for Python https://www.python.org/downloads/ on the Windows operating 

system. Locate a reliable version of Python 3, preferably version 3.10.11, which was used in testing 

this tutorial. Choose the correct link for your device from the options provided: either Windows 

installer (64-bit) or Windows installer (32-bit) and proceed to download the executable file. 

 

 

Step 2: Downloading the Python Installer 

Once you have downloaded the installer, open the .exe file, such as python-3.10.11-amd64.exe, 

by double-clicking it to launch the Python installer. Choose the option to Install the launcher for 

all users by checking the corresponding checkbox, so that all users of the computer can access the 

Python launcher application. Enable users to run Python from the command line by checking the 

Add python.exe to PATH checkbox. 
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After Clicking the Install Now Button the setup will start installing Python on your Windows 

system. You will see a window like this. 

 

Step 3: Running the Executable Installer 

After completing the setup. Python will be installed on your Windows system. You will see a 

successful message. 

 

 

Step 4:  Verify the Python Installation in Windows 

Close the window after successful installation of Python. You can check if the installation of Python 
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was successful by using either the command line or the Integrated Development Environment 

(IDLE), which you may have installed. To access the command line, click on the Start menu and 

type “cmd” in the search bar. Then click on Command Prompt. 

python --version 

 

 

You can also check the version of Python by opening the IDLE application. Go to Start and enter 

IDLE in the search bar and then click the IDLE app, for example, IDLE (Python 3.10.11 64-bit). If 

you can see the Python IDLE window then you are successfully able to download and installed 

Python on Windows. 

 

 

Install Packages: 

You can list installed Python packages by using the pip command-line tool with the list 

command. 

1. Installing Numpy on Windows: 

Python NumPy is a general-purpose array processing package that provides tools for handling n-

dimensional arrays. It provides various computing tools such as comprehensive mathematical 

functions, and linear algebra routines. NumPy provides both the flexibility of Python and the 

speed of well-optimized compiled C code. Its easy-to-use syntax makes it highly accessible and 

productive for programmers from any background. In this article, we will see how to install NumPy 

as well as how to import Numpy in Python. 

Pre-requisites: 

 Knowledge on Python libraries 

 Anaconda 

 Pycharm 

 

Installing Numpy For PIP Users 

Users who prefer to use pip can use the below command to install NumPy: 

pip install numpy 

https://www.geeksforgeeks.org/jupyter-notebook-vs-python-idle/
https://www.geeksforgeeks.org/introduction-to-numpy/
https://www.geeksforgeeks.org/download-and-install-python-3-latest-version/
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You will get a similar message once the installation is complete: 

 

 
 

 

Install Numpy Using Conda 

If you want the installation to be done through conda, you can use the below command: 

conda install -c anaconda numpy 

 

You will get a similar message once the installation is complete 

 

 

2. Install Pandas on Windows 

Python Pandas can be installed on Windows in two ways: 

 Using pip 

 Using Anaconda 

Install Pandas using pip 

pip is a package management system used to install and manage software packages/libraries 

written in Python. These files are stored in a large “online repository” termed as Python Package 

Index (PyPI). 

Step 1 : Launch Command Prompt 

To open the Start menu, press the Windows key or click the Start button. To access the 

Command Prompt, type “cmd” in the search bar, click the displayed app, or use Windows key + r, 

enter “cmd,” and press Enter. 

https://www.geeksforgeeks.org/how-to-install-pip-on-windows/
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Step 2 : Run the Command 

Pandas can be installed using PIP by use of the following command in Command Prompt. 

pip install pandas 

 

Install Pandas using Anaconda 

Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data 

processing, Data Analytics, and heavy scientific computing. If your system is not pre-equipped with 

Anaconda Navigator, you can learn how to install Anaconda Navigator on Windows or Linux.  

 

 

 

 

Install and Run Pandas from Anaconda Navigator 

Step 1: Search for Anaconda Navigator in Start Menu and open it.  

Step 2: Click on the Environment tab and then click on the Create button to create a new 

Pandas Environment.

https://www.geeksforgeeks.org/getting-started-with-jupyter-notebook-python/
https://www.geeksforgeeks.org/data-analytics-and-its-type/
https://www.geeksforgeeks.org/how-to-install-anaconda-on-windows/
https://www.geeksforgeeks.org/how-to-install-anaconda-on-linux/
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Step 3: Give a name to your Environment, e.g. Pandas, and then choose a Python and its version 

to run in the environment. Now click on the Create button to create Pandas Environment. 

 

 

 

 

 

 

Step 4: Now click on the Pandas Environment created to activate it.  
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Step 5: In the list above package names, select All to filter all the packages. 

 
 

 

 

 

Step 6: Now in the Search Bar, look for ‘Pandas‘. Select the Pandas package for Installation.  
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Step 7: Now Right Click on the checkbox given before the name of the package and then go to 

‘Mark for specific version installation‘. Now select the version that you want to install.  

 
Step 8: Click on the Apply button to install the Pandas Package.  

Step 9: Finish the Installation process by clicking on the Apply button.  

Step 10: Now to open the Pandas Environment, click on the Green Arrow on the right of the 

package name and select the Console with which you want to begin your Pandas programming.  
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3. Install Scipy in Python on Windows 

For PIP Users: 

Users who prefer to use pip can use the below command to install Scipy package on Windows: 

pip install scipy 

message once the installation is complete: 

 

Verifying Scipy Module Installation: 

To verify if Scipy has been successfully installed in your system run the below code in a 

python IDE of your choice: 

import scipy 

scipy.__version__ 

If successfully installed you will get the following output.

 
 

For Conda Users: 

If you want the installation to be done through conda, you can use the below command: 

conda install scipy 

Type y for yes when prompted. 

You will get a similar message once the installation is complete 
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Verify Installation 

• Open a Python interpreter by typing python in your terminal or command prompt. 

• Try to import the packages: 

import numpy as np 

import scipy as sp 

import pandas as pd  

 

If there are no errors, the packages are installed successfully.  

 

Try: 

1. Write a program to check whether a Numpy array contains a specified row? 

 

Sample Output: 

[[ 1  2  3  4  5] 

 [ 6  7  8  9 10] 

 [11 12 13 14 15] 

 [16 17 18 19 20]] 

True 

False 

False 

True 

 

2. Write a program to get all 2D diagonals of a 3D NumPy array? 

 

Sample Output: 

Original 3d array: 
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 [[[ 0  1  2  3] 

  [ 4  5  6  7] 

  [ 8  9 10 11] 

  [12 13 14 15]] 

 

 [[16 17 18 19] 

  [20 21 22 23] 

  [24 25 26 27] 

  [28 29 30 31]] 

 

 [[32 33 34 35] 

  [36 37 38 39] 

  [40 41 42 43] 

  [44 45 46 47]]] 

2d diagonal array: 

 [[ 0  5 10 15] 

 [16 21 26 31] 

 [32 37 42 47]] 

 

b. Study matrix operations: rank, inverse, condition number  

Operation Python Function Key Notes 

Rank np.linalg.matrix_rank 
Works for any matrix (not just 

square). 

Inverse np.linalg.inv 
Only for square and nonsingular 

matrices. 

Condition 

Number 
np.linalg.cond 

Indicates numerical stability of a 

matrix. 

 

1. Rank of a Matrix 

The rank of a matrix indicates the number of linearly independent rows or columns. It reflects the 

"dimension" of the matrix's space. For example: 

• A 3×3 matrix of rank 3 is "full rank." 

• A rank-deficient matrix has fewer linearly independent rows or columns. 

 

In Python: 

The function numpy.linalg.matrix_rank determines the rank using numerical methods like the 

singular value decomposition (SVD). SVD decomposes the matrix, and the rank is the count of 

non-zero singular values. 

import numpy as np 

 

A = np.array([[1, 2, 3],  

              [4, 5, 6],  

              [7, 8, 9]]) 

 

# Compute rank 

rank = np.linalg.matrix_rank(A) 

print("Rank of A:", rank) 
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Output: 

Rank of A=2 (because the third row is a linear combination of the first two rows). 

 

2. Inverse of a Matrix 

Python provides a very easy method to calculate the inverse of a matrix. The 

function numpy.linalg.inv() is available in the NumPy module and is used to compute the inverse 

matrix in Python. 

Syntax: numpy.linalg.inv(a) 

 

Example 1: In this example, we will create a 3 by 3 NumPy array matrix and then convert it 

into an inverse matrix using the np.linalg.inv() function. 

 

# Import required package 

import numpy as np 

 

# Taking a 3 * 3 matrix 

A = np.array([[6, 1, 1], 

   [4, -2, 5], 

   [2, 8, 7]]) 

 

# Calculating the inverse of the matrix 

print(np.linalg.inv(A)) 

 

Output: 

[[ 0.17647059 -0.00326797 -0.02287582] 

 [ 0.05882353 -0.13071895  0.08496732] 

 [-0.11764706  0.1503268   0.05228758]] 

 

 

3. Condition Number 

The condition number of a matrix measures how sensitive the solution of a system is to errors in 

the input. A small condition number indicates stability, while a large one suggests potential 

numerical instability. 

Mathematically: 

Condition Number= Larges Singular Value/ Smallest Singular Value 

Significance: 

• Low condition number (close to 1): Well-conditioned matrix. 

• High condition number: Ill-conditioned matrix; results may be unreliable. 

In Python: Use numpy.linalg.cond to compute the condition number. 

C = np.array([[1, 2],  

              [3, 4]]) 

 

# Compute the condition number 

cond_number = np.linalg.cond(C) 

print("Condition number of C:", cond_number) 

Output: 

High condition numbers suggest the matrix is close to singular, leading to unstable 

computations. 

 

Try: 

1. Write a program to compute the eigenvalues and eigenvectors of a complex matrix. 

 

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/how-to-inverse-a-matrix-using-numpy/
https://www.geeksforgeeks.org/python-numpy/
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Sample Output: 

 Eigenvalues: [5.56155281+2.26527142j -0.56155281+0.73472858j] 

 Eigenvectors: 

  [[ 0.48454084+0.j          0.83703486+0.j        ] 

 [ 0.87474491+0.j         -0.54713267+0.j        ]] 

 

2. Write a program to compute the  inverse a matrix using NumPy? 

 

Sample Output: 

[[ 0.17647059 -0.00326797 -0.02287582] 

 [ 0.05882353 -0.13071895  0.08496732] 

 [-0.11764706  0.1503268   0.05228758]] 

 

c. Solving for simultaneous equations in 3 or 4 variables  

To solve simultaneous equations in 3 or 4 variables, you can represent the system as a matrix 

equation and use numerical methods or analytical techniques. 

 Matrix Representation 

A system of equations can be written in the form: 

A⋅X=B 

Where: 

• A: Coefficient matrix. 

X: Column vector of variables. 

• B: Column vector of constants. 

 

 
Solving in Python 

Example: Solving for 3 variables 

Solving equation with three variables 

Construct the following equations using Eq() and solve then to find the unknown variables 

# importing library sympy  

from sympy import symbols, Eq, solve  

 

# defining symbols used in equations  

# or 3 variables  

x, y, z = symbols('x,y,z')  

 

# defining equations  
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eq1 = Eq((x+y+z), 1)  

print("Equation 1:")  

print(eq1)  

 

eq2 = Eq((x-y+2*z), 1)  

print("Equation 2")  

print(eq2)  

 

eq3 = Eq((2*x-y+2*z), 1)  

print("Equation 3")  

 

# solving the equation and printing the  

# value of unknown variables  

print("Values of 3 unknown variable are as follows:")  

print(solve((eq1, eq2, eq3), (x, y, z))) 

Output: Equation 1: 

Eq(x + y + z, 1) 

Equation 2 

Eq(x - y + 2*z, 1) 

Equation 3 

Values of 3 unknown variable are as follows: 

{x: 0, y: 1/3, z: 2/3} 

 

Example: Solving for 4 variables 

# Define a system with 4 variables 

A = np.array([[1, 2, 3, 4], 

              [2, 3, 4, 5], 

              [3, 4, 5, 6], 

              [4, 5, 6, 7]]) 

 

B = np.array([10, 15, 20, 25]) 

 

# Solve for the variables 

X = np.linalg.solve(A, B) 

print("Solution (x1, x2, x3, x4):", X) 

 

Applications 

• 3 Variables: Common in physics and engineering (e.g., circuits, forces). 

• 4 Variables: Often used in economics or systems modeling. 

 

Try: 

1. Write a program to solve the following simultaneous equations:  

2x + 3y = –2 

5x + 4y + 2 = 0 
 

Sample Output: 

 The solution of the given simultaneous equation is (2/7, –6/7) 

 

2. Write a program to solve the following simultaneous equations: 

a2 – b = 14 and 2b – 4 = 12a 

Sample Output: 
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 The solution of the given simultaneous equation is a = 8, b = 50 and a = –5, b = 11.  

 

2. Working with CSV files and XLS files   

 

1. Save a List to CSV, XLSX and TXT files.  
 

1. Save a List to a CSV File 

A CSV (Comma Separated Values) is a simple file format, used to store data in a tabular format. 

CSV file stores tabular data (numbers and text) in plain text. Each line of the file is a data record. 

Each record consists of one or more fields, separated by commas. The use of the comma as a field 

separator is the source of the name for this file format. There are various methods to save lists to 

CSV which we will see in this article. 

Example Code: 

The code uses the csv module to write data into a CSV file named ‘GFG’. It defines the field names 

as [‘Name’, ‘Branch’, ‘Year’, ‘CGPA’] and the data rows as a list of lists. It opens the file in write mode 

and uses the csv.writer method to write the field names as the first row and then writes the data 

rows into the file. 

import csv 

# field names  

fields = ['Name', 'Branch', 'Year', 'CGPA']  

 

# data rows of csv file  

rows = [ ['Nikhil', 'COE', '2', '9.0'],  

  ['Sanchit', 'COE', '2', '9.1'],  

  ['Aditya', 'IT', '2', '9.3'],  

  ['Sagar', 'SE', '1', '9.5'],  

  ['Prateek', 'MCE', '3', '7.8'],  

  ['Sahil', 'EP', '2', '9.1']]  

 

with open('GFG', 'w') as f: 

  

 # using csv.writer method from CSV package 

 write = csv.writer(f) 

  

 write.writerow(fields) 

 write.writerows(rows) 

 

Output:   

 
 

 

2. Saving a List to an XLSX File 

XLSX (Excel format) is commonly used for structured spreadsheets. 

• Library Used: openpyxl (popular Python library for working with Excel files). 
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• Data Format: Each sublist is written as a row into an Excel sheet. 

• Steps: 

 

Create a new workbook. 

 Use Workbook.active to access the worksheet. 

 Write rows to the worksheet using the .append() method. 

 Save the workbook with .save(). 

Example Code: 

from openpyxl import Workbook 

 

# List of rows 

my_list = [["Name", "Age", "City"], ["Alice", 30, "New York"], ["Bob", 25, "Los Angeles"]] 

 

# Create a workbook and worksheet 

wb = Workbook() 

ws = wb.active 

 

# Append each row to the worksheet 

for row in my_list: 

    ws.append(row) 

 

# Save as Excel file 

wb.save("output.xlsx") 

 

Output (output.xlsx): 

     The file can be opened in Excel or any compatible software. The data will appear in a 

table format. 

 

3. Saving a List to a TXT File 

TXT (Plain Text) is a simple text file where data can be formatted as needed. 

• Library Used: None (uses Python’s built-in file I/O). 

• Data Format: Rows are written line by line, and elements are separated by a 

delimiter (e.g., tab \t or space). 

Steps: 

1. Open a file in write mode. 

2. Loop through the list and write each sublist as a line. 

3. Convert elements to strings and join them with a delimiter. 

4. Save and close the file. 

Example Code: 

# List of rows 

my_list = [["Name", "Age", "City"], ["Alice", 30, "New York"], ["Bob", 25, "Los Angeles"]] 

 

# Save as TXT 

with open("output.txt", "w") as file: 

    for row in my_list: 

        file.write("\t".join(map(str, row)) + "\n")  # Convert elements to string & join by tab 

Output (output.txt): 

Name Age City 

Alice 30 New York 

Bob 25 Los Angeles 
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Comparison of File Formats 

Format 
File 

Extension 
Use Case Key Feature 

CSV .csv 
Import/export table-

like data easily. 

Universal, supported by 

most software. 

XLSX .xlsx 
Advanced formatting 

in Excel files. 

Spreadsheet software 

compatibility. 

TXT .txt Storing plain text data. Simple and lightweight. 

 

Try: 

1. 1. Write a program to save a Nested List with Headers to a CSV File 

2.  

Sample Output: 

ID  ,Name, Age, City 

101,Alice,25,New York 

102,Bob,30,Los Angeles 

103,Charlie,28,Chicago 

104,Diana,35,Houston 

 

3. 2. Write a program to save a List with Multiple Sheets to an XLSX File 

4.  

Sample Output: 

Sheet: Products 

Product Price Stock 

Laptop 1200 50 

Phone 800 150 

Tablet 400 100 

 

Sheet: Employees 

Employee Department Salary 

Alice HR 60000 

Bob IT 80000 

Charlie Sales 70000 

 

 

3. Write a program to save a List with Delimiters to a TXT File 

 

Sample Output: 

Student Math Science English 

Alice 85 90  88 

Bob 78 83  80 

Charlie 92 88  95 
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2. Save a Dictionary to CSV, XLSX and TXT files.     
 

Save a Dictionary to a CSV File 

CSV (comma-separated values) files are one of the easiest ways to transfer data in form 

of string especially to any spreadsheet program like Microsoft Excel or Google 

spreadsheet. In this article, we will see how to save a PYthon dictionary to a CSV file. Follow 

the below steps for the same. 

1. Import csv module 

import csv 

2. Creating list of field names 

field_names= ['No', 'Company', 'Car Model'] 

3. Creating a list of python dictionaries 

cars = [ 

{‘No’: 1, ‘Company’: ‘Ferrari’, ‘Car Model’: ‘488 GTB’}, 

{‘No’: 2, ‘Company’: ‘Porsche’, ‘Car Model’: ‘918 Spyder’}, 

{‘No’: 3, ‘Company’: ‘Bugatti’, ‘Car Model’: ‘La Voiture Noire’}, 

{‘No’: 4, ‘Company’: ‘Rolls Royce’, ‘Car Model’: ‘Phantom’}, 

{‘No’: 5, ‘Company’: ‘BMW’, ‘Car Model’: ‘BMW X7’}, 

]  

4. Writing content of dictionaries to CSV file 

with open('Names.csv', 'w') as csvfile: 

      writer = csv.DictWriter(csvfile, fieldnames=field_names) 

       writer.writeheader() 

     writer.writerows(cars) 

Syntax: 

DictWriter( (filename), fieldnames = [list of field names] ) 

 

In the above code snippet writer is an instance of csv.DictWriter class and uses two of its 

following methods: 

o DictWriter.writeheader() is used to write a row of column headings / field names 

to the given CSV file 

o csvwriter.writerows() method is used to write rows of data into the specified 

file. 

      Note: To write a single dictionary in CSV file use writerow() method 

 

import csv  

 

field_names = ['No', 'Company', 'Car Model']  

 

cars = [  

{'No': 1, 'Company': 'Ferrari', 'Car Model': '488 GTB'},  

{'No': 2, 'Company': 'Porsche', 'Car Model': '918 Spyder'},  

{'No': 3, 'Company': 'Bugatti', 'Car Model': 'La Voiture Noire'},  

{'No': 4, 'Company': 'Rolls Royce', 'Car Model': 'Phantom'},  

{'No': 5, 'Company': 'BMW', 'Car Model': 'BMW X7'},  

]  
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with open('Names.csv', 'w') as csvfile:  

 writer = csv.DictWriter(csvfile, fieldnames = field_names)  

 writer.writeheader()  

 writer.writerows(cars) 

 

Output: 

 
 

OR 

 

The code imports the pandas library as pd. It defines three lists: nme for names, deg for 

degrees, and scr for scores. It creates a dictionary dict using these lists. Then, it creates a 

pandas DataFrame df from the dictionary. Finally, it saves the DataFrame as a CSV file 

named ‘GFG.csv’ using the to_csv method. The resulting CSV file will contain the columns 

‘name’, ‘degree’, and ‘score’ with the corresponding data from the lists. 

# importing pandas as pd 

import pandas as pd 

 

  

# list of name, degree, score 

nme = ["aparna", "pankaj", "sudhir", "Geeku"] 

deg = ["MBA", "BCA", "M.Tech", "MBA"] 

scr = [90, 40, 80, 98] 

  

# dictionary of lists 

dict = {'name': nme, 'degree': deg, 'score': scr} 

  

df = pd.DataFrame(dict) 

  

# saving the dataframe 

df.to_csv('GFG.csv') 

 

Output:  

 

 

 

 

 

 

 

 

import csv 

import pandas as pd 

 

# Sample list 

data = [["Name", "Age", "City"], ["John", 25, "New York"], ["Emma", 28, "London"]] 

https://www.geeksforgeeks.org/pandas-tutorial/
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# Save to CSV 

with open("data.csv", "w", newline="") as f: 

    writer = csv.writer(f) 

    writer.writerows(data) 

 

# Save to XLSX 

df = pd.DataFrame(data[1:], columns=data[0]) 

df.to_excel("data.xlsx", index=False) 

 

# Save to TXT 

with open("data.txt", "w") as f: 

    for row in data: 

        f.write("\t".join(map(str, row)) + "\n") 

 

 

Save a Dictionary to an XLSX File 

 

Pandas write Excel files using the XlsxWriter or Openpyxl module. This can be used to read, 

filter, and re-arrange either small or large datasets and output them in a range of formats 

including Excel. The ExcelWriter() method of the pandas library creates a Excel writer object 

using XlsxWriter. Then the to_excel() method is used to write the dataframe to the excel. 

 

 

# import pandas as pd 

import pandas as pd 

 

# Create a Pandas dataframe from some data. 

df = pd.DataFrame({'Data': ['Geeks', 'For', 'geeks', 'is' ,'portal', 'for', 'geeks']}) 

 

# Create a Pandas Excel writer 

# object using XlsxWriter as the engine. 

writer = pd.ExcelWriter('sample.xlsx', engine='xlsxwriter') 

 

# Write a dataframe to the worksheet. 

df.to_excel(writer, sheet_name='Sheet1') 

 

# Close the Pandas Excel writer 

# object and output the Excel file. 

writer.save() 

Output: 

https://www.geeksforgeeks.org/pandas-tutorial/
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Save a Dictionary to a TXT File 

In a TXT file: 

• Each key-value pair can be written on a new line. 

• Keys and values are separated by a delimiter, such as a colon (:) or tab (\t). 

# Dictionary to save 

data = {"Name": "Alice", "Age": 30, "City": "New York"} 

 

# Save as TXT 

with open("output.txt", "w") as file: 

    for key, value in data.items(): 

        file.write(f"{key}: {value}\n")  # Format as "key: value" 

 

print("Dictionary saved to output.txt") 

 

 

Output in a TXT file: 

Name: Alice 

Age: 30 

City: New York 

 

Try: 

1. How can you save a dictionary containing sales data for multiple regions into a CSV file, where 

each region    

2. becomes a row with its total sales as one of the columns? 

3. How can you save a dictionary representing time-series data (e.g., date and sales) into an Excel file 

with dates in one column and corresponding sales data in another? 

4. How can you save a dictionary where each key maps to a list of items into a TXT file, formatting 

the output so that each key appears as a section header followed by the list items in bullet format? 

3. Load data from CSV, XLSX and TXT pandas to a List. 
 

Loading Data from CSV, XLSX, and TXT into a List Using pandas 

The pandas library provides powerful tools to load data from various file formats into Python. 

Once the data is loaded into a DataFrame, it can be easily converted to a list. 

 

A CSV file contains data organized in rows and columns. 

Steps: 



Page | 25 

 

1. Use pandas.read_csv() to load the CSV into a DataFrame. 

2. Convert the DataFrame to a list using .values.tolist() or .to_dict(). 

Example: 

 CSV Content (data.csv): 

Name,Age,City 

Alice,30,New York 

Bob,25,Los Angeles 

Charlie,35,Chicago 

 

 

Python Code: 

import pandas as pd 

 

# Load CSV file 

df = pd.read_csv("data.csv") 

 

# Convert to a list of lists 

list_of_rows = df.values.tolist() 

 

# Convert to a list of dictionaries (optional) 

list_of_dicts = df.to_dict(orient="records") 

 

print("List of Rows:", list_of_rows) 

print("List of Dicts:", list_of_dicts) 

 

Output: 

 

List of Rows: [['Alice', 30, 'New York'], ['Bob', 25, 'Los Angeles'], ['Charlie', 35, 'Chicago']] 

List of Dicts: [{'Name': 'Alice', 'Age': 30, 'City': 'New York'}, 

                {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'}, 

                {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}] 

 

2. Load Data from an XLSX File: 

 An XLSX file is an Excel spreadsheet with data in rows and columns. 

  Steps: 

1. Use pandas.read_excel() to load the XLSX file. 

2. Convert the resulting DataFrame to a list. 

Example: 

Excel Content (data.xlsx): 

Name Age City 

Alice 30 New York 

Bob 25 Los Angeles 

Charlie 35 Chicago 

 

 

# Load Excel file 



Page | 26 

 

df = pd.read_excel("data.xlsx") 

 

# Convert to a list of lists 

list_of_rows = df.values.tolist() 

 

# Convert to a list of dictionaries (optional) 

list_of_dicts = df.to_dict(orient="records") 

 

print("List of Rows:", list_of_rows) 

print("List of Dicts:", list_of_dicts) 

 

Output: 

 List of Rows: [['Alice', 30, 'New York'], ['Bob', 25, 'Los Angeles'], ['Charlie', 35, 

'Chicago']] 

List of Dicts: [{'Name': 'Alice', 'Age': 30, 'City': 'New York'}, 

                {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'}, 

                {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}] 

3. Load Data from a TXT File 

A TXT file often stores data in a delimited format (e.g., tab-delimited, space-delimited). 

Steps: 

1. Use pandas.read_csv() with the appropriate delimiter to load the TXT file. 

2. Convert the resulting DataFrame to a list. 

Example: 

TXT Content (data.txt): 

Name\tAge\tCity 

Alice\t30\tNew York 

Bob\t25\tLos Angeles 

Charlie\t35\tChicago 

# Load TXT file (tab-delimited) 

df = pd.read_csv("data.txt", delimiter="\t") 

 

# Convert to a list of lists 

list_of_rows = df.values.tolist() 

 

# Convert to a list of dictionaries (optional) 

list_of_dicts = df.to_dict(orient="records") 

 

print("List of Rows:", list_of_rows) 

print("List of Dicts:", list_of_dicts) 

Output: 

List of Rows: [['Alice', 30, 'New York'], ['Bob', 25, 'Los Angeles'], ['Charlie', 35, 

'Chicago']] 

List of Dicts: [{'Name': 'Alice', 'Age': 30, 'City': 'New York'}, 

                {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'}, 

                {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}] 

 

File Type Pandas Method Convert to List 
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CSV pd.read_csv("file.csv") .values.tolist() or .to_dict() 

XLSX pd.read_excel("file.xlsx") .values.tolist() or .to_dict() 

TXT 
pd.read_csv("file.txt", 

delimiter="\t") 
.values.tolist() or .to_dict() 

When to Use: 

• List of Rows: Use when the data needs to be manipulated as arrays or matrices. 

• List of Dictionaries: Use when working with structured data where keys (headers) are 

required. 

import pandas as pd 

 

# Load data from CSV 

csv_data = pd.read_csv('your_csv_file.csv') 

csv_list = csv_data.values.tolist() 

 

# Load data from XLSX 

xlsx_data = pd.read_excel('your_xlsx_file.xlsx') 

xlsx_list = xlsx_data.values.tolist() 

# Load data from TXT 

txt_data = pd.read_csv('your_txt_file.txt', delimiter='\t') # Assuming tab-delimited 

txt_list = txt_data.values.tolist() 

 

Try: 

1. Write a program to Load a CSV file containing structured data, handle missing values, and 

convert the rows into a list of dictionaries. 

 

2. Write a program to Load data from an Excel file with multiple sheets, combine the sheets, and 

convert the combined data into a nested list. 

 

3. Write a program to Load a TXT file with tab-delimited or custom-delimited data and convert it 

into a list of lists. Handle irregular spacing and missing columns. 

4. Load data from CSV, XLSX and TXT pandas to a Dictionary.  
 

In pandas, when loading data from files (CSV, XLSX, or TXT), the primary goal is often to convert 

this data into a structured format that can be easily processed. Dictionaries are a common data 

structure for this purpose because they provide key-value pairs, where keys represent column 

names, and values represent the data. 

Below, provide a detailed walkthrough of loading data from CSV, XLSX, and TXT files into 

dictionaries. We'll focus on converting the data into a format where each row is represented as a 

dictionary with column headers as keys. 

Load Data from a CSV File into a Dictionary 

A CSV (Comma-Separated Values) file stores data in a tabular format, with each line representing 

a row and columns separated by commas. 

Steps: 

1. Read the CSV file: We use pandas.read_csv() to load the file into a DataFrame. 

2. Convert DataFrame to a Dictionary: After loading the CSV into a DataFrame, we use the 

.to_dict() method to convert it into a dictionary. The orient="records" option allows you 

to convert each row into a dictionary, with the column names as keys. 

 

Code Example: 
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CSV Content (data.csv): 

Name,Age,City 

Alice,30,New York 

Bob,25,Los Angeles 

Charlie,35,Chicago 

Python code: 

import pandas as pd 

 

# Load CSV file into DataFrame 

df = pd.read_csv("data.csv") 

 

# Convert DataFrame to a list of dictionaries (each row as a dictionary) 

dict_data = df.to_dict(orient="records") 

 

# Output the dictionary 

print("Dictionary from CSV:", dict_data) 

 

 

1. pd.read_csv("data.csv"): This reads the data.csv file and loads it into a pandas DataFrame. 

2. df.to_dict(orient="records"): This converts the DataFrame into a list of dictionaries. Each 

dictionary corresponds to a row in the DataFrame, and the keys of the dictionary are the 

column names from the DataFrame. 

Output: 

Dictionary from CSV: [ 

    {'Name': 'Alice', 'Age': 30, 'City': 'New York'}, 

    {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'}, 

    {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'} 

] 

Detailed Explanation: 

• The output is a list of dictionaries, where each dictionary represents a row from the original 

CSV file. 

• The keys of each dictionary are the column names ("Name", "Age", "City"), and the values 

are the corresponding entries from each row. 

 

 Load Data from an XLSX File into a Dictionary 

An XLSX (Excel) file is a spreadsheet that can store data in tables, formulas, and various formats. 

Steps: 

1. Read the XLSX file: We use pandas.read_excel() to load the file into a DataFrame. 

2. Convert DataFrame to Dictionary: After loading the data, we again use .to_dict() with 

orient="records" to convert the DataFrame into a dictionary. 

Code Example: 

Excel Content (data.xlsx): 

Name Age City 

Alice 30 New York 

Bob 25 Los Angeles 

Charlie 35 Chicago 
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# Load Excel file into DataFrame 

df = pd.read_excel("data.xlsx") 

 

# Convert DataFrame to a list of dictionaries 

dict_data = df.to_dict(orient="records") 

 

# Output the dictionary 

print("Dictionary from XLSX:", dict_data) 

 

 

Explanation: 

• pd.read_excel("data.xlsx"): Reads the Excel file into a pandas DataFrame. 

• df.to_dict(orient="records"): Converts the DataFrame into a list of dictionaries, where each 

dictionary represents a row. 

 

Output: 

Dictionary from XLSX: [ 

    {'Name': 'Alice', 'Age': 30, 'City': 'New York'}, 

    {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'}, 

    {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'} 

] 

Detailed Explanation: 

• This is similar to the CSV conversion, except we are working with an Excel file. 

• The result is a list of dictionaries, where each row in the Excel sheet is represented as a 

dictionary. 

 

Load Data from a TXT File into a Dictionary 

A TXT file may store data in various formats, such as space-delimited or tab-delimited. We can use 

pandas' read_csv() method to read delimited data from a TXT file, specifying the appropriate 

delimiter. 

 

Steps: 

1. Read the TXT file: Use pandas.read_csv() with the correct delimiter (e.g., tab \t or space ). 

2. Convert DataFrame to Dictionary: Use .to_dict() with orient="records" to convert the 

DataFrame to a list of dictionaries. 

Code Example: 

TXT Content (data.txt) (tab-delimited): 

Name    Age    City 

Alice   30     New York 

Bob     25     Los Angeles 

Charlie 35     Chicago 

# Load TXT file with tab delimiter into DataFrame 

df = pd.read_csv("data.txt", delimiter="\t") 

 

# Convert DataFrame to a list of dictionaries 

dict_data = df.to_dict(orient="records") 

 

# Output the dictionary 

print("Dictionary from TXT:", dict_data) 

 

 

Output: 
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Dictionary from TXT: [ 

    {'Name': 'Alice', 'Age': 30, 'City': 'New York'}, 

    {'Name': 'Bob', 'Age': 25, 'City': 'Los Angeles'}, 

    {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'} 

] 

Explanation: 

• pd.read_csv("data.txt", delimiter="\t"): This reads the tab-delimited file into a pandas 

DataFrame. 

• df.to_dict(orient="records"): Converts the DataFrame into a list of dictionaries, where each 

dictionary represents a row. 

• Detailed Explanation: 

• The data in the TXT file is loaded into a pandas DataFrame by specifying the delimiter (tab 

\t). 

• Each row in the file is converted into a dictionary, and the result is a list of dictionaries. 

• Summary of to_dict() Orientations 

File 

Type 
Pandas Method Convert to Dictionary Explanation 

CSV pd.read_csv("file.csv") .to_dict(orient="records") 
Converts each row into a 

dictionary. 

XLSX pd.read_excel("file.xlsx") .to_dict(orient="records") 
Converts each row into a 

dictionary. 

TXT pd.read_csv("file.txt") .to_dict(orient="records") 

For delimited files (e.g., 

tab-separated), converts 

each row into a dictionary. 

 

Try: 

1. Write a program a CSV file contains millions of rows, and you need to load and convert 

it into a dictionary  

2. Write a program to read and convert only specific columns from an Excel file into a 

dictionary 

3. Write a program a TXT file contains structured logs or tabular data, how can you parse 

it into a dictionary dynamically without knowing the delimiter beforehand? 

 

3. Basic operations on Dataframe.   
 

a. Attribute filtering based on conditions.   
 

 

This method selects rows of a DataFrame that satisfy one or more conditions. It involves Boolean 

indexing, where a condition applied to a column returns True or False for each row. 

Steps: 

1. Apply a condition on a column. 

2. Use the resulting Boolean mask to filter rows. 

Example: 

import pandas as pd 

 

# Create a DataFrame 

data = { 
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    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'], 

    'Age': [23, 35, 45, 28, 60], 

    'Salary': [50000, 60000, 80000, 55000, 90000] 

} 

df = pd.DataFrame(data) 

 

# Filter rows where Age is greater than 30 

age_condition = df[df['Age'] > 30] 

print("Rows where Age > 30:") 

print(age_condition) 

 

# Filter rows where Salary is less than 60000 

salary_condition = df[df['Salary'] < 60000] 

print("\nRows where Salary < 60000:") 

print(salary_condition) 

 

Output: 

 

Rows where Age > 30: 

      Name  Age  Salary 

1      Bob   35   60000 

2    Charlie   45   80000 

4      Eve   60   90000 

 

Rows where Salary < 60000: 

    Name  Age  Salary 

0  Alice   23   50000 

3  David   28   55000 

Explanation: 

• df['Age'] > 30 creates a Boolean mask [False, True, True, False, True]. 

• Using this mask as df[df['Age'] > 30] filters rows where the condition is True. 

 

Try: 
1. Write a program to filter rows after grouping by a column and applying an aggregation function 

(e.g., sum, mean)?" 

2. Write a program to filter new rows of data in real-time as they are appended to a DataFrame?" 

b. Attribute Filtering Based on Slicing.   
 

Slicing involves selecting a subset of rows or columns using positional or label-based indexing. This 

is done with .iloc[] (position-based) or .loc[] (label-based). 

Steps: 

1. Use .iloc[] to slice rows/columns by position. 

2. Use .loc[] to slice rows/columns by labels. 

Example: 

# Slicing rows and columns using iloc 

subset_iloc = df.iloc[:3, :2]  # First 3 rows, first 2 columns 

print("Using iloc (rows and columns):") 

print(subset_iloc) 

 

# Slicing rows and columns using loc 

subset_loc = df.loc[1:3, ['Name', 'Age']]  # Rows with labels 1 to 3, columns 'Name' and 

'Age' 
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print("\nUsing loc (rows and specific columns):") 

print(subset_loc) 

 

Output: 

Using iloc (rows and columns): 

      Name  Age 

0    Alice   23 

1      Bob   35 

2  Charlie   45 

 

Using loc (rows and specific columns): 

      Name  Age 

1      Bob   35 

2  Charlie   45 

3    David   28 

Explanation: 

• .iloc[:3, :2]: Slices the first 3 rows (:3) and first 2 columns (:2) by position. 

• .loc[1:3, ['Name', 'Age']]: Slices rows with labels 1 to 3 and specific columns 'Name' and 'Age'. 

Try: 
1. Write a program slice rows based on specific conditions and combine slicing with filtering? 

2. Write a program slice column’s based on specific conditions and combine slicing with filtering? 

3. Write a program slice rows or columns in a DataFrame with a multi-level index? 

c. Attribute Filtering Based on Queries.   
 

The .query() method in pandas allows SQL-like filtering of rows using a query expression. This 

method is very readable for complex conditions. 

Steps: 

1. Pass a query string as an argument to .query(). 

2. Reference columns directly in the query string. 

 

Example: 

# Filter rows where Age > 30 and Salary > 60000 

query_result = df.query('Age > 30 and Salary > 60000') 

print("Rows where Age > 30 and Salary > 60000:") 

print(query_result) 

 

# Filter rows where Name is 'Alice' or 'Eve' 

name_condition = df.query('Name == "Alice" or Name == "Eve"') 

print("\nRows where Name is 'Alice' or 'Eve':") 

print(name_condition) 

 

Output: 

Rows where Age > 30 and Salary > 60000: 

     Name  Age  Salary 

2  Charlie   45   80000 

4      Eve   60   90000 

 

Rows where Name is 'Alice' or 'Eve': 

    Name  Age  Salary 

0  Alice   23   50000 

4    Eve   60   90000 

Explanation: 
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• .query('Age > 30 and Salary > 60000'): Filters rows where both conditions are true. 

• .query('Name == "Alice" or Name == "Eve"'): Filters rows where the Name is either "Alice" or 

"Eve". 

Try: 
1. Write a program filter rows where the column 'age' is greater than 30 using the query() method? 

2. Write a program filter rows where 'age' is greater than 30 and 'salary' is less than 50000 using the 

query() method? 

3. Write a program use query() to filter rows where a string column contains a specific value (e.g., 

'category' is 'A')? 

 

Comparison of Methods 

Method Description Example Code 

Condition-based 

Filtering 

Filters rows using boolean 

indexing with conditions. 
df[df['Age'] > 30] 

Slicing-based 

Filtering 

Select rows and columns using 

integer or label-based slicing. 

df.iloc[:3, :2], df.loc[1:3, 

...] 

Query-based Filtering 
Filters rows using SQL-like query 

strings. 

df.query('Age > 30 and 

Salary > 60000') 

 

When to Use Each Method: 

1. Condition-based filtering is best for straightforward column-based conditions. 

2. Slicing-based filtering is useful for extracting specific rows and columns by position or label. 

3. Query-based filtering is ideal for complex and readable filtering conditions involving 

multiple columns. 

Key Benefits of Dynamic Filtering 

1. Flexibility: Adapt to runtime inputs or changes in filtering criteria. 

2. Scalability: Easily handle complex conditions and multiple filtering scenarios. 

3. User Interaction: Accept filtering criteria from users via forms or command-line. 

 

4. Summary Statistics of the data.    

 

Python provides some statistic libraries that are comprehensive, widely used, and powerful. These 

libraries help us to smooth working with the data 

Statistic is a way of collection of the data, tabulation, and interpolation of numeric data. It allows 

us to describe, summarize, and represent of data visually. Statistic is a field of applied mathematics 

concern with interpolation, visual representation of data, and data collection analysis. There are 

two types of statistic - Descriptive statistic and inferential statistic 

Some Python Statistics Libraries: 

Python provides many libraries that can be used in statistic but we will describe some most 

important and widely used libraries. 

o Numpy - This library is widely used for numerical computing, and optimized for scientific 

calculation. It is a third-party library helpful to working with the single and multidimensional 

arrays. The ndarray is a primary array type. It comes with the many methods for statistical 

analysis. 

o SciPy - It is a third-party library used for scientific computation based on Numpy. It extends the 

Numpy features including scipy.stats for statistical analysis. 
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o Pandas - It is based on the Numpy library. It is also used for the numerical computation. It 

outshines in handling labeled one-dimensional 1D data with the Series The two-dimensional 

(2D) is labeled with the DataFrame objects. 

o Matplotlib - This library works more effectively in combination with the Scipy, NumPy, and 

Pandas. 

o Python built-in statistics Library - It is Python's built-in library used for descriptive statistic. It 

performs effectively if the dataset is small or if we can't depend on importing other libraries. 

a. Compute ranking statistics of the data.   
 

Statistics, in general, is the method of collection of data, tabulation, and interpretation of 

numerical data. It is an area of applied mathematics concerned with data collection analysis, 

interpretation, and presentation. With statistics, we can see how data can be used to solve complex 

problems. 

Ranking statistics involve determining the ranks of rows based on specific column values. 

Steps: 

• Use the .rank() method to compute ranks. 

• Specify ranking methods like 'average', 'min', 'max', 'dense', or 'first'. 

Example: 

import pandas as pd 

 

# Sample DataFrame 

data = { 

    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'], 

    'Age': [23, 35, 45, 28, 60], 

    'Salary': [50000, 60000, 80000, 55000, 90000] 

} 

df = pd.DataFrame(data) 

 

# Rank based on Age (ascending order) 

df['Age_Rank'] = df['Age'].rank(method='min') 

 

# Rank based on Salary (descending order) 

df['Salary_Rank'] = df['Salary'].rank(method='min', ascending=False) 

 

print("Ranking Statistics:") 

print(df) 

 

Output: 

      Name  Age  Salary  Age_Rank  Salary_Rank 

0    Alice   23   50000       1.0          5.0 

1      Bob   35   60000       3.0          4.0 

2  Charlie   45   80000       4.0          2.0 

3    David   28   55000       2.0          5.0 

4      Eve   60   90000       5.0          1.0 

OR 

import statistics 

 

# Sample data 

data = [ 

    {"Name": "Alice", "Age": 23, "Salary": 50000}, 

    {"Name": "Bob", "Age": 35, "Salary": 60000}, 

https://www.geeksforgeeks.org/introduction-of-statistics-and-its-types/
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    {"Name": "Charlie", "Age": 45, "Salary": 80000}, 

    {"Name": "David", "Age": 28, "Salary": 55000}, 

    {"Name": "Eve", "Age": 60, "Salary": 90000} 

] 

 

# Extract Age and Salary into separate lists 

ages = [item["Age"] for item in data] 

salaries = [item["Salary"] for item in data] 

 

# Compute ranks for Age (ascending) 

sorted_ages = sorted((value, index) for index, value in enumerate(ages)) 

age_ranks = [0] * len(ages) 

for rank, (value, index) in enumerate(sorted_ages, start=1): 

    age_ranks[index] = rank 

 

# Compute ranks for Salary (descending) 

sorted_salaries = sorted((-value, index) for index, value in enumerate(salaries)) 

salary_ranks = [0] * len(salaries) 

for rank, (_, index) in enumerate(sorted_salaries, start=1): 

    salary_ranks[index] = rank 

 

# Add ranks to data 

for i, item in enumerate(data): 

    item["Age_Rank"] = age_ranks[i] 

    item["Salary_Rank"] = salary_ranks[i] 

 

# Display results 

print("Ranking Statistics:") 

for item in data: 

    print(item) 

 

Try: 
1. Write a program to compute rankings for rows based on multiple columns in a pandas 

DataFrame? 

2. Write a program to rank the values in a pandas DataFrame column in ascending order. If there 

are ties, assign the average rank 

3. Write a program to rank values in a pandas DataFrame column while handling ties by using the 

'min' ranking method. 

4. Write a program to compute the rank within each group in a DataFrame (e.g., ranking 'value' 

within each 'category'). 

  

b. Compute statistical averages of numerical attributes    
 

Statistical averages include mean, median, and mode, computed using pandas aggregation 

functions. 

Measure of Central Tendency 

The measure of central tendency is a single value that attempts to describe the whole set of data. 

There are three main features of central tendency: 

• Mean 

• Median 

• Median Low 

• Median High 
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• Mode 

 
 

Mean 

It is the sum of observations divided by the total number of observations. It is also defined as 

average which is the sum divided by count.  

Mean(x‾)=∑x/n  

The mean() function returns the mean or average of the data passed in its arguments. If the passed 

argument is empty, StatisticsError is raised. 

Example: Python code to calculate mean 

 

# Python code to demonstrate the working of  

# mean() 

 

# importing statistics to handle statistical 

# operations  

import statistics  

 

# initializing list  

li = [1, 2, 3, 3, 2, 2, 2, 1]  

 

# using mean() to calculate average of list 

# elements  

print ("The average of list values is : ",end="")  

print (statistics.mean(li)) 

Output: The average of list values is : 2 

 

Median 

It is the middle value of the data set. It splits the data into two halves. If the number of elements in 

the data set is odd then the center element is the median and if it is even then the median would 

be the average of two central elements. it first sorts the data i=and then performs the median 

operation 

For Odd Numbers: 

n+1/2 

For Even Numbers: 

(n/2+(n/2+1))/2  

The median() function is used to calculate the median, i.e middle element of data. If the passed 

argument is empty, StatisticsError is raised. 

Example: Python code to calculate Median 

# Python code to demonstrate the  

# working of median() on various  

# range of data-sets  

 

# importing the statistics module  

https://www.geeksforgeeks.org/python-statistics-mean-function/
https://www.geeksforgeeks.org/python-statistics-median/
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from statistics import median  

 

# Importing fractions module as fr  

from fractions import Fraction as fr  

 

# tuple of positive integer numbers  

data1 = (2, 3, 4, 5, 7, 9, 11)  

 

# tuple of floating point values  

data2 = (2.4, 5.1, 6.7, 8.9)  

 

# tuple of fractional numbers  

data3 = (fr(1, 2), fr(44, 12),  

        fr(10, 3), fr(2, 3))  

 

# tuple of a set of negative integers  

data4 = (-5, -1, -12, -19, -3)  

 

# tuple of set of positive  

# and negative integers  

data5 = (-1, -2, -3, -4, 4, 3, 2, 1)  

 

# Printing the median of above datasets  

print("Median of data-set 1 is % s" % (median(data1)))  

print("Median of data-set 2 is % s" % (median(data2)))  

print("Median of data-set 3 is % s" % (median(data3)))  

print("Median of data-set 4 is % s" % (median(data4)))  

print("Median of data-set 5 is % s" % (median(data5))) 

Output: 

Median of data-set 1 is 5 

Median of data-set 2 is 5.9 

Median of data-set 3 is 2 

Median of data-set 4 is -5 

Median of data-set 5 is 0.0 

 

Median Low 

The median_low() function returns the median of data in case of odd number of elements, but in 

case of even number of elements, returns the lower of two middle elements. If the passed argument 

is empty, StatisticsError is raised 

Example: Python code to calculate Median Low 

# Python code to demonstrate the  

# working of median_low()  

 

# importing the statistics module  

import statistics  

 

# simple list of a set of integers  

set1 = [1, 3, 3, 4, 5, 7]  

 

# Print median of the data-set  

 

# Median value may or may not  

https://www.geeksforgeeks.org/median_low-python-statistics/
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# lie within the data-set  

print("Median of the set is % s" 

    % (statistics.median(set1)))  

 

# Print low median of the data-set  

print("Low Median of the set is % s " 

    % (statistics.median_low(set1))) 

Output: 

Median of the set is 3.5 

Low Median of the set is 3  

 

Median High 

The median_high() function returns the median of data in case of odd number of elements, but in 

case of even number of elements, returns the higher of two middle elements. If passed argument 

is empty, StatisticsError is raised. 

Example: Python code to calculate Median High 

# Working of median_high() and median() to  

# demonstrate the difference between them.  

 

# importing the statistics module  

import statistics  

 

# simple list of a set of integers  

set1 = [1, 3, 3, 4, 5, 7]  

 

# Print median of the data-set  

 

# Median value may or may not  

# lie within the data-set  

print("Median of the set is %s" 

    % (statistics.median(set1)))  

 

# Print high median of the data-set  

print("High Median of the set is %s " 

    % (statistics.median_high(set1))) 

Output: 

Median of the set is 3.5 

High Median of the set is 4  

 

Mode 

It is the value that has the highest frequency in the given data set. The data set may have no mode 

if the frequency of all data points is the same. Also, we can have more than one mode if we 

encounter two or more data points having the same frequency.  

The mode() function returns the number with the maximum number of occurrences. If the passed 

argument is empty, StatisticsError is raised. 

Example: Python code to calculate Mode 

# Python code to demonstrate the  

# working of mode() function  

# on a various range of data types  

 

# Importing the statistics module  

from statistics import mode  

https://www.geeksforgeeks.org/python-statistics-median_high/
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Page | 39 

 

 

# Importing fractions module as fr  

# Enables to calculate harmonic_mean of a  

# set in Fraction  

from fractions import Fraction as fr  

 

# tuple of positive integer numbers  

data1 = (2, 3, 3, 4, 5, 5, 5, 5, 6, 6, 6, 7)  

 

# tuple of a set of floating point values  

data2 = (2.4, 1.3, 1.3, 1.3, 2.4, 4.6)  

 

# tuple of a set of fractional numbers  

data3 = (fr(1, 2), fr(1, 2), fr(10, 3), fr(2, 3))  

 

# tuple of a set of negative integers  

data4 = (-1, -2, -2, -2, -7, -7, -9)  

 

# tuple of strings  

data5 = ("red", "blue", "black", "blue", "black", "black", "brown")  

 

 

# Printing out the mode of the above data-sets  

print("Mode of data set 1 is % s" % (mode(data1)))  

print("Mode of data set 2 is % s" % (mode(data2)))  

print("Mode of data set 3 is % s" % (mode(data3)))  

print("Mode of data set 4 is % s" % (mode(data4)))  

print("Mode of data set 5 is % s" % (mode(data5))) 

Output: 

Mode of data set 1 is 5 

Mode of data set 2 is 1.3 

Mode of data set 3 is 1/2 

Mode of data set 4 is -2 

Mode of data set 5 is black 

 

Try: 
1. Write a Python program that computes the mean (average) of the 'value' column in a pandas 

DataFrame 

2. Write a Python program that computes the median and mode of the 'value' column in a pandas 

DataFrame 

3. Write a Python program that computes the weighted average of the 'value' column using the 

'weight' column 

4. Write a Python program to compute the range (difference between max and min) of the 'value' 

column in a pandas DataFrame 

c. Compute statistical ratios of numerical attributes.  
 

Statistical ratios are valuable tools for comparing and analyzing numerical data. They provide 

insights into the relationships between different variables or groups within a dataset. Here are 

some common statistical ratios and how to compute them: 

1. Ratio 

Definition: A simple comparison of two quantities, often expressed as a fraction or with a colon. 

Formula: Ratio = Quantity 1 / Quantity 2 
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Example: If a class has 15 boys and 10 girls, the ratio of boys to girls is 15:10 or 3:2. 

2. Proportion 

Definition: A type of ratio that expresses a part of a whole. 

Formula: Proportion = Part / Whole 

Example: If a survey of 100 people shows that 60 prefer coffee, the proportion of coffee drinkers 

is 60/100 or 0.6. 

3. Rate 

Definition: A ratio that compares two quantities with different units. 

Formula: Rate = Quantity 1 / Quantity 2 

Example: Speed is a rate, often expressed as miles per hour (mph) or kilometers per hour (kph). 

4. Percentage 

Definition: A proportion expressed as a fraction of 100. 

Formula: Percentage = (Part / Whole) * 100% 

Example: If a student scores 80 out of 100 on a test, their score is 80%. 

5. Coefficient of Variation (CV) 

Definition: A measure of relative variability, often used to compare the dispersion of different 

datasets. 

Formula: CV = (Standard Deviation / Mean) * 100% 

Example: A higher CV indicates greater variability relative to the mean. 

6. Signal-to-Noise Ratio (SNR) 

Definition: A measure of the ratio of a signal's strength to the background noise level. 

Formula: SNR = Signal Power / Noise Power 

Example: A higher SNR indicates a stronger signal relative to the noise. 

7. Odds Ratio 

Definition: A measure of the association between two binary variables. 

Formula: Odds Ratio = (Odds of event in group 1) / (Odds of event in group 2) 

Example: In medical research, it might compare the odds of developing a disease between an 

exposed and unexposed group. 

Computing Ratios in Python 

Here's a Python example demonstrating how to calculate some of these ratios: 

import numpy as np 

 

# Sample data (replace with your actual data) 

data = np.array([10, 15, 20, 25, 30]) 

 

# Calculate mean and standard deviation 

mean = np.mean(data) 

std_dev = np.std(data) 

 

# Calculate coefficient of variation 

cv = (std_dev / mean) * 100 

print("Coefficient of Variation:", cv) 

 

# Calculate ratio of first to last element 

ratio = data[0] / data[-1] 

print("Ratio of first to last element:", ratio) 

 

# Calculate odds ratio (assuming two groups of data) 

# Replace with your actual data for the two groups 

group1 = np.array([10, 20, 30]) 

group2 = np.array([5, 15, 25]) 
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odds_ratio = (group1.sum() / (1 - group1.sum())) / (group2.sum() / (1 - group2.sum())) 

print("Odds Ratio:", odds_ratio) 

 

# Calculate signal-to-noise ratio (SNR) 

# Assuming some noise is added to the original data 

noise = np.random.normal(0, 5, size=len(data)) 

noisy_data = data + noise 

 

signal_power = np.mean(data**2) 

noise_power = np.mean(noise**2) 

 

snr = 10 * np.log10(signal_power / noise_power) 

print("Signal-to-Noise Ratio (in dB):", snr) 

Output: 

Coefficient of Variation: 40.0  

Ratio of first to last element: 0.3333333333333333  

Odds Ratio: 1.7142857142857142  

Signal-to-Noise Ratio (in dB): 11.48796613333959 

Try: 
1. Write a program to compute the ratio of two numerical columns ('value1' and 'value2') in a 

pandas DataFrame 

2. Write a program that computes the ratio of the maximum value to the minimum value in a 

numerical column ('value') 

3. Write a program to compute the ratio of 'value1' to 'value2', but only for rows where 'value1' is 

greater than 20 

 

d. Interpret the results.  
 

• Ranking Statistics: Percentiles, quartiles, and the IQR provide insights into the distribution of 

the data and the location of specific values within the distribution.  

• Statistical Averages: The mean, median, and mode provide different measures of central 

tendency, which can be used to summarize the data and identify typical values.  

• Statistical Ratios: The CV, SNR, and odds ratio provide insights into the relative variability, signal 

strength, and association between variables, respectively. 

 

 

 

Example using Python: 

import numpy as np 

 

data = np.array([10, 15, 20, 25, 30]) 

 

# Calculate ranking statistics 

percentiles = np.percentile(data, [25, 50, 75]) 

print("Percentiles:", percentiles) 

q1, q2, q3 = np.percentile(data, [25, 50, 75]) 

iqr = q3 - q1 

print("Interquartile Range:", iqr) 

 

# Calculate statistical averages 

mean = np.mean(data) 

median = np.median(data) 
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mode = np.argmax(np.bincount(data)) 

print("Mean:", mean) 

print("Median:", median) 

print("Mode:", mode) 

 

# Calculate statistical ratios (assuming some noise is added to the data) 

noise = np.random.normal(0, 5, size=len(data)) 

noisy_data = data + noise 

 

signal_power = np.mean(data**2) 

noise_power = np.mean(noise**2) 

 

snr = 10 * np.log10(signal_power / noise_power) 

print("Signal-to-Noise Ratio (in dB):", snr) 

Output: 

Percentiles: [12.5 20.   27.5] 

Interquartile Range: 15.0 

Mean: 20.0 

Median: 20.0 

Mode: 10 

Signal-to-Noise Ratio (in dB): 11.48796613333959 

Interpretation: 

• Ranking Statistics: 

o The 25th, 50th, and 75th percentiles are 12.5, 20, and 27.5, respectively. This means that 25% of the 

data falls below 12.5, 50% falls below 20, and 75% falls below 27.5. 

o The interquartile range (IQR) is 15, indicating that the middle 50% of the data is spread over a 

range of 15 units. 

• Statistical Averages: 

o The mean and median are both 20, suggesting that the data is relatively symmetrically distributed. 

o The mode is 10, indicating that 10 is the most frequent value in the data. 

• Signal-to-Noise Ratio: 

o The SNR is approximately 11.49 dB. This suggests that the signal is relatively strong compared to 

the background noise. 

 

Try 

 
Find the suitable case study for interpret the results (e.g. sales analysis, ordering management system) 

 

5. Handling Missing Values  
 

values are a common issue in machine learning. This occurs when a particular variable lacks data points, 

resulting in incomplete information and potentially harming the accuracy and dependability of your 

models. It is essential to address missing values efficiently to ensure strong and impartial results in your 

machine-learning projects.  

 

Missing values are data points that are absent for a specific variable in a dataset. They can be 

represented in various ways, such as blank cells, null values, or special symbols like “NA” or “unknown.” 

These missing data points pose a significant challenge in data analysis and can lead to inaccurate or 

biased results. 
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Missing Values 

 

Missing values can pose a significant challenge in data analysis, as they can: 

 

• Reduce the sample size: This can decrease the accuracy and reliability of your analysis. 

• Introduce bias: If the missing data is not handled properly, it can bias the results of your 

analysis. 

• Make it difficult to perform certain analyses: Some statistical techniques require complete 

data for all variables, making them inapplicable when missing values are present 

• It’s important to understand the reasons behind missing data: 

• Identifying the type of missing data: Is it Missing Completely at Random (MCAR), Missing at 

Random (MAR), or Missing Not at Random (MNAR)? 

• Evaluating the impact of missing data: Is the missingness causing bias or affecting the 

analysis? 

• Choosing appropriate handling strategies: Different techniques are suitable for different 

types of missing data. 

 

Methods for Identifying Missing Data 

Locating and understanding patterns of missingness in the dataset is an important step in 

addressing its impact on analysis. Working with Missing Data in Pandas there are several useful 

functions for detecting, removing, and replacing null values in Pandas DataFrame. 

 

Functions Descriptions 

.isnull() Identifies missing values in a Series or DataFrame. 

.notnull() 

check for missing values in a pandas Series or DataFrame. It 

returns a boolean Series or DataFrame, where True indicates 

non-missing values and False indicates missing values. 

.info() 
Displays information about the DataFrame, including data 

types, memory usage, and presence of missing values. 

.isna() 
similar to notnull() but returns True for missing values and 

False for non-missing values. 

https://www.geeksforgeeks.org/working-with-missing-data-in-pandas/
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Functions Descriptions 

dropna() 
Drops rows or columns containing missing values based on 

custom criteria. 

fillna() 
Fills missing values with specific values, means, medians, or 

other calculated values. 

replace() 
Replaces specific values with other values, facilitating data 

correction and standardization. 

drop_duplicates() Removes duplicate rows based on specified columns. 

unique() Finds unique values in a Series or DataFrame 

 

Effective Strategies for Handling Missing Values in Data Analysis 

Missing values are a common challenge in data analysis, and there are several strategies for handling 

them. Here’s an overview of some common approaches: 

 

Impact of Handling Missing Values: 

Missing values are a common occurrence in real-world data, negatively impacting data analysis and 

modeling if not addressed properly. Handling missing values effectively is crucial to ensure the accuracy 

and reliability of your findings. 

 

Here are some key impacts of handling missing values: 

1. Improved data quality: Addressing missing values enhances the overall quality of the dataset. A 

cleaner dataset with fewer missing values is more reliable for analysis and model training. 

2. Enhanced model performance: Machine learning algorithms often struggle with missing 

data, leading to biased and unreliable results. By appropriately handling missing values, models 

can be trained on a more complete dataset, leading to improved performance and accuracy. 

3. Preservation of Data Integrity: Handling missing values helps maintain the integrity of the 

dataset. Imputing or removing missing values ensures that the dataset remains consistent and 

suitable for analysis. 

4. Reduced bias: Ignoring missing values may introduce bias in the analysis or modeling process. 

Handling missing data allows for a more unbiased representation of the underlying patterns in the 

data. 

5. Descriptive statistics, such as means, medians, and standard deviations, can be more accurate when 

missing values are appropriately handled. This ensures a more reliable summary of the dataset. 

6. Increased efficiency: Efficiently handling missing values can save you time and effort during data 

analysis and modeling. 

 

a. Drop the rows containing missing values   
 

Sample Data with Missing Values 

import pandas as pd 

import numpy as np 

 

# Creating a sample DataFrame with missing values 
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data = { 

    'School ID': [101, 102, 103, np.nan, 105, 106, 107, 108], 

    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank', 'Grace', 'Henry'], 

    'Address': ['123 Main St', '456 Oak Ave', '789 Pine Ln', '101 Elm St', np.nan, '222 Maple 

Rd', '444 Cedar Blvd', '555 Birch Dr'], 

    'City': ['Los Angeles', 'New York', 'Houston', 'Los Angeles', 'Miami', np.nan, 'Houston', 

'New York'], 

    'Subject': ['Math', 'English', 'Science', 'Math', 'History', 'Math', 'Science', 'English'], 

    'Marks': [85, 92, 78, 89, np.nan, 95, 80, 88], 

    'Rank': [2, 1, 4, 3, 8, 1, 5, 3], 

    'Grade': ['B', 'A', 'C', 'B', 'D', 'A', 'C', 'B'] 

} 

 

df = pd.DataFrame(data) 

print("Sample DataFrame:") 

print(df) 

Output: 

Sample Data with Missing Values: 

Schoo

l ID Name Address City   

Subjec

t  

Mark

s 

Ran

k 

Grad

e 

0 
101 Alice 123 Main St 

Los 

Angeles Math 85 2 B 

1 102 Bob 456 Oak Ave New York English 92 1 A 

2 
103 

Charli

e 789 Pine Ln Houston 

Scienc

e 78 4 C 

3 
Na

N David 101 Elm St 

Los 

Angeles Math 89 3 B 

4 105 Eva NaN Miami History NaN 8 D 

5 106 Frank 222 Maple Rd NaN Math 95 1 A 

6 
107 Grace 

444 Cedar 

Blvd Houston 

Scienc

e 80 5 C 

7 108 Henry 555 Birch Dr New York English 88 3 B 

 

Removing Rows with Missing Values 

• Simple and efficient: Removes data points with missing values altogether. 

• Reduces sample size: Can lead to biased results if missingness is not random. 

• Not recommended for large datasets: Can discard valuable information. 

In this example, we are removing rows with missing values from the original DataFrame (df) using 

the dropna() method and then displaying the cleaned DataFrame (df_cleaned). 

 

# Removing rows with missing values 

df_dropped = df.dropna() 

 

# Displaying the DataFrame after removing missing values 

print("\nDataFrame after removing rows with missing values:") 

print(df_dropped) 

Output: 

Schoo

l ID Name Address City   

Subjec

t  

Mark

s 

Ran

k 

Grad

e 
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0 
10

1 Alice 123 Main St 

Los 

Angeles Math 85 2 B 

1 
10

2 Bob 456 Oak Ave New York English 92 1 A 

2 
10

3 

Charli

e 789 Pine Ln Houston 

Scienc

e 78 4 C 

6 
10

7 Grace 

444 Cedar 

Blvd Houston 

Scienc

e 80 5 C 

7 
10

8 Henry 555 Birch Dr New York English 88 3 B 

 

 

Try:  

1. Write a program and consider the above dataframe with missing values, calculate the 

percentage of missing values in each column and create a summary table showing the columns 

with the highest percentage of missing values.  

2. Write a program and consider the above dataframe, calculate and display the number of 

missing values in each column individually. Sort the columns by the number of missing values 

in descending order.  

3. Write a program and consider the above dataframe, calculate and display the number of 

missing values in each row individually. Sort the rows by the number of missing values in 

ascending order.  

4. Write a program and consider above dataframe with missing values, remove all columns 

containing missing values. Display the resulting dataframe.  

5. Write a program and consider above dataframe, remove rows that have more than a specified 

number of missing values. Display the resulting dataframe.  

6. Write a program to create a summary report that includes information about the number of 

rows and columns removed due to missing values after removal operations. 

b. Impute missing values with statistical averages   
 

Here are some common imputation methods: 

1- Mean, Median, and Mode Imputation: 

• Replace missing values with the mean, median, or mode of the relevant variable. 

• Simple and efficient: Easy to implement. 

• Can be inaccurate: Doesn’t consider the relationships between variables. 

In this example, we are explaining the imputation techniques for handling missing values in the 

‘Marks’ column of the DataFrame (df). It calculates and fills missing values with the mean, median, 

and mode of the existing values in that column, and then prints the results for observation. 

1. Mean Imputation: Calculates the mean of the ‘Marks’ column in the DataFrame (df). 

• df['Marks'].fillna(...): Fills missing values in the ‘Marks’ column with the mean value. 

• mean_imputation: The result is stored in the variable mean_imputation. 

2. Median Imputation: Calculates the median of the ‘Marks’ column in the DataFrame (df). 

• df['Marks'].fillna(...): Fills missing values in the ‘Marks’ column with the median value. 

• median_imputation: The result is stored in the variable median_imputation. 

 

3. Mode Imputation: Calculates the mode of the ‘Marks’ column in the DataFrame (df). The result is 

a Series. 

• .iloc[0]: Accesses the first element of the Series, which represents the mode. 

• df['Marks'].fillna(...): Fills missing values in the ‘Marks’ column with the mode value. 
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#  Mean, Median, and Mode Imputation 

mean_imputation = df['Marks'].fillna(df['Marks'].mean()) 

median_imputation = df['Marks'].fillna(df['Marks'].median()) 

mode_imputation = df['Marks'].fillna(df['Marks'].mode().iloc[0]) 

 

print("\nImputation using Mean:") 

print(mean_imputation) 

 

print("\nImputation using Median:") 

print(median_imputation) 

 

print("\nImputation using Mode:") 

print(mode_imputation) 

 

Output: 

Imputation using Mean: 

0    85.000000 

1    92.000000 

2    78.000000 

3    89.000000 

4    86.714286 

5    95.000000 

6    80.000000 

7    88.000000 

Name: Marks, dtype: float64 

 

Imputation using Median: 

0    85.0 

1    92.0 

2    78.0 

3    89.0 

4    88.0 

5    95.0 

6    80.0 

7    88.0 

Name: Marks, dtype: float64 

 

Imputation using Mode: 

0    85.0 

1    92.0 

2    78.0 

3    89.0 

4    78.0 

5    95.0 

6    80.0 

7    88.0 

Name: Marks, dtype: float64 

 

Try: 

1. Write a program and consider given dataframe with missing values in a numerical column, 

impute the missing values in that column with the median of the non-missing values.  

2. Write a program and consider given dataframe with missing values in a numerical column, 
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impute the missing values in that column with the median of the non-missing values.  

3. Write a program and consider given dataframe with missing values, impute missing values in a 

specific column with a constant value of your choice (e.g., 0).   

 

c. Impute missing values using linear interpolation    
 

Imputation Methods 

▪ Replacing missing values with estimated values. 

▪ Preserves sample size: Doesn’t reduce data points. 

▪ Can introduce bias: Estimated values might not be accurate. 

 

a. Interpolation Techniques 

▪ Estimate missing values based on surrounding data points using techniques like linear 

interpolation or spline interpolation. 

▪ More sophisticated than mean/median imputation: Captures relationships between variables. 

▪ Requires additional libraries and computational resources. 

▪ These interpolation techniques are useful when the relationship between data points can be 

reasonably assumed to follow a linear or quadratic pattern. The method parameter in 

the interpolate() method allows to specify the interpolation strategy. 

1. Linear Interpolation 

▪ df['Marks'].interpolate(method='linear'): This method performs linear interpolation on the 

‘Marks’ column of the DataFrame (df). Linear interpolation estimates missing values by 

considering a straight line between two adjacent non-missing values. 

▪ linear_interpolation: The result is stored in the variable linear_interpolation. 

2. Quadratic Interpolation 

▪ df['Marks'].interpolate(method='quadratic'): This method performs quadratic interpolation on 

the ‘Marks’ column. Quadratic interpolation estimates missing values by considering a quadratic 

curve that passes through three adjacent non-missing values. 

▪ quadratic_interpolation: The result is stored in the variable quadratic_interpolation. 

#  Interpolation Techniques 

linear_interpolation = df['Marks'].interpolate(method='linear') 

quadratic_interpolation = df['Marks'].interpolate(method='quadratic') 

 

print("\nLinear Interpolation:") 

print(linear_interpolation) 

 

print("\nQuadratic Interpolation:") 

print(quadratic_interpolation) 

 

Output: 

Linear Interpolation: 

0    85.0 

1    92.0 

2    78.0 

3    89.0 

4    92.0 

5    95.0 

6    80.0 

7    88.0 

Name: Marks, dtype: float64 

 

Quadratic Interpolation: 

https://www.geeksforgeeks.org/quadratic-interpolation/
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0    85.00000 

1    92.00000 

2    78.00000 

3    89.00000 

4    98.28024 

5    95.00000 

6    80.00000 

7    88.00000 

Name: Marks, dtype: float64 

Note: 

▪ Linear interpolation assumes a straight line between two adjacent non-missing values. 

▪ Quadratic interpolation assumes a quadratic curve that passes through three adjacent non-

missing values. 
 

2. Forward and Backward Fill 

▪ Replace missing values with the previous or next non-missing value in the same variable. 

▪ Simple and intuitive: Preserves temporal order. 

▪ Can be inaccurate: Assumes missing values are close to observed values 

▪ These fill methods are particularly useful when there is a logical sequence or order in the data, 

and missing values can be reasonably assumed to follow a pattern. The method parameter 

in fillna() allows to specify the filling strategy, and here, it’s set to ‘ffill’ for forward fill and ‘bfill’ 

for backward fill. 

1. Forward Fill (forward_fill) 

▪ df['Marks'].fillna(method='ffill'): This method fills missing values in the ‘Marks’ column of the 

DataFrame (df) using a forward fill strategy. It replaces missing values with the last observed 

non-missing value in the column. 

▪ forward_fill: The result is stored in the variable forward_fill. 

2. Backward Fill (backward_fill) 

▪ df['Marks'].fillna(method='bfill'): This method fills missing values in the ‘Marks’ column using a 

backward fill strategy. It replaces missing values with the next observed non-missing value in 

the column. 

▪ backward_fill: The result is stored in the variable backward_fill. 

# Forward and Backward Fill 

forward_fill = df['Marks'].fillna(method='ffill') 

backward_fill = df['Marks'].fillna(method='bfill') 

 

print("\nForward Fill:") 

print(forward_fill) 

 

print("\nBackward Fill:") 

print(backward_fill) 

 

Output: 

Forward Fill: 

0    85.0 

1    92.0 

2    78.0 

3    89.0 

4    89.0 

5    95.0 

6    80.0 

7    88.0 
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Name: Marks, dtype: float64 

 

Backward Fill: 

0    85.0 

1    92.0 

2    78.0 

3    89.0 

4    95.0 

5    95.0 

6    80.0 

7    88.0 

Name: Marks, dtype: float64 

Note 

▪ Forward fill uses the last valid observation to fill missing values. 

▪ Backward fill uses the next valid observation to fill missing values. 

 

Try: 
1. Write a program to define a custom interpolation function that takes into account domain-

specific knowledge or specific data characteristics to impute missing values in a dataframe.  

2. Write a program and consider above dataframe with time-ordered data and a numerical column 

containing missing values, use interpolation techniques that consider the time steps between 

observations to impute missing values more accurately.  

3. Write a program and consider given dataframe with time-ordered data and a numerical column 

containing missing values, impute the missing values in that column. Ensure that missing values 

are filled with the previously available value in the column. Perform Forward Fill using forward 

fill (.ffill()) method  

4. Write a program and consider given a dataframe with multiple columns, use forward fill to 

impute missing values in specific columns of your choice while keeping other columns 

unaffected.  

5. Write a program to create a summary report that includes information about the number of 

missing values before and after forward fill and backward fill operations, as well as any specific 

patterns or trends observed. 

d. Interpret the results.  
 

Interpret the results of handling missing values using the methods mentioned earlier: dropping 

rows, imputing with mean, median, mode and linear interpolation. The code will display the 

DataFrame after each operation. 

import pandas as pd 

import numpy as np 

 

# Sample data with missing values 

data = { 

    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'], 

    'Age': [23, np.nan, 45, 28, 60], 

    'Salary': [50000, 60000, np.nan, 55000, 90000], 

    'Experience': [2, 5, 8, np.nan, 12] 

} 

 

# Create DataFrame 

df = pd.DataFrame(data) 

print("Original DataFrame with Missing Values:") 

print(df) 
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# 1. Drop rows with missing values 

df_dropped = df.dropna() 

print("\nDataFrame after Dropping Rows with Missing Values:") 

print(df_dropped) 

 

# 2. Impute missing values with the mean of the column 

df_imputed_mean = df.fillna(df.mean()) 

print("\nDataFrame after Imputing Missing Values with Mean:") 

print(df_imputed_mean) 

 

# 3. Impute missing values with the median of the column 

df_imputed_median = df.fillna(df.median()) 

print("\nDataFrame after Imputing Missing Values with Median:") 

print(df_imputed_median) 

 

# 4. Impute missing values with the mode of the column 

df_imputed_mode = df.apply(lambda x: x.fillna(x.mode()[0]), axis=0) 

print("\nDataFrame after Imputing Missing Values with Mode:") 

print(df_imputed_mode) 

 

# 5. Impute missing values using linear interpolation 

df_interpolated = df.interpolate(method='linear') 

print("\nDataFrame after Linear Interpolation:") 

print(df_interpolated) 

 

# INTERPRETATION SECTION: 

 

print("\nINTERPRETATION OF RESULTS:") 

 

# Interpretation for Dropping Rows: 

print("\n1. Dropping Rows with Missing Values:") 

print("Rows containing missing values were completely removed, which led to a loss of 

data (Bob, Charlie, and David were removed)." 

      " This may result in the loss of important information if the missing data is 

substantial.") 

 

# Interpretation for Imputing Mean: 

print("\n2. Imputing Missing Values with Mean:") 

print("Missing values were replaced with the mean of the respective columns (Age: 39, 

Salary: 68750, Experience: 6.3)." 

      " This approach preserves the data but may introduce bias if the data is skewed, 

especially with large outliers or non-normal distributions.") 

 

# Interpretation for Imputing Median: 

print("\n3. Imputing Missing Values with Median:") 

print("The missing values were replaced with the median of the respective columns (Age: 

39, Salary: 60000, Experience: 6.5)." 

      " Median imputation is less sensitive to outliers compared to mean imputation and 

may be a better choice for skewed distributions.") 

 

# Interpretation for Imputing Mode: 
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print("\n4. Imputing Missing Values with Mode:") 

print("The missing values were replaced with the mode (most frequent value) of the 

respective columns." 

      " For example, if there are multiple occurrences of a particular value, the missing value 

is replaced with that value." 

      " Mode imputation works well when the data has repeating values, but it might distort 

the distribution if the mode is not representative.") 

 

# Interpretation for Linear Interpolation: 

print("\n5. Imputing Missing Values Using Linear Interpolation:") 

print("The missing values were estimated based on neighboring values using linear 

interpolation. " 

      "For example, Bob's Age was interpolated to 34 (between Alice and Charlie), and 

Charlie's Salary was interpolated to 72500 (between Bob and David). " 

      "This method works well for ordered data, like time-series or sequential datasets, and 

avoids bias introduced by simple mean imputation.") 

Sample Output: 

Original DataFrame with Missing Values: 

      Name   Age   Salary  Experience 

0    Alice  23.0  50000.0         2.0 

1      Bob   NaN  60000.0         5.0 

2  Charlie  45.0      NaN         8.0 

3    David  28.0  55000.0         NaN 

4      Eve  60.0  90000.0        12.0 

 

DataFrame after Dropping Rows with Missing Values: 

    Name   Age   Salary  Experience 

0  Alice  23.0  50000.0         2.0 

4    Eve  60.0  90000.0        12.0 

 

DataFrame after Imputing Missing Values with Mean: 

      Name   Age   Salary  Experience 

0    Alice  23.0  50000.0         2.0 

1      Bob  39.0  60000.0         5.0 

2  Charlie  45.0  68750.0         8.0 

3    David  28.0  55000.0         6.3 

4      Eve  60.0  90000.0        12.0 

 

DataFrame after Imputing Missing Values with Median: 

      Name   Age   Salary  Experience 

0    Alice  23.0  50000.0         2.0 

1      Bob  39.0  60000.0         5.0 

2  Charlie  45.0  60000.0         8.0 

3    David  28.0  55000.0         6.5 

4      Eve  60.0  90000.0        12.0 

 

DataFrame after Imputing Missing Values with Mode: 

      Name   Age   Salary  Experience 

0    Alice  23.0  50000.0         2.0 

1      Bob  23.0  60000.0         5.0 

2  Charlie  45.0  50000.0         8.0 

3    David  28.0  55000.0         2.0 
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4      Eve  60.0  90000.0        12.0 

 

DataFrame after Linear Interpolation: 

      Name   Age   Salary  Experience 

0    Alice  23.0  50000.0         2.0 

1      Bob  34.0  60000.0         5.0 

2  Charlie  45.0  72500.0         8.0 

3    David  28.0  55000.0        10.0 

4      Eve  60.0  90000.0        12.0 

 

INTERPRETATION OF RESULTS: 

 

1. Dropping Rows with Missing Values: 

Rows containing missing values were completely removed, which led to a loss of data (Bob, Charlie, 

and David were removed). This may result in the loss of important information if the missing data 

is substantial. 

 

2. Imputing Missing Values with Mean: 

Missing values were replaced with the mean of the respective columns (Age: 39, Salary: 68750, 

Experience: 6.3). This approach preserves the data but may introduce bias if the data is skewed, 

especially with large outliers or non-normal distributions. 

 

3. Imputing Missing Values with Median: 

The missing values were replaced with the median of the respective columns (Age: 39, Salary: 

60000, Experience: 6.5). Median imputation is less sensitive to outliers compared to mean 

imputation and may be a better choice for skewed distributions. 

 

4. Imputing Missing Values with Mode: 

The missing values were replaced with the mode (most frequent value) of the respective columns. 

For example, if there are multiple occurrences of a particular value, the missing value is replaced 

with that value. Mode imputation works well when the data has repeating values, but it might 

distort the distribution if the mode is not representative. 

 

5. Imputing Missing Values Using Linear Interpolation: 

The missing values were estimated based on neighboring values using linear interpolation. For 

example, Bob's Age was interpolated to 34 (between Alice and Charlie), and Charlie's Salary was 

interpolated to 72500 (between Bob and David). This method works well for ordered data, like 

time-series or sequential datasets, and avoids bias introduced by simple mean imputation. 

Key Points: 

• Mean imputation: Best used when the data is normally distributed, but can be influenced by 

outliers. 

• Median imputation: Robust against outliers and better suited for skewed distributions. 

• Mode imputation: Useful for categorical data or when most frequent values are good 

replacements. 

• Linear Interpolation: Best for sequential or time-series data where missing values follow a linear 

trend. 

 

 

1. 6. Handling Time series data.    

Time series data is a sequential arrangement of data points organized in consecutive time order. Time-

series analysis consists of methods for analyzing time-series data to extract meaningful insights and 
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other valuable characteristics of the data. 

 

Time-series data analysis is becoming very important in so many industries, like financial industries, 

pharmaceuticals, social media companies, web service providers, research, and many more. To 

understand the time-series data, visualization of the data is essential. In fact, any type of data analysis 

is not complete without visualizations, because one good visualization can provide meaningful and 

interesting insights into the data. 

 

Types of Time Series Data 

Time series data can be broadly classified into two sections: 

1. Continuous Time Series Data:Continuous time series data involves measurements or observations 

that are recorded at regular intervals, forming a seamless and uninterrupted sequence. This type of data 

is characterized by a continuous range of possible values and is commonly encountered in various 

domains, including: 

▪ Temperature Data: Continuous recordings of temperature at consistent intervals (e.g., hourly or 

daily measurements). 

▪ Stock Market Data: Continuous tracking of stock prices or values throughout trading hours. 

▪ Sensor Data: Continuous measurements from sensors capturing variables like pressure, 

humidity, or air quality. 

 

2. Discrete Time Series Data: Discrete time series data, on the other hand, consists of measurements 

or observations that are limited to specific values or categories. Unlike continuous data, discrete data 

does not have a continuous range of possible values but instead comprises distinct and separate data 

points. Common examples include: 

▪ Count Data: Tracking the number of occurrences or events within a specific time period. 

▪ Categorical Data: Classifying data into distinct categories or classes (e.g., customer segments, 

product types). 

▪ Binary Data: Recording data with only two possible outcomes or states. 

 

 

Basic Time Series Concepts 

• Trend: A trend represents the general direction in which a time series is moving over an 

extended period. It indicates whether the values are increasing, decreasing, or staying relatively 

constant. 

• Seasonality: Seasonality refers to recurring patterns or cycles that occur at regular intervals 

within a time series, often corresponding to specific time units like days, weeks, months, or 

seasons. 

• Moving average: The moving average method is a common technique used in time series 

analysis to smooth out short-term fluctuations and highlight longer-term trends or patterns in 

the data. It involves calculating the average of a set of consecutive data points, referred to as a 

“window” or “rolling window,” as it moves through the time series 

• Noise: Noise, or random fluctuations, represents the irregular and unpredictable components 

in a time series that do not follow a discernible pattern. It introduces variability that is not 

attributable to the underlying trend or seasonality. 

• Differencing: Differencing is used to make the difference in values of a specified interval. By 

default, it’s one, we can specify different values for plots. It is the most popular method to 

remove trends in the data. 

• Stationarity: A stationary time series is one whose statistical properties, such as mean, 

variance, and autocorrelation, remain constant over time. 

• Order: The order of differencing refers to the number of times the time series data needs to be 

differenced to achieve stationarity. 

• Autocorrelation: Autocorrelation, is a statistical method used in time series analysis to quantify 

https://www.geeksforgeeks.org/what-is-a-trend-in-time-series/
https://www.geeksforgeeks.org/seasonality-detection-in-time-series-data/
https://www.geeksforgeeks.org/program-find-simple-moving-average/
https://www.geeksforgeeks.org/how-to-check-if-time-series-data-is-stationary-with-python/
https://www.geeksforgeeks.org/autocorrelation/
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the degree of similarity between a time series and a lagged version of itself. 

• Resampling: Resampling is a technique in time series analysis that involves changing the 

frequency of the data observations. It’s often used to transform the data to a different frequency 

(e.g., from daily to monthly) to reveal patterns or trends more clearly. 
 

1. Display the date and time information in different formats.   
 

Importing the Libraries 

We will import all the libraries that we will be using throughout this article in one place so that do 

not have to import every time we use it this will save both our time and effort. 

• Numpy – A Python library that is used for numerical mathematical computation and handling 

multidimensional ndarray, it also has a very large collection of mathematical functions to operate 

on this array. 

• Pandas – A Python library built on top of NumPy for effective matrix multiplication and dataframe 

manipulation, it is also used for data cleaning, data merging, data reshaping, and data aggregation. 

• Matplotlib – It is used for plotting 2D and 3D visualization plots, it also supports a variety of output 

formats including graphs for data.  

 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from statsmodels.graphics.tsaplots import plot_acf 

from statsmodels.tsa.stattools import adfuller 

 

Loading The Dataset 

To load the dataset into a dataframe we will use the pandas read_csv() function. We will 

use head() function to print the first five rows of the dataset. Here we will use the ‘parse_dates’ 

parameter in the read_csv function to convert the ‘Date’ column to the DatetimeIndex format. By 

default, Dates are stored in string format which is not the right format for time series data analysis. 

# reading the dataset using read_csv 

df = pd.read_csv("stock_data.csv",  

    parse_dates=True,  

    index_col="Date") 

 

# displaying the first five rows of dataset 

df.head() 

Output: 

            Unnamed: 0   Open   High    Low  Close    Volume  Name 

Date                                                               

2006-01-03         NaN  39.69  41.22  38.79  40.91  24232729  AABA 

2006-01-04         NaN  41.22  41.90  40.77  40.97  20553479  AABA 

2006-01-05         NaN  40.93  41.73  40.85  41.53  12829610  AABA 

2006-01-06         NaN  42.88  43.57  42.80  43.21  29422828  AABA 

2006-01-09         NaN  43.10  43.66  42.82  43.42  16268338  AABA 

Dropping Unwanted Columns   

We will drop columns from the dataset that are not important for our visualization. 

# deleting column 

df.drop(columns='Unnamed: 0', inplace =True) 

df.head() 

Output: 

             Open   High    Low  Close    Volume  Name 

Date                                                   

https://www.geeksforgeeks.org/how-to-resample-time-series-data-in-python/
https://www.geeksforgeeks.org/numpy-tutorial/
https://www.geeksforgeeks.org/pandas-tutorial/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-read-csv-using-pandas-read_csv/
https://www.geeksforgeeks.org/python-pandas-dataframe-series-head-method/
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2006-01-03  39.69  41.22  38.79  40.91  24232729  AABA 

2006-01-04  41.22  41.90  40.77  40.97  20553479  AABA 

2006-01-05  40.93  41.73  40.85  41.53  12829610  AABA 

2006-01-06  42.88  43.57  42.80  43.21  29422828  AABA 

2006-01-09  43.10  43.66  42.82  43.42  16268338  AABA 

Plotting Line plot for Time Series data: 

Since, the volume column is of continuous data type, we will use line graph to visualize it. 

# Assuming df is your DataFrame 

sns.set(style="whitegrid") # Setting the style to whitegrid for a clean background 

 

plt.figure(figsize=(12, 6)) # Setting the figure size 

sns.lineplot(data=df, x='Date', y='High', label='High Price', color='blue') 

 

# Adding labels and title 

plt.xlabel('Date') 

plt.ylabel('High') 

plt.title('Share Highest Price Over Time') 

plt.show() 

Output: 

 
Resampling 

To better understand the trend of the data we will use the resampling method, resampling the 

data on a monthly basis can provide a clearer view of trends and patterns, especially when we are 

dealing with daily data. 

# Assuming df is your DataFrame with a datetime index 

df_resampled = df.resample('M').mean() # Resampling to monthly frequency, using mean as an 

aggregation function 

 

sns.set(style="whitegrid") # Setting the style to whitegrid for a clean background 

 

# Plotting the 'high' column with seaborn, setting x as the resampled 'Date' 

plt.figure(figsize=(12, 6)) # Setting the figure size 
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sns.lineplot(data=df_resampled, x=df_resampled.index, y='High', label='Month Wise Average High 

Price', color='blue') 

 

# Adding labels and title 

plt.xlabel('Date (Monthly)') 

plt.ylabel('High') 

plt.title('Monthly Resampling Highest Price Over Time') 

plt.show() 

Output: 

 
 

 

 

An Example of Time-Series Analysis with Python 

Plotting Data Using Pyplot 

Python brings a host of benefits to the table regarding time-series analysis: 

• It is a user-friendly language. 

• It is widely available in the open-source world. 

• It has extensive library support. 

• It can reuse existing code. 

Python offers extensive specialized libraries and tools specifically designed for time-series analysis. 

These libraries, such as pandas, NumPy, statsmodels, and scikit-learn, provide various functions 

and tools tailored to the unique challenges of working with time-dependent data. They simplify 

complex operations, allowing you to focus on extracting meaningful insights rather than 

reinventing the wheel. 

 

One of the numerous ways software engineers add value to an org is by performing time-series 

analysis. This powerful technique allows us to extract valuable insights from temporal data and 

consists in analyzing and making predictions based on time-based patterns 

Python has quickly emerged as a preferred tool for data analysis due to its simplicity, versatility, 

and vast community support. With its intuitive syntax and extensive library ecosystem, this elegant 

programming language allows you to tackle complex problems efficiently. 

Whether you are building a data-intensive application or working with an experienced data 

https://www.timescale.com/blog/tools-for-working-with-time-series-analysis-in-python/
https://www.statsmodels.org/
https://scikit-learn.org/
https://www.timescale.com/blog/what-is-time-series-analysis-with-examples-and-applications/
https://www.timescale.com/blog/what-is-time-series-analysis-with-examples-and-applications/
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scientist, Python provides a robust platform for exploring, visualizing, and modeling time-

dependent data. 

Let's see how Python can empower your work with time-series data. Consider the following 

example code snippet that loads a time-series dataset using pandas and plots it using Matplotlib: 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Generate random time-series data 

np.random.seed(42) 

dates = pd.date_range(start='2022-01-01', periods=100, freq='D') 

values = np.random.randn(100).cumsum() 

 

# Create a DataFrame from the generated data 

data = pd.DataFrame({'date': dates, 'value': values}) 

 

# Set the 'date' column as the index 

data.set_index('date', inplace=True) 

 

# Plot the time-series data 

plt.plot(data.index, data['value']) 

plt.xlabel('Time') 

plt.ylabel('Value') 

plt.xticks(rotation = 45) 

plt.title('Time Series Data') 

plt.show() 

 

 
This example consists of random data generated by NumPy’s random number generator. The 

dataset consists of 100 dates, starting from January 1, 2022, and corresponding random values. 

The data is converted into a Pandas DataFrame, and the 'date' column is set as the index. Finally, 

the time-series data is plotted using Matplotlib, displaying the variation of the 'value' over time. 

 

Working With Time Series in Python 

Working with time-series data in Python involves several key steps, from choosing the right time-

series library to loading and analyzing the data. Let’s explore the essential aspects of working with 

https://www.timescale.com/blog/time-series-data/
https://www.timescale.com/blog/time-series-data/
https://pandas.pydata.org/
https://matplotlib.org/
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time series in Python, such as selecting a time-series library, utilizing the core library pandas for 

data loading, analysis, and visualization, and exploring some more specialized libraries for 

advanced time-series tasks. 

Choosing a time-series library 

Python provides various libraries tailored for time-series analysis. The core library for time-series 

analysis in Python is pandas. Pandas provides efficient data structures and functions to handle time 

series effectively. It allows you to load data from diverse sources, such as CSV files and databases 

like Timescale. 

With pandas, you can perform basic analysis and visualization of time-series data. The central data 

structure in pandas is the DataFrame, which serves as the primary unit for representing time-series 

data. 

Here's an example that demonstrates the steps of loading and working with time-series data using 

pandas in Python: 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Step 1: Load time-series Data 

dates = pd.date_range(start='2023-01-01', periods=100) 

values = np.sin(np.linspace(0, 2*np.pi, 100)) 

data = pd.DataFrame({'Date': dates, 'Value': values}) 

 

# Step 2: Perform Data Analysis 

# Calculate summary statistics 

summary_stats = data.describe() 

 

# Filter data based on specific conditions 

filtered_data = data[data['Value'] > 0] 

 

# Resample data to a different frequency 

resampled_data = data.resample('1W', on='Date').sum() 

 

# Step 3: Visualize time-series Data 

plt.plot(data['Date'], data['Value']) 

plt.xlabel('Date') 

plt.ylabel('Value') 

plt.xticks(rotation = 45) 

plt.title('Time Series Data') 

plt.show() 

https://moez-62905.medium.com/top-python-libraries-for-time-series-analysis-in-2022-eebe95913085
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This code generates a time-series dataset with dates and sine wave values. It performs data analysis 

tasks such as calculating summary statistics, filtering data based on conditions, and resampling the 

data to a different frequency. Finally, it visualizes the time-series data by plotting the values against 

the dates. 
 

Try  
1. Write a program and load a time series dataset with irregular time intervals (timestamps) into a 

pandas dataframe. Resample the data to have a regular time interval (e.g., daily, hourly) and fill 

any missing data with appropriate values (e.g., forward fill, backward fill, interpolation) on the 

following data:                        data = {'Timestamp': ['2022-01-01 08:00:00', '2022-01-01 10:30:00', 

'2022-01-02 09:15:00'], 'Value': [10, 15, 20]}  

2. Write a program and load above time series dataset that includes time zone information. 

Convert the timestamps to a common time zone (e.g., UTC) in pandas.  

3. Write a program and load a time series dataset that exhibits seasonality (e.g., monthly sales 

data). Create additional columns to represent the year, quarter, month, day of the week, or any 

other seasonal components to facilitate seasonal analysis on the following data:                                                                    

data = {'Date': ['2022-01-15', '2022-02-20', '2022-03-10', '2022-04-05', '2022-05-18'], 'Sales': 

[1000, 1200, 800, 1100, 1500]} 

2. Generate summary statistics during a period.  
 

Time-series data is a sequence of data points collected or recorded at successive points in time, often 

at regular intervals. Examples include stock prices, weather data, and server logs. Handling such data 

involves several key steps to extract meaningful insights. 

1. Loading and Parsing Time-Series Data 

• Time-series data typically includes a date or time column that must be converted into a 

datetime format. 

• Using pandas, the parse_dates parameter ensures the date column is recognized as a 

datetime object, enabling time-based indexing. 

 

2. Exploring the Data 

• Inspect the dataset using .head(), .info(), and .describe() to understand its structure and basic 
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statistics. 

• Check for missing values and handle them appropriately using methods like forward-fill (ffill) 

or backward-fill (bfill). 

3. Filtering Data for a Specific Period 

• Time-based indexing allows slicing the data for a specified range 

• This extracts data between January 1, 2023, and June 30, 2023. 

4. Generating Summary Statistics 

Summary statistics provide a quick overview of the dataset's key characteristics: 

• Count: Number of observations. 

• Mean: Average value. 

• Standard Deviation (std): Measure of data spread. 

• Min and Max: Smallest and largest values. 

• Percentiles (25%, 50%, 75%): Data distribution quartiles. 

5. Optional Visualization 

• Plotting the data helps in understanding trends, seasonality, or anomalies visually. 

Summary Statistics for a Period: 

• Focused Analysis: Restricting to a specific period helps analyze trends, patterns, or 

anomalies during that timeframe. 

• Decision-Making: Insights from summary statistics aid in informed decision-making, 

such as planning resources or forecasting. 

• Comparisons: Comparing statistics across different periods provides insights into 

changes over time. 

Applications 

1. Finance: Analyzing stock price movements over a quarter. 

2. Weather: Evaluating seasonal temperature and rainfall statistics. 

3. Operations: Studying server performance metrics during peak hours. 

 

Challenges 

1. Irregular Intervals: Missing or irregular timestamps require interpolation or resampling. 

2. Large Datasets: Efficient handling of large datasets needs optimization techniques. 

3. Seasonality and Trends: Identifying and analyzing patterns like seasonality may require 

additional tools like Fourier Transforms or ARIMA models 

 

Learn how to load, clean, and analyze time-series data by generating summary statistics for a 

specific time period. 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

data = pd.read_csv("your_timeseries_data.csv", parse_dates=['Date'], index_col='Date') 

print(data.head()) 

print(data.info()) 

print(data.describe()) 

 

# Handling missing values (if any) 

data = data.fillna(method='ffill') 

start_date = '2023-01-01' 

end_date = '2023-06-30' 

 

filtered_data = data.loc[start_date:end_date] 

print(filtered_data.head()) 

summary_stats = filtered_data.describe() 

print(summary_stats) 
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print(filtered_data.median()) 

print(filtered_data.std()) 

filtered_data['Column_of_Interest'].plot(title="Time Series Data for Selected Period", 

figsize=(10, 6)) 

plt.xlabel("Date") 

plt.ylabel("Value") 

plt.show() 

filtered_data.to_csv("filtered_timeseries_data.csv") 

summary_stats.to_csv("summary_statistics.csv") 

 

Output: 

Filtered Data (First 5 Rows): 

Date Temperature Rainfall Humidity 

2023-01-01 22.48 0.51 48.82 

2023-01-02 19.31 6.61 64.92 

2023-01-03 23.24 0.02 60.95 

2023-01-04 27.62 7.01 85.74 

2023-01-05 18.83 0.09 58.12 

 

Summary Statistics: 

Statistic Temperature Rainfall Humidity 

Count 181 181 181 

Mean 19.91 2.15 63.20 

Std. Dev. 4.74 2.37 14.39 

Min 6.90 0.02 40.55 

25% 16.62 0.55 50.39 

Median (50%) 20.03 1.40 62.30 

75% 22.71 2.93 74.61 

Max 33.60 16.34 89.84 

Try: 
1. Write a program that computes summary statistics (mean, median, std) of the 'value' column 

for a specific date range in a pandas DataFrame. 

2. Write a program that computes the average 'value' for each day of the week (e.g., Monday, 

Tuesday). 

3. Write a program to compute the 7-day rolling mean for the 'value' column in a pandas 

DataFrame. 

4. Write a program that computes the monthly average of 'value' but only for values greater than 

30. 

5. Write a program to compute the mean and standard deviation for multiple columns (e.g., 

'value1' and 'value2') over a monthly period. 

 

 

 

3. Compute rolling mean and rolling std deviations and plot. 
 

 

Time Series Plot is used to observe various trends in the dataset over a period of time. In such 
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problems, the data is ordered by time and can fluctuate by the unit of time considered in the 

dataset (day, month, seconds, hours, etc.). When plotting the time series data, these fluctuations 

may prevent us to clearly gain insights about the peaks and troughs in the plot. So to clearly get 

value from the data, we use the rolling average concept to make the time series plot.  

The rolling average or moving average is the simple mean of the last ‘n’ values. It can help us in 

finding trends that would be otherwise hard to detect. Also, they can be used to determine long-

term trends. You can simply calculate the rolling average by summing up the previous ‘n’ values 

and dividing them by ‘n’ itself. But for this, the first (n-1) values of the rolling average would be 

Nan.  

New kind of statistics: rolling statistics. Instead of computing a single statistic over an entire set 

of data, we compute a rolling statistic against a subset, or window, of that data, and we adjust the 

window with each new data point we encounter. 

Pandas provides a number of functions to compute moving statistics. Given a DataFrame df and a 

window window, we can compute the rolling mean & rolling standard deviation  of the columns in 

a DataFrame 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

%matplotlib inline 

#importing data 

df = pd.read_csv('Desktop\RELIANCE.NS.csv',index_col ='Date') 

df.tail() 

#Calculating 30 days moving average 

df['30_MA_Close'] = df['Close'].rolling(window=30).mean() 

#calculating 20 days rolling standard devtaion 

df['20_std_Close'] = df['Close'].rolling(window=20).std() 

df.head(31) 

df[['Close','30_MA_Close']].plot(figsize=(10,5)) 

 

 

Try: 
1. Write a program that computes the 7-day rolling mean and 7-day rolling standard deviation 

for a 'value' column in a pandas DataFrame. Then, plot the original 'value' series along with the 

rolling mean and rolling standard deviation 

2. Write a program to generates a DataFrame containing a time series of daily data for 60 days 
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with random values in the 'value' column. 

3. Write a program to plots the original time series, the rolling mean, and the rolling standard 

deviation in a single graph with proper labels and legends." 

 

7. Visualization of categorical data.    

Visualization of categorical data refers to the use of charts and graphs to represent non-numerical 

data, often consisting of discrete groups or categories. These visualizations help in understanding the 

distribution, frequency, or comparison of categorical variables. 

 

Key Concepts 

1. Categorical Data: 

• Data that represents distinct groups or categories. 

• Examples: Gender (Male, Female), Product Types (Electronics, Furniture), Regions (North, 

South). 

2. Types of Categorical Data: 

• Nominal: Categories without any inherent order (e.g., Colors: Red, Blue, Green). 

• Ordinal: Categories with a meaningful order but no fixed difference between values (e.g., 

Ratings: Poor, Fair, Good). 

 

Common Visualization Techniques 

• Bar Charts: 

o Categories with taller bars are more frequent or have higher values. 

o Useful for direct comparisons. 

• Grouped Bar Charts: 

o Subcategories side-by-side allow insights into relationships within and between 

categories. 

• Stacked Bar Charts: 

o Highlights total contributions and proportions simultaneously. 

• Pie Charts: 

o Easier to interpret proportions but not ideal for precise comparisons. 

• Count Plots: 

o Directly display the frequency of categories, useful for raw count analysis. 

 

a. Plot categorical data as vertical and horizontal bar charts and label it.  
 

A bar plot uses rectangular bars to represent data categories, with bar length or height proportional to 

their values. It compares discrete categories, with one axis for categories and the other for values. 

Syntax: Syntax: plt.bar(x, height, width, bottom, align) 

 

Creating Vertical Bar Plots 

For vertical bar plots, you can use the bar() function.  

import matplotlib.pyplot as plt 

import numpy as np 

 

fruits = ['Apples', 'Bananas', 'Cherries', 'Dates'] 

sales = [400, 350, 300, 450] 

 

plt.bar(fruits, sales, width=0.3) 

plt.title('Fruit Sales') 

plt.xlabel('Fruits') 

plt.ylabel('Sales') 
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plt.show() 

 

Output: 

 
Vertical Plots 

Creating Horizontal Bar Plots 

For horizontal bar plots, you can use the barh() function. This function works similarly to bar(), but 

it displays bars horizontally: 

 

import matplotlib.pyplot as plt 

import numpy as np 

 

fruits = ['Apples', 'Bananas', 'Cherries', 'Dates'] 

sales = [400, 350, 300, 450] 

 

plt.barh(fruits, sales) 

 

plt.title('Fruit Sales') 

plt.xlabel('Fruits') 

plt.ylabel('Sales') 

plt.show() 

Output: 

 
Horizontal Plots 

 

Try: 

1 Write a program to generates a DataFrame with categorical data representing the number of 
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products sold in different categories (e.g., Electronics, Clothing, Food, etc.) for a particular week. 

2 Write a program to Plots the data as:  vertical bar chart showing the number of products sold 

for each category and horizontal bar chart showing the same data. 

3 Write a program to Both charts should be labeled with the category names on the x-axis (for 

the vertical bar chart) and y-axis (for the horizontal bar chart) Include a title and axis labels for 

both charts 

 

b. Plot categorical data as vertical grouped bar charts and label it.  
 

To Create a grouped bar plot in Matplotlib  

• Matplotlib is a tremendous visualization library in Python for 2D plots of arrays. Matplotlib may 

be a multi-platform data visualization library built on NumPy arrays and designed to figure 

with the broader SciPy stack. It had been introduced by John Hunter within the year 2002. 

• A bar plot or bar graph may be a graph that represents the category of knowledge with 

rectangular bars with lengths and heights that’s proportional to the values which they 

represent. The bar plots are often plotted horizontally or vertically. 

• A bar chart is a great way to compare categorical data across one or two dimensions. More 

often than not, it’s more interesting to compare values across two dimensions and for that, a 

grouped bar chart is needed. 

Approach: 

1 Import Library (Matplotlib) 

2 Import / create data. 

3 Plot the bars in the grouped manner. 

Example 1: (Simple grouped bar plot) 

# importing package  

import matplotlib.pyplot as plt  

import numpy as np  

 

# create data  

x = np.arange(5)  

y1 = [34, 56, 12, 89, 67]  

y2 = [12, 56, 78, 45, 90]  

width = 0.40 

 

# plot data in grouped manner of bar type  

plt.bar(x-0.2, y1, width)  

plt.bar(x+0.2, y2, width) 

 

 

Output: 

https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-numpy/
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Example 2: (Grouped bar chart with more than 2 data) 

# importing package  

import matplotlib.pyplot as plt  

import numpy as np  

 

# create data  

x = np.arange(5)  

y1 = [34, 56, 12, 89, 67]  

y2 = [12, 56, 78, 45, 90]  

y3 = [14, 23, 45, 25, 89]  

width = 0.2 

 

# plot data in grouped manner of bar type  

plt.bar(x-0.2, y1, width, color='cyan')  

plt.bar(x, y2, width, color='orange')  

plt.bar(x+0.2, y3, width, color='green')  

plt.xticks(x, ['Team A', 'Team B', 'Team C', 'Team D', 'Team E'])  

plt.xlabel("Teams")  

plt.ylabel("Scores")  

plt.legend(["Round 1", "Round 2", "Round 3"])  

plt.show() 

 

Output: 
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Example 3: (Grouped Bar chart using dataframe plot) 

# importing package  

import matplotlib.pyplot as plt  

import pandas as pd  

 

# create data  

df = pd.DataFrame([['A', 10, 20, 10, 30], ['B', 20, 25, 15, 25], ['C', 12, 15, 19, 6],  

    ['D', 10, 29, 13, 19]],  

    columns=['Team', 'Round 1', 'Round 2', 'Round 3', 'Round 4'])  

# view data  

print(df)  

 

# plot grouped bar chart  

df.plot(x='Team',  

  kind='bar',  

  stacked=False,  

  title='Grouped Bar Graph with dataframe') 

 

 

 

 

 

 

 

 

 

 

 

 

Output: 

https://www.geeksforgeeks.org/python-pandas-dataframe/
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Try: 
1 Write a program to generates a DataFrame with categorical data representing the sales data of 

different product categories (e.g., Electronics, Clothing, Food) across two different time periods 

(e.g., January and February). 

2 Write a program to Plots the data as a grouped vertical bar chart, where the bars for each 

category (Electronics, Clothing, Food) are grouped side by side for the two months (January and 

February). 

3 Write a program to Ensure that the chart is properly labeled with the product categories on the 

x-axis, sales figures on the y-axis, and each group of bars representing the two months, Include 

a title and axis labels for the chart. Use different colors to distinguish the two months. 

 

c. Plot categorical data as vertical stacked bar charts and label it.  
 

To Create a stacked bar plot in Matplotlib.  

• Matplotlib is a tremendous visualization library in Python for 2D plots of arrays. Matplotlib may be 

a multi-platform data visualization library built on NumPy arrays and designed to figure with the 

broader SciPy stack. 

• A bar plot or bar graph may be a graph that represents the category of knowledge with rectangular 

bars with lengths and heights that’s proportional to the values which they represent. The bar plots 

are often plotted horizontally or vertically. 

• Stacked bar plots represent different groups on the highest of 1 another. The peak of the bar 

depends on the resulting height of the mixture of the results of the groups. It goes from rock 

bottom to the worth rather than going from zero to value. 

Approach: 

1. Import Library (Matplotlib) 

2. Import / create data. 

1. Plot the bars in the stack manner. 

Example 1: (Simple stacked bar plot) 

# importing package 

import matplotlib.pyplot as plt 

https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/python-numpy/
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# create data 

x = ['A', 'B', 'C', 'D'] 

y1 = [10, 20, 10, 30] 

y2 = [20, 25, 15, 25] 

 

# plot bars in stack manner 

plt.bar(x, y1, color='r') 

plt.bar(x, y2, bottom=y1, color='b') 

plt.show() 

 

Output: 

 
 

Example 2: (Stacked bar chart with more than 2 data) 

# importing package 

import matplotlib.pyplot as plt 

import numpy as np 

 

# create data 

x = ['A', 'B', 'C', 'D'] 

y1 = np.array([10, 20, 10, 30]) 

y2 = np.array([20, 25, 15, 25]) 

y3 = np.array([12, 15, 19, 6]) 

y4 = np.array([10, 29, 13, 19]) 

 

# plot bars in stack manner 

plt.bar(x, y1, color='r') 

plt.bar(x, y2, bottom=y1, color='b') 

plt.bar(x, y3, bottom=y1+y2, color='y') 

plt.bar(x, y4, bottom=y1+y2+y3, color='g') 

plt.xlabel("Teams") 

plt.ylabel("Score") 
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plt.legend(["Round 1", "Round 2", "Round 3", "Round 4"]) 

plt.title("Scores by Teams in 4 Rounds") 

plt.show() 

Output: 

 
Example 3: (Stacked Bar chart using dataframe plot): 

# importing package 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

 

# create data 

df = pd.DataFrame([['A', 10, 20, 10, 26], ['B', 20, 25, 15, 21], ['C', 12, 15, 19, 6], 

    ['D', 10, 18, 11, 19]], 

    columns=['Team', 'Round 1', 'Round 2', 'Round 3', 'Round 4']) 

# view data 

print(df) 

 

# plot data in stack manner of bar type 

df.plot(x='Team', kind='bar', stacked=True, 

  title='Stacked Bar Graph by dataframe') 

plt.show() 

Output : 

Team  Round 1  Round 2  Round 3  Round 4 

0    A       10       20       10       26 

1    B       20       25       15       21 

2    C       12       15       19        6 

3    D       10       18       11       19 

https://www.geeksforgeeks.org/python-pandas-dataframe/
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Try: 
1. Write a program to generates a DataFrame with categorical data representing the sales data of 

different product categories (e.g., Electronics, Clothing, Food) across two different regions (e.g., 

North and South). 

2. Write a program to Plots the data as a stacked vertical bar chart, where the bars for each product 

category represent the sales data from the two regions stacked on top of each other. 

3. Write a program to Ensure that the chart is properly labeled with the product categories on the x-

axis, sales figures on the y-axis, and each stacked section representing a different region, Include a 

title and axis labels for the chart. Use different colors for each region to differentiate them in the 

stack. 

 

d. Interpret the results.  
 

Vertical and Horizontal Bar Charts: 

• Vertical and horizontal bar charts show the individual value of each category. 

Example Interpretation: 

• In the example, category B has the highest value, while category D has the lowest. 

Horizontal bar charts are especially useful when category labels are long. 

Vertical Grouped Bar Chart: 

• Displays subcategories (e.g., Group 1 and Group 2) side-by-side for each main category. 

Example Interpretation: 

• In the grouped chart, for category A, Group 2 has a slightly higher value than Group 1. It is 

easy to compare subcategories within each main category and between categories. 

Vertical Stacked Bar Chart: 

• Shows the total value for each category, with different colors indicating subcategory 

contributions. 

Example Interpretation: 

• The stacked bar chart highlights the total contribution of Group 1 and Group 2 to each 

category. For category C, Group 1 contributes a larger proportion than Group 2. 
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2. 8. Visualization of correlations.   

 

A correlation describes the relationship between two variables. If an increase in one variable 

produces an increase in the other one, that's a positive correlation. If an increase in one variable 

results in a decrease in the other, that's a negative correlation. 

There are several different correlation coefficients, but the most popular one is Pearson's 

correlation (a.k.a Pearson's R). If someone mentions a correlation without specifying which 

coefficient they use, then most probably they use the Pearson's R. We'll use it in our topic too. One 

important thing — Pearson's correlation is for numeric data only. Techniques for locating 

associations in categorical data are more advanced. 

Range Meaning 

0.70.7 to 1.01.0 a strong positive correlation 

0.30.3 to 0.70.7 a weak positive correlation 

−0.3−0.3 to 0.30.3 a negligible correlation 

−0.7−0.7 to −0.3−0.3 a weak negative correlation 

−1.0−1.0 to −0.7−0.7 a strong negative correlation 

 

1. Plot the pair wise scatter plots of numerical attributes.  
 

Data Visualization is the presentation of data in pictorial format. It is extremely important for Data 

Analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Seaborn is 

one of those packages that can make analyzing data much easier. 

Pairplot Seaborn to analyze data and, using the sns.pairplot() function 

PairPlot Seaborn : Implementation 

1. Pairplot Seaborn: Plotting Selected Variables 

2. Pairplot Seaborn: Adding a Hue Color to a Seaborn Pairplot 

3. Pairplot Seaborn: Modifying Color Palette 

4. Pairplot Seaborn: Diagonal Kind of plots 

5. Pairplot Seaborn:Adjusting Plot Kind 

6. Pairplot Seaborn:Controlling the Markers 

7. Pairplot Seaborn:Limiting the Variables 

PairPlot Seaborn : Implementation 

To implement a Pair Plot using Seaborn, you can follow these steps: 

To plot multiple pairwise bivariate distributions in a dataset, you can use the pairplot() function. 

This shows the relationship for (n, 2) combination of variable in a DataFrame as a matrix of plots 

and the diagonal plots are the univariate plots. 

Syntax: seaborn.pairplot( data, \*\*kwargs ) 

Parameter: 

data: Tidy (long-form) dataframe where each column is a variable and  each row is an observation. 

hue: Variable in “data“ to map plot aspects to different colors. 

palette: dict or seaborn color palette 

{x, y}_vars: lists of variable names, optional 

dropna: boolean, optional 

First of all, We see Upload seaborn librarry ‘tips’ using pandas. Then, we will visualize data with 

seaborn. 

# importing packages  

import seaborn  

import matplotlib.pyplot as plt  

# loading dataset using seaborn  

df = seaborn.load_dataset('tips') 

df.head() 
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Output: 

    total_bill   tip     sex    smoker  day    time  size 

0       16.99  1.01  Female     No  Sun  Dinner     2 

1       10.34  1.66    Male     No  Sun  Dinner     3 

2       21.01  3.50    Male     No  Sun  Dinner     3 

3       23.68  3.31    Male     No  Sun  Dinner     2 

4       24.59  3.61  Female     No  Sun  Dinner     4 

 

Let’s plot pairplot using seaborn: 

We will simply plot a pairplot with tips data frame. 

 

seaborn.pairplot(df) 

plt.show() 

Output: 

 
seaborn pairplot 

1. Pairplot Seaborn: Plotting Selected Variables 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

df = sns.load_dataset('tips') 

selected_vars = ['total_bill', 'tip'] 

sns.pairplot(df, vars=selected_vars) 

plt.show() 

Output: 
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pairplot seaborn 

 

2. Pairplot Seaborn: Adding a Hue Color to a Seaborn Pairplot 

import seaborn  

import matplotlib.pyplot as plt  

df = seaborn.load_dataset('tips') 

seaborn.pairplot(df,hue ='size')  

plt.show() 

Output: 

 
pairplot seabon 

• The points in this scatter plot are colored by the value of size, so you can see how the 

relationship between total_bill and tip varies depending on the size of the party. 

• There is a positive correlation between total_bill and tip. This means that, in general, larger 

bills tend to have larger tips 

• There is a positive correlation between tip and size. This means that, in general, larger 

parties tend to have larger tips. 

• The relationship between tip and size is stronger for larger total bill amounts. 
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3. Pairplot Seaborn: Modifying Color Palette 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

df = sns.load_dataset('tips') 

sns.pairplot(df, hue="size", palette="husl") 

plt.show 

Output: 

 
 

 

2. Pairplot Seaborn: Diagonal Kind of plots 

In Seaborn’s Pairplot, the ‘diag_kind’ parameter specifies the type of plot to display along the 

diagonal axis, representing the univariate distribution of each variable. Options include ‘hist’ for 

histograms, ‘kde’ for kernel density estimates, and ‘scatter’ for scatterplots. Choose based on the 

nature of the data and analysis goals. Here, let’s plot with kernel density estimates. 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

df = sns.load_dataset('tips') 

sns.pairplot(df,diag_kind = 'kde') 

plt.show 

 

 

 

 

 

 

 

 

 

Output: 
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5. Pairplot Seaborn:Adjusting Plot Kind 

The kind parameter allows to change the type of plot used for the off-diagonal plots. You can 

choose any like scatter, kde, or reg (regression). 

sns.pairplot(df, kind='reg') 

plt.show() 

Output: 

 
Adjusting Plot Kind 

6. Pairplot Seaborn:Controlling the Markers 

The markers parameter allows you to specify different markers for different categories. 

sns.pairplot(df, hue='sex', markers=["o", "s"]) 

plt.show() 

 

 

 

Output: 
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Controlling the Markers 

7. Pairplot Seaborn:Limiting the Variables 

If you are interested in only a subset of the variables, you can specify them using 

the vars parameter. 

sns.pairplot(df, hue='sex', vars=['total_bill', 'tip', 'size']) 

plt.show() 

Output: 

 
Pairplot Seaborn:Limiting the Variables 

 

 

 

Try: 
1. Write a program to generates a DataFrame containing numerical data for four attributes 

(e.g.,Attribute1, Attribute2, Attribute3, Attribute4). 
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2. Write a program to plots the pairwise scatter plots of the numerical attributes to visualize 

the relationships between each pair of attributes. 

3. Write a program to use a pair plot to display all possible scatter plots between the attributes 

in one plot, Include proper labels for the axes and a title for the plot. 

 

2. Identify the type of correlations.  
 

Definition 

Correlation describes the relationship between variables. It can be described as either strong or 

weak, and as either positive or negative. 

Note: 1= Correlation does not imply causation. 

 

Types of Correlation 

There are four types of correlation: 

 

1. Positive Correlation: Positive correlation indicates that two variables have a direct relationship. As 

one variable increases, the other variable also increases. For example, there is a positive correlation 

between height and weight. As people get taller, they also tend to weigh more. 

 
 

2. Negative Correlation: Negative correlation indicates that two variables have an inverse 

relationship. As one variable increases, the other variable decreases. For example, there is a 

negative correlation between price and demand. As the price of a product increases, the demand 

for that product decreases. 

 

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/descriptive-statistics/variables.html
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3. No Correlation: No correlation indicates that there is no relationship between two variables. The 

changes in one variable do not affect the other variable. For example, there is no correlation 

between shoe size and intelligence. 

 
4. Non-linear Correlation (known as curvilinear correlation): There is a non-linear correlation when 

there is a relationship between variables but the relationship is not linear (straight). 

 
 

 

Steps to Identify Correlations 

1. Heatmap 

• Code Example: 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Example data 

import numpy as np 

import pandas as pd 

data = { 

    'X1': np.random.rand(100), 

    'X2': np.random.rand(100) * 2, 

    'X3': np.random.rand(100) * 0.5 + np.linspace(0, 1, 100), 

    'X4': np.random.rand(100) 

} 

df = pd.DataFrame(data) 

 

https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/core-mathematics/pure-maths/functions/linear-functions.html
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# Correlation Matrix Heatmap 

plt.figure(figsize=(8, 6)) 

sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f") 

plt.title('Correlation Matrix Heatmap') 

plt.show() 

Output: 

 
 

 

 

 

 

2. Scatter Plot 

• Code Example: 

plt.figure(figsize=(8, 6)) 

 

# Scatter plot for a pair of variables 

plt.scatter(df['X1'], df['X3'], alpha=0.7, color='blue') 

plt.title('Scatter Plot: X1 vs X3') 

plt.xlabel('X1') 

plt.ylabel('X3') 

plt.show() 

Output: 
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3. Pair Plot 

• Code Example: 

sns.pairplot(df, diag_kind='kde', plot_kws={'alpha': 0.7}) 

plt.suptitle('Pair Plot of Variables', y=1.02) 

plt.show() 

Output: 

 
 

4. Regression Plot 

• Code Example: 

sns.regplot(x='X1', y='X3', data=df, scatter_kws={'alpha': 0.6}, line_kws={'color': 'red'}) 

plt.title('Regression Plot: X1 vs X3') 

plt.xlabel('X1') 

plt.ylabel('X3') 

plt.show() 

Output: 
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Try: 
1. Write a program to Generates a DataFrame with numerical data for five attributes (e.g., 

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5). 

2. Write a program to computes the correlation matrix between the numerical attributes to 

identify the relationships between them. 

3. Write a program to Identifies the type of correlation for each pair of attributes (i.e., positive, 

negative, or no correlation). 

4. Write a program to Display the correlation matrix and print a summary of the type of correlation 

for each pair of attributes. 

 

 

5. Interpret the results. 
 

Interpretation of Correlation coefficients 

• Perfect: 0.80 to 1.00 

• Strong: 0.50 to 0.79 

• Moderate: 0.30 to 0.49 

• Weak: 0.00 to 0.29 

Value greater than 0.7 is considered a strong correlation between variables. 

Type Visualization 
Correlation 

Coefficient 

Positive Correlation 
Scatter plot: upward 

trend 
0<r≤1  

Negative Correlation 
Scatter plot: 

downward trend 
−1≤r<0  
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No Correlation Scatter plot: no trend r≈0  

Non-Linear 

Correlation 

Scatter plot: curved or 

complex patterns 

Spearman or 

advanced tests 
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9. Visualization of distributions. 

 

Data visualization building block is learning to summarize lists of factors or numeric vectors. More 

often than not, the best way to share or explore this summary is through data visualization. The 

most basic statistical summary of a list of objects or numbers is its distribution. Once a data has 

been summarized as a distribution, there are several data visualization techniques to effectively 

relay this information. For this reason, it is important to have a deep understand the concept of a 

distribution. 

 

1. Plot the histograms of numerical data.  
 

To create a Matplotlib histogram the first step is to create a bin of the ranges, then distribute the 

whole range of the values into a series of intervals, and count the values that fall into each of the 

intervals. Bins are identified as consecutive, non-overlapping intervals of 

variables.The matplotlib.pyplot.hist() function is used to compute and create a histogram of x 

Code Example: 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Example numerical data 

data = np.random.normal(loc=50, scale=10, size=1000)  # Normal distribution 

 

# Histogram 

plt.figure(figsize=(8, 5)) 

plt.hist(data, bins=20, color='skyblue', edgecolor='black', alpha=0.7) 

plt.title('Histogram of Numerical Data') 

plt.xlabel('Values') 

plt.ylabel('Frequency') 

plt.tight_layout() 

plt.show() 

Output: 

 

 

 

Try:  
1. Write a program to plot a histogram with different Customization.  

https://www.geeksforgeeks.org/matplotlib-pyplot-hist-in-python/
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2. Write a program to plot a Stacked Histograms on the above data points. 

3. Write a program to Generates a DataFrame with numerical data for five attributes (e.g., 

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5). 

4. Write a program to Plots the histograms of each numerical attribute to show the distribution 

of the data. 

5. Write a program to Ensure that the histograms are clearly labeled with titles, axis labels, and a 

legend to differentiate between the attributes. 

 

2. Plot the counts of categorial data.  
 

To plot the count of categorical data, you can use a bar chart, which shows the distribution of a 

categorical variable by making the height of each bar proportional to the number of cases in each 

group:  

Seaborn is an amazing visualization library for statistical graphics plotting in Python. It provides 

beautiful default styles and color palettes to make statistical plots more attractive. It is built on the 

top of matplotlib library and also closely integrated to the data structures from pandas. 

 Seaborn.countplot() 

o seaborn.countplot() method is used to Show the counts of observations in each 

categorical bin using bars. 

Syntax : seaborn.countplot(x=None, y=None, hue=None, data=None, order=None, 

hue_order=None, orient=None, color=None, palette=None, saturation=0.75, dodge=True, ax=None, 

**kwargs)  

Code Example: 

import seaborn as sns 

 

# Example categorical data 

categories = ['A', 'B', 'C', 'D'] 

counts = [50, 80, 30, 40] 

 

# Bar plot for categorical data 

plt.figure(figsize=(8, 5)) 

sns.barplot(x=categories, y=counts, palette='muted') 

plt.title('Counts of Categorical Data') 

plt.xlabel('Categories') 

plt.ylabel('Counts') 

plt.tight_layout() 

plt.show() 

Output: 

 

https://www.geeksforgeeks.org/introduction-to-seaborn-python/
https://www.geeksforgeeks.org/python-introduction-matplotlib/
https://www.geeksforgeeks.org/introduction-to-pandas-in-python/
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Try:  
1. Write a program to Generates a DataFrame with categorical data representing different 

product categories (e.g., Electronics, Clothing, Food, Toys, Books). 

2. Write a program to Plots the count of occurrences for each category using a bar chart. 

3. Write a program to Ensure that the chart is clearly labeled with titles, axis labels, and a legend 

to differentiate the categories. 

 

3. Plot the data distributions (or densities). 
 

Kernel density estimation 

A histogram aims to approximate the underlying probability density function that generated the 

data by binning and counting observations. Kernel density estimation (KDE) presents a different 

solution to the same problem. Rather than using discrete bins, a KDE plot smooths the observations 

with a Gaussian kernel, producing a continuous density estimate: 

Code Example: 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Example numerical data 

data = np.random.normal(loc=50, scale=10, size=1000)  # Normal distribution 

 

# KDE (Kernel Density Estimation) plot 

plt.figure(figsize=(8, 5)) 

sns.kdeplot(data, color='blue', fill=True, alpha=0.5) 

plt.title('Density Plot of Numerical Data') 

plt.xlabel('Values') 

plt.ylabel('Density') 

plt.tight_layout() 

plt.show() 

 

 

 

Output: 
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Try: 

1. Write a program to Generates a DataFrame with numerical data for five attributes (e.g., 

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5). 

2. Write a program to Plots the distributions (or densities) of the numerical attributes using a 

kernel density estimate (KDE) plot. 

3. Write a program to Ensure that each attribute is plotted on the same graph for comparison, 

with different colors for each attribute, Include a title and appropriate labels for the plot. 

4. Write a program to plot a density plot on given the dataset ‘tips’ and calculate what was the 

most common tip given by a customer.  

5. Write a program to plot a density plot on given the dataset ‘tips’ and calculate what was the 

most common tip given by a customer using plot.kde( ) function. 

 

4. Interpret the results .  
 

Numerical Data (Histograms and Densities): 

• Histogram: 

o Shows the frequency of data in bins. 

o Example: If the data has a single peak, it might indicate a normal distribution. 

• Density Plot: 

o Highlights the smooth distribution of data. 

o Example: Multiple peaks might indicate bimodal or multimodal distributions. 

Categorical Data (Bar Charts): 

• Displays the counts of each category. 

• Example: If one category has significantly higher counts, it might indicate a skew in the data 

distribution. 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Example numerical data 

data = np.random.normal(loc=50, scale=10, size=1000)  # Normal distribution 

 

plt.figure(figsize=(8, 5)) 
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sns.histplot(data, bins=20, kde=True, color='skyblue', edgecolor='black', alpha=0.7) 

plt.title('Histogram with Density Plot') 

plt.xlabel('Values') 

plt.ylabel('Frequency/Density') 

plt.tight_layout() 

plt.show() 

Output: 
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10. Visualization using box-and-whisker plots.   

 

Box-and-whisker plots, also called box plots, are effective for visualizing the distribution of 

numerical data through rank statistics. They summarize key aspects of the data, including the 

median, quartiles, and potential outliers. 

 

1. Compute the rank statistics of numerical attributes.  
 

Rank statistics are essential in various statistical analyses, especially when dealing with ordinal data 

or when the assumptions of parametric tests are not met. Here's how you can compute rank 

statistics for numerical attributes, along with an example using Python and pandas: 

Code Example: 

import numpy as np 

import pandas as pd 

 

# Example numerical data 

data = { 

    'Attribute1': np.random.normal(50, 10, 100),  # Normally distributed 

    'Attribute2': np.random.uniform(30, 70, 100),  # Uniformly distributed 

} 

 

df = pd.DataFrame(data) 

 

# Compute rank statistics 

rank_stats = df.describe(percentiles=[0.25, 0.5, 0.75]) 

print(rank_stats) 

Output: 

 Attribute1 Attribute2 

count 100 100 

mean 49.41509 51.03182 

std 9.717994 11.6534 

min 26.28979 31.0754 

25% 42.99788 40.33386 

50% 49.84461 53.17149 

75% 55.4665 60.88231 

max 76.36262 69.90528 

 

Try : 
1. Write a program to Generates a DataFrame with numerical data for five attributes (e.g., 

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5). 

2. Write a program to Computes the rank of each value within each attribute. 

3. Write a program to Computes the rank statistics (such as the mean rank, maximum rank, 

minimum rank, and rank of a specific value) for each attribute. 

4. Write a program to Display the rank statistics for each attribute in a readable format. 

 

 

 

2. Create the box-and-whisker plots of numerical attributes. 
 

Box Plot is a graphical method to visualize data distribution for gaining insights and making 

informed decisions. Box plot is a type of chart that depicts a group of numerical data through their 
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quartiles. 

Elements of Box Plot 

A box plot gives a five-number summary of a set of data which is- 

• Minimum – It is the minimum value in the dataset excluding the outliers. 

• First Quartile (Q1) – 25% of the data lies below the First (lower) Quartile. 

• Median (Q2) – It is the mid-point of the dataset. Half of the values lie below it and half 

above. 

• Third Quartile (Q3) – 75% of the data lies below the Third (Upper) Quartile. 

• Maximum – It is the maximum value in the dataset excluding the outliers. 

• IQR (Interquartile Range): IQR=Q3−Q1 

•  
import numpy as np 

import pandas as pd 

 

# Example numerical data 

data = { 

    'Attribute1': np.random.normal(50, 10, 100),  # Normally distributed 

    'Attribute2': np.random.uniform(30, 70, 100),  # Uniformly distributed 

} 

 

df = pd.DataFrame(data) 

 

import matplotlib.pyplot as plt 

 

# Box plot 

plt.figure(figsize=(8, 5)) 

df.boxplot() 

plt.title('Box-and-Whisker Plot of Numerical Attributes') 

plt.xlabel('Attributes') 

plt.ylabel('Values') 

plt.tight_layout() 

plt.show() 

 

Output: 
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Try : 
1 Write a program to Generates a DataFrame with numerical data for five attributes (e.g., 

Attribute1, Attribute2, Attribute3, Attribute4, Attribute5). 

2 Write a program to Creates box-and-whisker plots for each numerical attribute. 

3 Write a program to Customize the plot with titles, axis labels, and grid lines. 

4 Write a program to Display all box plots in a single figure. 

 

 

3. Interpret the results .  
 

Key Observations from Box Plots: 

1. Median: 

• The line inside the box represents the median (Q2), showing the central tendency of the 

data. 

• Example: If the median is closer to the bottom of the box, the data is skewed towards 

higher values. 

2. IQR (Box Height): 

• The height of the box indicates the interquartile range (Q3 - Q1). 

• Example: A taller box implies a wider spread of the middle 50% of the data. 

3. Whiskers: 

• Extend from Q1 to the smallest value within 1.5×IQR1.5 \times \text{IQR}1.5×IQR and 

from Q3 to the largest value within 1.5×IQR1.5 \times \text{IQR}1.5×IQR. 

• Example: Longer whiskers suggest data spread beyond the central range. 

4. Outliers: 

• Points outside the whiskers are potential outliers. 

• Example: Outliers may indicate errors, rare events, or interesting deviations. 

5. Skewness: 

• If the median is not centered in the box, the data is skewed. 

• Example: A left-skewed distribution has the median closer to Q3. 

 

Customizing Box Plots 
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• You can customize the box plots for better analysis: 

Grouped Box Plots: 

 

import numpy as np 

import pandas as pd 

import seaborn as sns 

# Example numerical data 

data = { 

    'Attribute1': np.random.normal(50, 10, 100),  # Normally distributed 

    'Attribute2': np.random.uniform(30, 70, 100),  # Uniformly distributed 

} 

 

df = pd.DataFrame(data) 

 

import matplotlib.pyplot as plt 

# Adding a categorical column for grouping 

df['Category'] = np.random.choice(['Group1', 'Group2'], size=100) 

 

# Grouped box plots 

plt.figure(figsize=(8, 5)) 

sns.boxplot(data=df, x='Category', y='Attribute1', palette='muted') 

plt.title('Grouped Box-and-Whisker Plot') 

plt.xlabel('Category') 

plt.ylabel('Attribute1 Values') 

plt.tight_layout() 

plt.show() 

 

Output: 

 
 

 



Page | 94 

 

Horizontal Box Plots: 

import numpy as np 

import pandas as pd 

import seaborn as sns 

# Example numerical data 

data = { 

    'Attribute1': np.random.normal(50, 10, 100),  # Normally distributed 

    'Attribute2': np.random.uniform(30, 70, 100),  # Uniformly distributed 

} 

 

df = pd.DataFrame(data) 

 

import matplotlib.pyplot as plt 

# Adding a categorical column for grouping 

df['Category'] = np.random.choice(['Group1', 'Group2'], size=100) 

 

# Grouped box plots 

plt.figure(figsize=(8, 5)) 

df.boxplot(vert=False) 

plt.title('Horizontal Box-and-Whisker Plot') 

plt.xlabel('Values') 

plt.ylabel('Attributes') 

plt.tight_layout() 

plt.show() 

Output: 

 

Try:  
1 Given a numerical dataset, how do you interpret measures of central tendency 

(mean, median, mode) from the results 
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2 Given a dataset with significant uncertainty (e.g., missing data or noisy data), how 

do you interpret the results of your analysis?  

 

11. Handling outliers in the data.   

 

Outliers are the observations in a dataset that deviate significantly from the rest of the data. In any 

data science project, it is essential to identify and handle outliers, as they can have a significant 

impact on many statistical methods, such as means, standard deviations, etc., and the performance 

of ML models. Outliers can sometimes indicate errors or anomalies in the data. 

1. Identify the outliers using quartile method.  
 

• In statistics, any observations or data points that deviate significantly and do not conform with the 

rest of the observation or data points in a dataset are called outliers. Outliers are extreme values in 

a feature or dataset. For example, if you have a dataset with a feature height. The majority of the 

values in this feature range between 4.5−6.5 feet, but there is one value with 10 feet. This value 

would be considered an outlier, as it is not only an extreme value but an impossible height as well. 

• Outliers are also called aberrations, abnormal points, anomalies, etc. It is essential to detect and 

handle outliers in a dataset as it can have a significant impact on many statistical methods, such as 

mean, variance, etc., and the performance of the ML models. It can lead to misleading, inconsistent, 

and inaccurate results if they are not properly accounted for. 

 
 

The quartile method identifies outliers based on the interquartile range (IQR): 

Steps: 

1. Compute Q1 (25th percentile) and Q3 (75th percentile). 

2. Calculate the IQR: IQR=Q3−Q1. 

3. Define lower and upper bounds: 

4. Lower Bound=Q1−1.5×IQR  

5. Upper Bound=Q3+1.5×IQR  

6. Outliers are values outside these bounds. 

Code Example: 

import numpy as np 

import pandas as pd 

 

# Example numerical data 

data = { 

    'Attribute': np.concatenate([np.random.normal(50, 10, 100), [150, 170]])  # Adding 

outliers 
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} 

df = pd.DataFrame(data) 

 

# Quartile method 

Q1 = df['Attribute'].quantile(0.25) 

Q3 = df['Attribute'].quantile(0.75) 

IQR = Q3 - Q1 

 

lower_bound = Q1 - 1.5 * IQR 

upper_bound = Q3 + 1.5 * IQR 

 

# Identify outliers 

outliers_quartile = df[(df['Attribute'] < lower_bound) | (df['Attribute'] > upper_bound)] 

print("Outliers (Quartile Method):") 

print(outliers_quartile) 

Output: 

Outliers (Quartile Method): 

      Attribute 

1     22.358335 

100  150.000000 

101  170.000000 

 

Try:  
1. Write a Python program to create a boxplot for a dataset and visually identify the     outliers. 

Use the Titanic dataset to identify outliers in the age column. 

2. Write a Python program to identify outliers in the daily closing prices of stocks using the IQR 

method. Use a dataset of historical stock prices for this analysis. 

3. 3.Write a Python program to remove outliers from a dataset using the quartile method. Use 

a dataset with numerical and categorical columns and ensure only numerical columns are 

processed 
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2. Identify the outliers using standard deviation method.  
 

The standard deviation method identifies outliers based on how far values deviate from the 

mean: 

Steps: 

1. Compute the mean (μ\muμ) and standard deviation (σ\sigmaσ). 

2. Define the thresholds: 

a. Lower Bound=μ−k⋅σ  

b. Upper Bound=μ+k⋅σ  

c. Common k values are 2 or 3. 

3. Outliers are values outside these bounds. 

Code Example: 

 

import numpy as np 

import pandas as pd 

 

# Example numerical data 

data = { 

    'Attribute': np.concatenate([np.random.normal(50, 10, 100), [150, 170]])  # Adding 

outliers 

} 

df = pd.DataFrame(data) 

 

mean = df['Attribute'].mean() 

std = df['Attribute'].std() 

 

k = 3  # Using 3 standard deviations 

lower_bound_sd = mean - k * std 

upper_bound_sd = mean + k * std 

 

# Identify outliers 

outliers_sd = df[(df['Attribute'] < lower_bound_sd) | (df['Attribute'] > upper_bound_sd)] 

print("Outliers (Standard Deviation Method):") 

print(outliers_sd) 

 

Output:  

Outliers (Standard Deviation Method): 

     Attribute 

100      150.0 

101      170.0 
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Try: 

1. Write a Python program to calculate the mean and standard deviation of a dataset and identify 

outliers as data points more than 2 standard deviations away from the mean. Use a synthetic 

dataset for demonstration.  

2. Write a Python program to calculate the mean and standard deviation of a dataset before and 

after removing outliers. Analyze the impact of outliers on these measures.  

3. Write a Python program to create a data preprocessing pipeline that includes outlier detection 

using the standard deviation method. Apply this pipeline to a dataset with mixed data types. 

 

3. Compare the performance of two methods.  
 

Comparison: 

1. Quartile Method: 

• Robust to skewed distributions. 

• May fail for datasets with highly irregular distributions. 

2. Standard Deviation Method: 

• Assumes normality; less effective for skewed or non-normal data. 

• More sensitive to extreme values in highly skewed datasets. 

Code to Compare: 

 

import numpy as np 

import pandas as pd 

 

# Example numerical data 

data = { 

    'Attribute': np.concatenate([np.random.normal(50, 10, 100), [150, 170]])  # Adding 

outliers 

} 

df = pd.DataFrame(data) 

# Quartile method 

Q1 = df['Attribute'].quantile(0.25) 
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Q3 = df['Attribute'].quantile(0.75) 

IQR = Q3 - Q1 

 

lower_bound = Q1 - 1.5 * IQR 

upper_bound = Q3 + 1.5 * IQR 

 

 

mean = df['Attribute'].mean() 

std = df['Attribute'].std() 

 

k = 3 

 

# Using 3 standard deviations 

lower_bound_sd = mean - k * std 

upper_bound_sd = mean + k * std 

 

# Identify outliers 

outliers_quartile = df[(df['Attribute'] < lower_bound) | (df['Attribute'] > upper_bound)] 

print("Outliers (Quartile Method):") 

print(outliers_quartile) 

 

# Identify outliers 

outliers_sd = df[(df['Attribute'] < lower_bound_sd) | (df['Attribute'] > upper_bound_sd)] 

print("Outliers (Standard Deviation Method):") 

print(outliers_sd) 

 

 

# Number of outliers identified 

print("Number of Outliers (Quartile Method):", len(outliers_quartile)) 

print("Number of Outliers (Standard Deviation Method):", len(outliers_sd)) 

 

Output: 

Outliers (Quartile Method): 

      Attribute 

0     86.167303 

100  150.000000 

101  170.000000 

Outliers (Standard Deviation Method): 

     Attribute 

100      150.0 

101      170.0 

Number of Outliers (Quartile Method): 3 

Number of Outliers (Standard Deviation Method): 2 
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Try: 

1. Write a Python program to compute and visualize the overlap between outliers 

detected by two methods. Use a Venn diagram to show the overlap. 

2. .Write a Python program to create side-by-side boxplots to visualize the results of two 

outlier detection methods. Compare the identified outliers visually. 

 

4. Remove outliers from the data. 
 

• This involves identifying and removing outliers from the dataset before training the 

model. Common methods include: 

o Thresholding: Outliers are identified as data points exceeding a certain threshold (e.g., Z-

score > 3). 

o Distance-based methods: Outliers are identified based on their distance from their nearest 

neighbors. 

o Clustering: Outliers are identified as points not belonging to any cluster or belonging to 

very small clusters. 

Remove outliers from the dataset using the chosen method. 

Code Example: 

# Removing outliers based on the Quartile Method 

df_cleaned = df[(df['Attribute'] >= lower_bound) & (df['Attribute'] <= upper_bound)] 

print("Data after Removing Outliers:") 

print(df_cleaned.describe()) 

Output: 

Outliers (Quartile Method): 

     Attribute 

100      150.0 

101      170.0 

Data after Removing Outliers: 

        Attribute 

count  100.000000 

mean    49.821135 

std     10.905372 

min     27.573205 

25%     42.710426 

50%     49.927551 

75%     57.236913 

max     80.915658 

Try: 

1. Write a Python program to remove outliers from a dataset using the Z-score method. Use a 

sales dataset to remove products with unusually high or low prices. 

2. Write a Python program to remove outliers from a streaming dataset (e.g., real-time sensor 

readings) using dynamic thresholds based on a rolling window. 

3. Use a healthcare dataset to remove patients with abnormal values for metrics like blood 

pressure or cholesterol. Discuss the potential impact on downstream analyses. 
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5. Interpret the results 
 

Before Handling Outliers: 

• The dataset contains extreme values that may distort statistical analyses, such as mean 

and standard deviation. 

After Removing Outliers: 

• The dataset becomes more representative of the central trend. 

• Statistical metrics like mean and standard deviation are less influenced by extreme values. 

Summary 

Aspect Quartile Method 
Standard Deviation 

Method 

Assumptions 
No assumptions on 

distribution 

Assumes normal 

distribution 

Robustness to Skewed 

Data 
More robust Less robust 

Performance on Normal 

Data 
Good Very effective 

Ease of Calculation Moderate Easy 

 

 

Try: 

1. Write a Python program to create boxplots or scatterplots before and after data 

transformation. How do you interpret changes in the visual representation of data after 

transformations like scaling or outlier removal. 

2. After applying data preprocessing techniques like scaling, outlier removal, or normalization, 

how do you validate the results to ensure they are meaningful and accurate. 

 

12. Working with Data Tables.  

3.   

Data tables are powerful tools for organizing, analyzing, and visualizing data. They provide a structured 

way to represent information, making it easier to understand, manipulate, and extract insights. 

 

Here's a breakdown of key aspects of working with data tables: 

1. Creating Data Tables 

• Spreadsheet Software: Tools like Excel, Google Sheets, and LibreOffice Calc offer built-in 

features for creating and managing data tables. 

• Programming Languages:  

o Python: Libraries like pandas are widely used for creating, manipulating, and 

analyzing data tables (DataFrames). 

o SQL: Used for managing and querying data stored in relational databases. 

2. Data Table Structure 

• Rows and Columns: Data tables consist of rows and columns.  

o Rows represent individual data points or observations. 

o Columns represent specific attributes or variables. 

• Headers: Column headers provide labels for the data in each column. 

3. Data Types 
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• Numerical: Numbers (integers, floats) 

• Categorical: Textual values representing categories (e.g., colors, countries) 

• Boolean: True/False values 

• Date/Time: Timestamps or dates 

4. Key Operations 

Data Entry: Manually entering data or importing data from external sources (CSV files, databases). 

• Data Cleaning:  

o Handling missing values (imputation, removal) 

o Removing duplicates 

o Correcting errors 

• Data Transformation:  

o Filtering data based on conditions 

o Sorting data by specific columns 

o Grouping data and calculating summary statistics (e.g., mean, median, sum) 

o Creating new columns based on existing ones (e.g., calculations, transformations) 

• Data Analysis:  

o Performing statistical analyses (e.g., regression, hypothesis testing) 

o Creating visualizations (charts, graphs) to explore and understand data patterns. 

 

1. Joining the data tables.  
 

In pandas, joining data tables involves merging or concatenating two or more tables based on a 

common key or index. There are different types of joins, including inner, outer, left, and right joins. 

Types of joins: 

• Inner Join: Only includes matching rows from both tables. 

• Outer Join: Includes all rows from both tables, filling in missing values with NaN. 

• Left Join: Includes all rows from the left table and only matching rows from the right table. 

• Right Join: Includes all rows from the right table and only matching rows from the left table. 

 

Example: 

import pandas as pd 

 

# Create two data tables (dataframes) 

df1 = pd.DataFrame({ 

    'ID': [1, 2, 3, 4], 

    'Name': ['Alice', 'Bob', 'Charlie', 'David'] 

}) 

 

df2 = pd.DataFrame({ 

    'ID': [3, 4, 5, 6], 

    'Age': [25, 30, 35, 40] 

}) 

 

# Inner Join (only matching rows) 

joined_df = pd.merge(df1, df2, on='ID', how='inner') 

print(joined_df) 

 

Output: 

ID     Name  Age 

0   3  Charlie   25 

1   4    David   30 

Try: 
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1. Write a Python program to perform a self-join on a table. Use an example dataset of 

employees and their managers to demonstrate how to retrieve hierarchical relationships. 

2. Write a Python program to join two large CSV files in chunks using pandas. 

3. Write a Python program to join two time-series datasets based on their timestamps. 

 

2. Exercises on contingency tables.  
 

A contingency table (also known as a cross-tabulation) is used to display the frequency 

distribution of variables. It helps examine the relationship between two categorical variables. 

A contingency table provides a way of portraying data that can facilitate calculating probabilities. 

The table helps in determining conditional probabilities quite easily. The table displays sample 

values in relation to two different variables that may be dependent or contingent on one another.  

Example: 

import pandas as pd 

 

# Example data 

data = {'Gender': ['Male', 'Female', 'Male', 'Female', 'Male'], 

        'Purchased': ['Yes', 'No', 'Yes', 'Yes', 'No']} 

 

df = pd.DataFrame(data) 

 

# Create a contingency table (cross-tabulation) 

contingency_table = pd.crosstab(df['Gender'], df['Purchased']) 

print(contingency_table) 

Output: 

Purchased  No  Yes 

Gender             

Female       1    1 

Male           1    2 

This creates a table that shows the frequency of each combination of gender and purchase status. 

Try: 

1. Write a Python program to create a contingency table from a dataset. Use the Titanic dataset 

to display the counts of survivors and non-survivors by gender. 

2. Create a contingency table showing the relationship between two categorical variables and 

compute its marginal totals. 

3. 3.Write a Python program to perform a Chi-Square test of independence on a contingency 

table. Use a dataset to test whether gender and purchase decision are independent variables. 

 

3. Exercises on grouping data.  
 

In pandas, you can group data by one or more columns and perform operations like summing, 

averaging, or counting the grouped data. 

Example: 

import pandas as pd 

 

# Sample data 

data = {'Category': ['A', 'B', 'A', 'B', 'A', 'B'], 

        'Value': [10, 20, 30, 40, 50, 60]} 
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df = pd.DataFrame(data) 

 

# Group by 'Category' and calculate the sum of 'Value' 

grouped_df = df.groupby('Category')['Value'].sum() 

print(grouped_df) 

Output: 

Category 

A     90 

B    120 

Name: Value, dtype: int64 

Try: 

1. Write a Python program to group data by a single column and compute the mean of another 

column. Use the Titanic dataset to calculate the average age of passengers grouped by their 

class. 

2. Write a Python program to group data by multiple columns. Use a dataset to find the total 

revenue for each combination of product category and region. 

3. 3.Write a Python program to rank items within each group. Use a dataset to rank employees 

by their sales performance within each department 

 

13. Data Scaling and Transformation.  

4.   

Data scaling and transformation are essential preprocessing techniques in machine learning to 

ensure that your data is in a suitable format for analysis and modeling. These methods address 

issues like varying scales, skewed distributions, and outliers, which can significantly impact the 

performance of your machine learning models. 

A. Scaling the data using different Python scalers. 

Step 1:Import necessary libraries: 

o pandas for data manipulation. 

o StandardScaler, MinMaxScaler, RobustScaler from sklearn.preprocessing for different 

scaling methods. 

Step 2:Create sample data: 

o Create a sample DataFrame with two columns: 'Age' and 'Income'. 

Step 3:StandardScaler: 

o Creates a StandardScaler object. 

o fit_transform() calculates the mean and standard deviation of the data and transforms 

the data to have zero mean and unit variance. 

                 import pandas as pd 

                 from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler 

                 # Sample data (replace with your actual data) 

                 data = {'Age': [25, 30, 45, 22, 18], 

                'Income': [50000, 70000, 120000, 45000, 30000]} 

                 df = pd.DataFrame(data) 

                 # 1. StandardScaler (Standardization) 

                  scaler = StandardScaler() 

                  df_standardized = df.copy() 

                  df_standardized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 

 # 2. MinMaxScaler (Normalization) 

 scaler = MinMaxScaler() 

 df_normalized = df.copy() 

 df_normalized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 
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 # 3. RobustScaler (Robust to outliers) 

 scaler = RobustScaler() 

 df_robust = df.copy() 

 df_robust[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 

 # Print scaled dataframes 

 print("Standardized Data:\n", df_standardized) 

 print("\nNormalized Data:\n", df_normalized) 

 print("\nRobust Scaled Data:\n", df_robust) 

 

2. MinMaxScaler: 

• Creates a MinMaxScaler object. 

• fit_transform() scales the data to a specific range (usually 0 to 1). 

3. RobustScaler: 

• Creates a RobustScaler object. 

• fit_transform() is less sensitive to outliers compared to StandardScaler. It uses the median 

and interquartile range for scaling. 

4. Print scaled dataframes: 

• Prints the original and scaled dataframes for each scaling method. 

Key Points: 

  

Step 4:Choose the appropriate scaler: 

• StandardScaler: Suitable for many cases, especially when the data is normally distributed. 

• MinMaxScaler: Useful when you need to scale data to a specific range (e.g., for neural 

networks). 

• RobustScaler: More robust to outliers than StandardScaler. 

Apply scaling to relevant features: 

• Typically, you would scale only the numerical features in your dataset. 

Fit and transform: 

• fit_transform() calculates the scaling parameters (e.g., mean, standard deviation) from the 

training data and applies the transformation. 

• Use fit_transform() on the training data and transform() on the test data to ensure consistency. 

Try: 

1. Write a Python program to demonstrate how to scale a dataset using the MinMaxScaler from 

the sklearn.preprocessing module. 

2. .Write a Python program to compare the effects of different scalers, including StandardScaler, 

MinMaxScaler, MaxAbsScaler, and RobustScaler, on a synthetic dataset with outliers. Visualize 

the scaled results using box plots. 

  

b. Normalization as a special case of data scaling. 
Step 1: Import necessary libraries: 

• pandas for data manipulation. 

• MinMaxScaler from sklearn.preprocessing for normalization. 

Step 2: Create sample data: 

• Create a sample DataFrame with two columns: 'Age' and 'Income'. 

Step 3 Create a MinMaxScaler object: 

•  MinMaxScaler() creates an object that will scale the data to a specific range (default: 0 to 1). 
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Step 4: Fit and transform the data: 

• scaler.fit_transform(df[['Age', 'Income']]) calculates the minimum and maximum values of the 

'Age' and 'Income' columns and then scales the data to the range 0 to 1 using the following 

formula: 

• X_scaled = (X - X_min) / (X_max - X_min) 

• The scaled values are then assigned back to the corresponding columns in the df_normalized 

DataFrame. 

Step 5:Print the normalized data: 

• Print the resulting DataFrame with the normalized values. 

Step 6:Sample Code 

 import pandas as pd 

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler 

# Sample data (replace with your actual data) 

data = {'Age': [25, 30, 45, 22, 18],  

'Income': [50000, 70000, 120000, 45000, 30000]} 

df = pd.DataFrame(data) 

# 1. StandardScaler (Standardization) 

scaler = StandardScaler() 

df_standardized = df.copy() 

df_standardized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 

# 2. MinMaxScaler (Normalization) 

scaler = MinMaxScaler() 

df_normalized = df.copy() 

df_normalized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 

# 3. RobustScaler (Robust to outliers) 

scaler = RobustScaler() 

df_robust = df.copy() 

df_robust[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 

# Print scaled dataframes 

print("Standardized Data:\n", df_standardized) 

print("\nNormalized Data:\n", df_normalized) 

print("\nRobust Scaled Data:\n", df_robust) 

Note: 

• Normalization scales the data to a specific range (typically 0 to 1), making all features have the 

same scale. 

• MinMaxScaler is a common technique for normalization in machine learning. 

• Normalization is useful when:  

o You want to ensure all features have the same influence on the model. 

o You are using algorithms that are sensitive to feature scaling (e.g., some neural network 

algorithms). 

Try: 

1. What is normalization, and how does it differ from other data scaling techniques? Write a 

Python      program to normalize a dataset using the MinMaxScaler and demonstrate how the 

transformed data lies within t he range [0, 1]. 
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2. Write a Python program to demonstrate the impact of normalization on the performance of a 

KNN classifier using the Iris dataset. 

3. .Write a Python program to normalize the MNIST dataset's pixel values to the range [0, 1] and 

train a simple neural network using TensorFlow or PyTorch 

 

C. Data transformation using standardization. 
Step 1:import necessary libraries: 

• pandas for data manipulation. 

• StandardScaler from sklearn.preprocessing for standardization. 

Step 2: Create sample data: 

• Create a sample DataFrame with two columns: 'Age' and 'Income'. 

Step 3: Create a StandardScaler object: 

• StandardScaler() creates an object that will standardize the data. 

Step 4: Fit and transform the data: 

• scaler.fit_transform(df[['Age', 'Income']]) calculates the mean and standard deviation of the 

'Age' and 'Income' columns and then standardizes the data using the following formula: 

• z = (x - mean) / standard_deviation 

• The standardized values (z-scores) have a mean of 0 and a standard deviation of 1. 

• The scaled values are then assigned back to the corresponding columns in the df_standardized 

DataFrame. 

Step 5: Print the standardized data: 

• Print the resulting DataFrame with the standardized values. 

import pandas as pd 

from sklearn.preprocessing import StandardScaler 

# Sample data 

data = {'Age': [25, 30, 45, 22, 18],  

 'Income': [50000, 70000, 120000, 45000, 30000]} 

df = pd.DataFrame(data) 

# Create a StandardScaler object 

scaler = StandardScaler() 

# Fit and transform the data 

df_standardized = df.copy() 

df_standardized[['Age', 'Income']] = scaler.fit_transform(df[['Age', 'Income']]) 

# Print the standardized data 

print("Standardized Data:\n", df_standardized) 

 

 

Note: 

• Standardization transforms the data to have zero mean and unit variance, making it easier for 

machine learning algorithms to work with. 

• It's particularly useful when features have different scales or when algorithms are sensitive to 

feature scaling. 

• Standardization is often used in conjunction with algorithms like Support Vector Machines 

(SVM) and linear regression. 

Try: 

1. Write a program to standardize a dataset manually using the formula Z=X−μσ 
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2. Write a function to standardize a dataset manually without using external libraries. Apply the 

function to a synthetic dataset and verify its correctness by comparing it to the StandardScaler 

from sklearn.preprocessing. 

D. Compare the results and interpret. 

Step 1:Import necessary libraries: 

  pandas for data manipulation. 

StandardScaler, MinMaxScaler, RobustScaler from sklearn.preprocessing for different scaling 

methods. 

Step 2:Create sample data: 

Create a sample DataFrame with two columns: 'Age' and 'Income'. 

Step 3:Create scaler objects: 

Create instances of StandardScaler, MinMaxScaler, and RobustScaler. 

Step 4:Scale the data: 

Apply fit_transform() to each scaler to scale the data. 

Step 5:Compare and interpret results: 

Print the original and scaled DataFrames. 

Calculate and print summary statistics (mean, standard deviation, min, max, quartiles) for each 

DataFrame. 

import pandas as pd 

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler 

# Sample data 

data = {'Age': [25, 30, 45, 22, 18],  

 'Income': [50000, 70000, 120000, 45000, 30000]} 

df = pd.DataFrame(data) 

# Create scaler objects 

standard_scaler = StandardScaler() 

min_max_scaler = MinMaxScaler() 

robust_scaler = RobustScaler() 

# Scale the data 

df_standardized = df.copy() 

df_standardized[['Age', 'Income']] = standard_scaler.fit_transform(df[['Age', 'Income']]) 

df_normalized = df.copy() 

df_normalized[['Age', 'Income']] = min_max_scaler.fit_transform(df[['Age', 'Income']]) 

df_robust = df.copy() 

df_robust[['Age', 'Income']] = robust_scaler.fit_transform(df[['Age', 'Income']]) 

# Compare and interpret results 

print("Original Data:\n", df) 

print("\nStandardized Data:\n", df_standardized) 

print("\nNormalized Data:\n", df_normalized) 

print("\nRobust Scaled Data:\n", df_robust) 

# Calculate and print summary statistics 

print("\nSummary Statistics:") 

print("Original Data:\n", df.describe()) 

print("\nStandardized Data:\n", df_standardized.describe()) 

print("\nNormalized Data:\n", df_normalized.describe()) 

print("\nRobust Scaled Data:\n", df_robust.describe()) 

 

Step 5:Interpretation: 

Standardized Data:  

Mean is close to 0. 

Standard deviation is 1. 
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Data is centered around 0, making it suitable for algorithms that assume zero mean. 

Step 6:Normalized Data:  

Values are scaled between 0 and 1. 

Useful for algorithms that require input features to be within a specific range. 

Step 6:Robust Scaled Data:  

Less sensitive to outliers compared to StandardScaler. 

Uses median and interquartile range for scaling. 

Try: 

1. Train a Support Vector Machine (SVM) classifier on the Iris dataset without standardizing the 

features. Then, standardize the dataset using StandardScaler and train the classifier again. 

Compare the accuracy scores and interpret the results. 

2. Write a custom function to standardize a dataset and compare the results with StandardScaler 

from sklearn.preprocessing. Interpret any differences and discuss the implications of using 

custom scaling methods. 

 

14. Web Scrapping.  

5.   

Web scraping, also known as web harvesting or web data extraction, is the process of automatically 

collecting and extracting data from websites. It involves using software or scripts to access the 

HTML code of a website and extract the desired information. 

a. Scraping a list of items from a website. 

 Python example demonstrating how to scrape a list of items from a website, along with 

explanations: 

Step 1: Import necessary libraries: 

import requests 

from bs4 import BeautifulSoup 

• requests: This library allows you to fetch the HTML content of a webpage. 

• BeautifulSoup: This library helps you parse the HTML content and extract specific data. 

Step 2: Fetch the webpage content: 

url = "https://www.example.com"  # Replace with the actual URL 

response = requests.get(url) 

response.raise_for_status()  # Raise an exception for bad status codes 

soup = BeautifulSoup(response.content, "html.parser") 

• Replace "https://www.example.com" with the URL of the website you want to scrape. 

• requests.get(url) fetches the HTML content of the webpage. 

• response.raise_for_status() checks if the request was successful (status code 200). 

• BeautifulSoup(response.content, "html.parser") parses the HTML content using the 

html.parser. 

Step 3:Find the elements containing the desired data: 

items = soup.find_all("div", class_="item-container")  # Replace with the appropriate HTML tags 

and attributes 

• soup.find_all("div", class_="item-container") finds all <div> tags with the class "item-

container" in the HTML. You need to inspect the HTML source of the webpage to determine 

the correct tags and attributes for finding the items you want to scrape. 

Step 4: Extract the desired information from each item: 

for item in items: 

    name = item.find("h3", class_="item-name").text.strip()  
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    price = item.find("span", class_="item-price").text.strip()  

    # Extract other relevant information (e.g., description, image URL) 

    print(f"Name: {name}") 

    print(f"Price: {price}") 

    # Print other extracted information 

    print("-" * 20)  

• This code iterates through each item found in the previous step. 

• item.find("h3", class_="item-name").text.strip() finds the <h3> tag with the class "item-name" 

within each item and extracts its text content, removing any leading/trailing whitespace. 

• Similarly, item.find("span", class_="item-price").text.strip() extracts the price. 

• You can adjust the code to extract other relevant information from each item by finding the 

corresponding HTML tags and attributes. 

• The code then prints the extracted information. 

Total program 

import requests 

from bs4 import BeautifulSoup 

url = "https://www.example.com"  # Replace with the actual URL 

response = requests.get(url) 

response.raise_for_status() 

soup = BeautifulSoup(response.content, "html.parser") 

items = soup.find_all("div", class_="item-container") 

for item in items: 

    name = item.find("h3", class_="item-name").text.strip() 

    price = item.find("span", class_="item-price").text.strip() 

    print(f"Name: {name}") 

    print(f"Price: {price}") 

    print("-" * 20) 

Note: 

• This is a basic example. You may need to adapt it based on the specific structure of the website 

you're scraping. 

• Always check the website's terms of service before scraping. Some websites may prohibit or 

restrict scraping. 

• Consider using a library like scrapy for more advanced web scraping tasks, which provides 

features like data pipelines, handling JavaScript, and more. 

This example provides a foundation for scraping a list of items from a website. Remember to 

inspect the HTML source of the target website carefully to identify the correct HTML elements and 

attributes for extracting the desired data. 

 

Try: 

1. Write a Python program to scrape a list of product names, prices, and URLs from an e-

commerce website. https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1- 

21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone=&hvptwo=&hvadid=6106446011

73&hvpos=&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl=&hvl

ocint=&hvlocphy= 9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415.   

2. Write a program to scrape a List of  Job Openings from a Job Search Website. 

https://www.naukri.com/engineering-jobs?src=discovery_trendingWdgt_homepage_srch. 

3. Write a program to scrape a List of Books from an Online Bookstore 

https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.amazon.in/?&ext_vrnc=hi&tag=googhydrabk1-21&ref=pd_sl_7hz2t19t5c_e&adgrpid=58355126069&hvpone&hvptwo&hvadid=610644601173&hvpos&hvnetw=g&hvrand=2271425446877080510&hvqmt=e&hvdev=c&hvdvcmdl&hvlocint&hvlocphy=9062186&hvtargid=kwd-10573980&hydadcr=14453_2316415
https://www.naukri.com/engineering-jobs?src=discovery_trendingWdgt_homepage_srch
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https://www.bookswagon.com/. 

 

b. Scraping data from a table. 

Step 1: Import necessary libraries: 

• requests: To fetch the HTML content from the URL. 

• BeautifulSoup: To parse the HTML and extract the table data. 

Step 2: Define the scrape_table_data function: 

• This function takes the URL of the webpage as input. 

• It fetches the HTML content using requests.get(url). 

• It checks for successful response using response.raise_for_status(). 

• It parses the HTML content using BeautifulSoup. 

• It finds the first <table> tag on the page using soup.find('table'). 

• If a table is found:  

• It extracts all table rows (<tr>) using table.find_all('tr'). 

• It iterates through each row:  

• Extracts all table cells (<td>) within the row using row.find_all('td'). 

• Extracts the text content of each cell, strips whitespace, and stores it in a list. 

• Appends the list of cell data to the data list. 

• Returns the data list containing all rows of the table. 

• If no table is found, it prints an error message and returns None. 

• Includes error handling for potential requests.exceptions.RequestException. 

Step 3: Usage of code: 

• Sets the url to the actual URL of the webpage containing the table. 

• Calls the scrape_table_data() function to get the table data. 

• If data is successfully extracted, it iterates through each row and prints it. 

Key Points: 

• HTML Structure: This code assumes a basic HTML table structure with rows (<tr>) and 

cells (<td>). Adjust the code if the table structure is different. 

• Error Handling: Includes basic error handling for network issues or if the table is not found 

on the page. 

• Flexibility: You can modify the code to extract data from specific columns, handle different 

table structures, or handle more complex scenarios. 

 

import requests 

from bs4 import BeautifulSoup 

def scrape_table_data(url): 

""" 

Scrapes data from an HTML table given the URL. 

Args: 

url: The URL of the webpage containing the table. 

https://www.bookswagon.com/
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Returns: 

A list of lists, where each inner list represents a row of data. 

""" 

try: 

response = requests.get(url) 

response.raise_for_status()  # Raise an exception for bad status codes 

soup = BeautifulSoup(response.content, "html.parser") 

table = soup.find('table')  # Find the first table on the page 

if table: 

rows = table.find_all('tr') 

data = [] 

for row in rows: 

cols = row.find_all('td')  # Extract data from table cells (<td>) 

row_data = [col.text.strip() for col in cols] 

data.append(row_data) 

return data 

else: 

print("No table found on the page.") 

return None 

except requests.exceptions.RequestException as e: 

print(f"Error fetching URL: {e}") 

return None 

# Example usage: 

url = "https://example.com/table_page.html"  # Replace with the actual URL 

table_data = scrape_table_data(url) 

if table_data: 

for row in table_data: 

print(row) 

To use this code: 

• Replace "https://example.com/table_page.html" with the actual URL of the webpage you 

want to scrape. 

• Run the Python script. 

• This will print the extracted table data to the console. You can then further process this data 

as needed (e.g., save it to a file, perform calculations, etc.). 

Try: 

1. Write a program to scrape data from a table on Doctors Without Borders (Médecins Sans 

Frontières - MSF) www.msf.org website. 

2. Write a program to scrape a Table with Headers on the above Doctors Without Borders 

website. 

3. Write a program to scrape a Table with Pagination on an above Doctors Without Borders 

website. 

 

C. Scraping images from a website. 

 The step-by-step guide to scraping images from a website using Python: 

Step 1. Import necessary libraries: 

import requests 

from bs4 import BeautifulSoup 

import os 

• requests: To fetch the HTML content from the URL. 

http://www.msf.org/


Page | 113 

 

• BeautifulSoup: To parse the HTML and extract image URLs. 

• os: To create filenames and handle file paths. 

 

Step 2. Define the scrape_images function: 

def scrape_images(url, save_dir="images"): 

  """ 

  Scrapes images from a given URL and saves them to a specified directory 

     Args: 

    url: The URL of the webpage to scrape. 

    save_dir: The directory to save the downloaded images (default: "images"). 

  """ 

  try: 

    response = requests.get(url) 

    response.raise_for_status()  # Raise an exception for bad status codes 

    soup = BeautifulSoup(response.content, "html.parser") 

 

    images = soup.find_all("img") 

 

    if not os.path.exists(save_dir): 

      os.makedirs(save_dir) 

 

    for i, image in enumerate(images): 

      try: 

        img_url = image["src"] 

        img_data = requests.get(img_url).content 

        img_name = f"image_{i}.jpg"  # Customize filename as needed 

        img_path = os.path.join(save_dir, img_name) 

        with open(img_path, "wb") as handler: 

          handler.write(img_data) 

        print(f"Downloaded {img_name} to {save_dir}") 

      except Exception as e: 

        print(f"Error downloading image: {e}") 

 

  except requests.exceptions.RequestException as e: 

    print(f"Error fetching URL: {e}") 

 

• This function takes the URL and an optional save_dir as input. 

• Fetches the HTML content using requests.get(url). 

• Parses the HTML content using BeautifulSoup. 

• Finds all <img> tags on the page using soup.find_all("img"). 

• Creates the save_dir if it doesn't exist. 

• Iterates through each image:  

• Extracts the src attribute (image URL) using image["src"]. 

• Fetches the image data using requests.get(img_url).content. 

• Creates a filename for the image (e.g., image_{i}.jpg). 

• Creates the full path to the image file. 
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• Saves the image data to the file. 

• Prints a success message. 

• Includes error handling for potential exceptions during image download. 

• Includes error handling for potential exceptions during URL fetching. 

Step 3:Usage of code 

url = "https://www.example.com"   

# Replace with the actual URL 

scrape_images(url)  

• Sets the url to the actual URL of the webpage containing the images. 

• Calls the scrape_images() function to start scraping. 

    

Notes: 

• HTML Structure: This code assumes the image URLs are stored in the src attribute of the <img> 

tag. Adjust the code if the HTML structure is different. 

• Error Handling: Includes basic error handling for network issues, image download failures, and 

invalid image URLs. 

• Filename Customization: Customize the filename generation logic as needed. 

• Image Types: This code assumes JPG format. Modify for other formats. 

• Directory Creation: Creates the save_dir if it doesn't exist. 

• Website Terms: Always check website terms and robots.txt. 

• Dynamic Loading: If images load dynamically, use Selenium or similar tools. 

To use this code: 

1. Replace "https://www.example.com" with the actual URL. 

2. Run the Python script. 

This will download the images to the specified directory (or "images" by default). 

 

Try: 

1. Write a program to scrape Images from a Gallery on the Doctors Without Borders  

www.msf.org  website. 

2. Write a program to scrape Images from a Search Results Page as www.msf.org  website. 

 

d. Scraping data with pagination. 
The step-by-step guide on scraping data with pagination in Python, along with an example code: 

 

 

Step 1: Import necessary libraries: 

import requests 

from bs4 import BeautifulSoup 

• requests: Fetches HTML content from URLs. 

• BeautifulSoup: Parses HTML content to extract data. 

Step 2: Identify Pagination Mechanism: 

• Inspect the website's HTML code to understand how pagination works. 

http://www.msf.org/
http://www.msf.org/
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• Look for patterns in URLs or HTML elements that change with different pages. 

Step 3:Define the scrape_page function: 

def scrape_page(url): 

  """ 

  Scrapes data from a single page of a website. 

Args: 

    url: The URL of the page to scrape. 

Returns: 

    A list of extracted data (e.g., dictionaries, lists) or None if no data found. 

  """ 

  try: 

    response = requests.get(url) 

    response.raise_for_status() 

    soup = BeautifulSoup(response.content, "html.parser") 

 # Extract data from the current page (replace with your specific logic) 

    data = [] 

    # ... (your data extraction logic) 

    return data 

   except requests.exceptions.RequestException as e: 

    print(f"Error fetching URL: {e}") 

    return None 

 

• This function takes a url as input. 

• Fetches the HTML content using requests.get(url). 

• Parses the HTML content using BeautifulSoup. 

• Replace the # ... (your data extraction logic) comment with your code to extract relevant 

data from the page. 

• Returns the extracted data (data) or None if an error occurs or no data is found. 

Steo 4. Define the scrape_all_pages function: 

def scrape_all_pages(base_url, pagination_param="page", start_page=1, end_page=None): 

  """ 

  Scrapes data from all pages of a website using pagination. 

  Args: 

    base_url: The base URL of the pagination links (e.g.,       "https://example.com/products?"). 

    pagination_param: The query parameter used for pagination (e.g., "page"). 

    start_page: The starting page number (default: 1). 

    end_page: The ending page number (default: None, scrape all pages). 

 

  Returns: 

    A list of all extracted data from all pages. 

  """ 

  all_data = [] 

  for page_num in range(start_page, end_page + 1 if end_page else 1000):  # Adjust max pages 

    url = f"{base_url}{pagination_param}={page_num}" 

    page_data = scrape_page(url) 

    if page_data: 

      all_data.extend(page_data)  # Add data from each page 

    else: 

      break  # Stop if no data found on a page (potential end of pagination) 
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  return all_data 

• This function takes the base_url, pagination_param, start_page, and end_page as input. 

• Iterates through a range of page numbers (default: 1 to 1000, adjust as needed). 

• Constructs the URL for each page using the base_url and pagination_param. 

• Calls scrape_page(url) to extract data from each page. 

• Appends the extracted data from each page to the all_data list. 

• Stops iterating if no data is found on a page (indicating the end of pagination). 

• Returns the list of all extracted data from all pages. 

5. Usage of code: 

base_url = "https://www.example.com/products?"  # Replace with actual base URL 

pagination_param = "page"  # Replace if pagination uses a different parameter 

start_page = 1  # Optional, start from a specific page 

end_page = 5  # Optional, scrape only up to a certain page 

 

all_data = scrape_all_pages(base_url, pagination_param, start_page, end_page) 

 

if all_data: 

  # Process the scraped data (e.g., print, save to file, etc.) 

  for item in all_data: 

  print(item)  # Example: Print each item 

else: 

  print("No data found”) 

 

Try: 

1 Write a program to scrape data with pagination from a website involves navigating 

through multiple pages to collect all the desired information. 

2 Write a program to scrape Images from a Search Results Page as www.msf.org  website. 
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VIII. ELECTRONIC RESOURCES 

1. https://www.dataquest.io/blog/sci-kit-learn-tutorial/ 

2. https://www.ibm.com/support/knowledgecenter/en/SS3RA7_sub/modeler_tutorial_ddita/modeler

_tutorial_ddita-gentopic1.html 

3. https://archive.ics.uci.edu/ml/datasets.php 

4. https://www.edx.org/course/analyzing-data-with-python 

5. http://math.ecnu.edu.cn/~lfzhou/seminar/[Joel_Grus]_Data_Science_from_Scratch_First_Princ.pd

f 

6. https://www.programmer-books.com/introducing-data-science-pdf/ 
 

 

VIII. MATERIALS ONLINE 

1. Course template 

2. Lab Manual 
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