

COURSE CONTENT

OBJECT ORIENTED PROGRAMMING WITH JAVA LABORATORY

I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / CSE (CS) / IT

Course Code Category Hours / Week Credits Maximum Marks

ACSD02 Foundation
L T P C CIA SEE Total

0 1 2 2 40 60 100

 Contact Classes: 15 Tutorial Classes: NIL Practical Classes: 30 Total Classes: 45

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course provides a solid foundation in object-oriented programming concepts and hands-on experience in

using them. It introduces the concepts of abstraction and reusable code design via the object-oriented paradigm.

Through a series of examples and exercises students gain coding skills and develop an understanding of

professional programming practices. Mastering Java facilitate the learning of other technologies.

II. COURSES OBJECTIVES:

 The students will try to learn

I. The strong foundation with the Java Virtual Machine, its concepts and features.

II. The systematic understanding of key aspects of the Java Class Library

III. The usage of a modern IDE with an object oriented programming language to develop programs.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Develop non-trivial programs in an modern programming language.

CO 2 Apply the principles of selection and iteration.

CO 3 Appreciate uses of modular programming concepts for handling complex problems.

CO 4 Recognize and apply principle features of object-oriented design such as abstraction and

encapsulation.

CO 5 Design classes with a view of flexibility and reusability.

CO 6 Code, test and evaluate small use cases to conform to a specification.

IV. COURE CONTENT:

EXERCISES FOR OBJECT ORIENTED PROGRAMMING WITH

JAVA LABORATORY

Note: Students are encouraged to bring their own laptops for

laboratory practice sessions.

1. Getting Started Exercises

1.1 HelloWorld

1. Install JDK on your machine.

2. Write a Hello-world program using JDK and a source-code editor, such as:

o For All Platforms: Sublime Text, Atom

o For Windows: TextPad, NotePad++

o For macOS: jEdit, gedit

o For Ubuntu: gedit

3. Do ALL the exercises.

1.2 Writing Good Programs

The only way to learn programming is program, program and program. Learning programming is like

learning cycling, swimming or any other sports. You can't learn by watching or reading books. Start to

program immediately. On the other hands, to improve your programming, you need to read many

books and study how the masters program.

It is easy to write programs that work. It is much harder to write programs that not only work but also

easy to maintain and understood by others – I call these good programs. In the real world, writing

program is not meaningful. You have to write good programs, so that others can understand and

maintain your programs.

Pay particular attention to:

1. Coding Style:

o Read "Java Code Convention"

(@ https://www.oracle.com/technetwork/java/codeconventions-150003.pdf or google

"Java Code Convention").

o Follow the Java Naming Conventions for variables, methods, and classes STRICTLY.

Use CamelCase for names. Variable and method names begin with lowercase, while class

names begin with uppercase. Use nouns for variables (e.g., radius) and class names

(e.g., Circle). Use verbs for methods (e.g., getArea(), isEmpty()).

o Use Meaningful Names: Do not use names like a, b, c, d, x, x1, x2, and x1688 - they

are meaningless. Avoid single-alphabet names like i, j, k. They are easy to type, but

usually meaningless. Use single-alphabet names only when their meaning is clear,

e.g., x, y, z for co-ordinates and i for array index. Use meaningful names

like row and col (instead

of x and y, i and j, x1 and x2), numStudents (not n), maxGrade, size (not n),

and upperbound (not n again). Differentiate between singular and plural nouns (e.g.,

use books for an array of books, and book for each item).

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

o Use consistent indentation and coding style. Many IDEs (such as Eclipse/NetBeans) can re-

format your source codes with a single click.

2. Program Documentation: Comment! Comment! and more Comment to explain your code to

other people and to yourself three days later.

1.3 CheckPassFail (if-else)

Write a program called CheckPassFail which prints "PASS" if the int variable "mark" is more than or

equal to 50; or prints "FAIL" otherwise. The program shall always print “DONE” before exiting.

Hints

Use >= for greater than or equal to comparison.

 /* Trying if-else statement.
 */
public class CheckPassFail { // Save as "CheckPassFail.java"
 public static void main(String[] args) { // Program entry point
 int mark = 49; // Set the value of "mark" here!
 System.out.println("The mark is " + mark);

 // if-else statement
 if (......) {
 System.out.println(......);
 } else {
 System.out.println(......);
 }
 System.out.println(......);
 }
}

Try

mark = 0, 49, 50, 51, 100 and verify your results.

Take note of the source-code indentation!!! Whenever you open a block with '{', indent all the

statements inside the block by 3 (or 4 spaces). When the block ends, un-indent the closing '}' to

align with the opening statement.

1.4 CheckOddEven (if-else)

Write a program called CheckOddEven which prints "Odd Number" if the int variable “number” is odd,

or “Even Number” otherwise. The program shall always print “bye!” before exiting.

Hints

n is an even number if (n % 2) is 0; otherwise, it is an odd number. Use == for comparison, e.g., (n %

2) == 0.

/**
 * Trying if-else statement and modulus (%) operator.
 */
public class CheckOddEven { // Save as "CheckOddEven.java"
 public static void main(String[] args) { // Program entry point
 int number = 49; // Set the value of "number" here!
 System.out.println("The number is " + number);
 if (......) {

 System.out.println(......); // even number
 } else {
 System.out.println(......); // odd number
 }
 System.out.println(......);
 }
}

Try

number = 0, 1, 88, 99, -1, -2 and verify your results.

Again, take note of the source-code indentation! Make it a good habit to ident your code properly, for

ease of reading your program.

1.5 PrintNumberInWord (nested-if, switch-case)

Write a program called PrintNumberInWord which prints "ONE", "TWO",... , "NINE", "OTHER" if

the int variable "number" is 1, 2,... , 9, or other, respectively. Use (a) a "nested-if" statement; (b) a

"switch-case-default" statement.

Hints

/**
 * Trying nested-if and switch-case statements.
 */
public class PrintNumberInWord { // Save as "PrintNumberInWord.java"
 public static void main(String[] args) {
 int number = 5; // Set the value of "number" here!

 // Using nested-if
 if (number == 1) { // Use == for comparison
 System.out.println(......);
 } else if (......) {

 } else if (......) {

 } else {

 }

 // Using switch-case-default
 switch(number) {
 case 1:
 System.out.println(......); break; // Don't forget the "break"
after each case!
 case 2:
 System.out.println(......); break;

 default: System.out.println(......);
 }
 }
}

Try

number = 0, 1, 2, 3, ..., 9, 10 and verify your results.

1.6 PrintDayInWord (nested-if, switch-case)

Write a program called PrintDayInWord which prints “Sunday”, “Monday”, ... “Saturday” if

the int variable "dayNumber" is 0, 1, ..., 6, respectively. Otherwise, it shall print "Not a valid day". Use

(a) a "nested-if" statement; (b) a "switch-case-default" statement.

Try

dayNumber = 0, 1, 2, 3, 4, 5, 6, 7 and verify your results.

2. Exercises on Number Systems (for Science/Engineering

Students)

To be proficient in programming, you need to be able to operate on these number systems:

1. Decimal (used by human beings for input and output)

2. Binary (used by computer for storage and processing)

3. Hexadecimal (shorthand or compact form for binary)

2.1 Exercises (Number Systems Conversion)

1. Convert the following decimal numbers into binary and hexadecimal numbers:

a. 108

b. 4848

c. 9000

 Convert the following binary numbers into hexadecimal and decimal numbers:

a. 10000000

b. 101010101010

c. 1000011000

 Convert the following hexadecimal numbers into binary and decimal numbers:

a. 1234

b. 80F

c. ABCDE

 Convert the following decimal numbers into binary equivalent:

a. 123.456D

b. 19.25D

2.2 Exercise (Integer Representation)

1. What are the ranges of 8-bit, 16-bit, 32-bit and 64-bit integer, in "unsigned" and "signed"

representation?

2. Give the value of 88, 0, 1, 127, and 255 in 8-bit unsigned representation.

3. Give the value of +88, -88 , -1, 0, +1, -128, and +127 in 8-bit 2's complement signed

representation.

4. Give the value of +88, -88 , -1, 0, +1, -127, and +127 in 8-bit sign-magnitude representation.

5. Give the value of +88, -88 , -1, 0, +1, -127 and +127 in 8-bit 1's complement representation.

2.3 Exercises (Floating-point Numbers)

1. Compute the largest and smallest positive numbers that can be represented in the 32-bit

normalized form.

2. Compute the largest and smallest negative numbers can be represented in the 32-bit

normalized form.

3. Repeat (1) for the 32-bit denormalized form.

4. Repeat (2) for the 32-bit denormalized form.

Hints:

1. Largest positive number: S=0, E=1111 1110 (254), F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0000 00001 (1), F=000 0000 0000 0000 0000 0000.

2. Same as above, but S=1.

3. Largest positive number: S=0, E=0, F=111 1111 1111 1111 1111 1111.

Smallest positive number: S=0, E=0, F=000 0000 0000 0000 0000 0001.

4. Same as above, but S=1.

2.4 Exercises (Data Representation)

For the following 16-bit codes:

0000 0000 0010 1010;

1000 0000 0010 1010;

Give their values, if they are representing:

1. a 16-bit unsigned integer;

2. a 16-bit signed integer;

3. two 8-bit unsigned integers;

4. two 8-bit signed integers;

5. a 16-bit Unicode characters;

6. two 8-bit ISO-8859-1 characters.

3. Exercises on Decision and Loop

3.1 SumAverageRunningInt (Decision & Loop)

Write a program called SumAverageRunningInt to produce the sum of 1, 2, 3, ..., to 100.

Store 1 and 100 in variables lowerbound and upperbound, so that we can change their values easily.

Also compute and display the average.

The output shall look like:

The sum of 1 to 100 is 5050

The average is 50.5

Hints

/**
 * Compute the sum and average of running integers from a lowerbound to an
upperbound using loop.
 */

public class SumAverageRunningInt { // Save as "SumAverageRunningInt.java"
 public static void main (String[] args) {
 // Define variables
 int sum = 0; // The accumulated sum, init to 0
 double average; // average in double
 final int LOWERBOUND = 1;
 final int UPPERBOUND = 100;

 // Use a for-loop to sum from lowerbound to upperbound
 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
 // The loop index variable number = 1, 2, 3, ..., 99, 100
 sum += number; // same as "sum = sum + number"
 }
 // Compute average in double. Beware that int / int produces int!

 // Print sum and average

 }
}

Try

1. Modify the program to use a "while-do" loop instead of "for" loop.

int sum = 0;

 int number = LOWERBOUND; // declare and init loop index variable
 while (number <= UPPERBOUND) { // test
 sum += number;
 ++number; // update
 }

2. Modify the program using do-while loop

int sum = 0;

 int number = LOWERBOUND; // declare and init loop index variable
 do {
 sum += number;
 ++number; // update
 } while (number <= UPPERBOUND); // test

3. What is the difference between "for" and "while-do" loops? What is the difference between "while-

do" and "do-while" loops?

4. Modify the program to sum from 111 to 8899, and compute the average. Introduce

an int variable called count to count the numbers in the specified range (to be used in computing

the average).

5. Modify the program to find the "sum of the squares" of all the numbers from 1 to 100, i.e. 1*1 +

2*2 + 3*3 + ... + 100*100.

6. Modify the program to produce two sums: sum of odd numbers and sum of even numbers

from 1 to 100. Also computer their absolute difference.

3.2 Product1ToN (or Factorial) (Decision & Loop)

Write a program called Product1ToN to compute the product of integers from 1 to 10 (i.e.,

1×2×3×...×10), as an int. Take note that It is the same as factorial of N.

Hints

Declare an int variable called product, initialize to 1, to accumulate the product.

 // Define variables
 int product = 1; // The accumulated product, init to 1
 final int LOWERBOUND = 1;
 final int UPPERBOUND = 10;

Try

1. Compute the product from 1 to 11, 1 to 12, 1 to 13 and 1 to 14. Write down the product

obtained and decide if the results are correct.

HINTS: Factorial of 13 (=6227020800) is outside the range of int [-2147483648,

2147483647]. Take note that computer programs may not produce the correct result even

though the code seems correct!

2. Repeat the above, but use long to store the product. Compare the products obtained

with int for N=13 and N=14.

HINTS: With long, you can store factorial of up to 20.

3.3 HarmonicSum (Decision & Loop)

Write a program called HarmonicSum to compute the sum of a harmonic series, as shown below,

where n=50000. The program shall compute the sum from left-to-right as well as from the right-to-left.

Are the two sums the same? Obtain the absolute difference between these two sums and explain the

difference. Which sum is more accurate?

Hints

/**
 * Compute the sum of harmonics series from left-to-right and right-to-left.
 */
public class HarmonicSum { // Save as "HarmonicSum.java"
 public static void main (String[] args) {
 // Define variables
 final int MAX_DENOMINATOR = 50000; // Use a more meaningful name instead of
n
 double sumL2R = 0.0; // Sum from left-to-right
 double sumR2L = 0.0; // Sum from right-to-left
 double absDiff; // Absolute difference between the two sums

 // for-loop for summing from left-to-right
 for (int denominator = 1; denominator <= MAX_DENOMINATOR; ++denominator) {
 // denominator = 1, 2, 3, 4, 5, ..., MAX_DENOMINATOR

 // Beware that int/int gives int, e.g., 1/2 gives 0.
 }
 System.out.println("The sum from left-to-right is: " + sumL2R);

 // for-loop for summing from right-to-left

 // Find the absolute difference and display
 if (sumL2R > sumR2L)
 else
 }
}

3.4 ComputePI (Decision & Loop)

Write a program called ComputePI to compute the value of π, using the following series expansion.

Use the maximum denominator (MAX_DENOMINATOR) as the terminating condition.

Try MAX_DENOMINATOR of 1000, 10000, 100000, 1000000 and compare the PI obtained. Is this series

suitable for computing PI? Why?

Hints

Add to sum if the denominator % 4 is 1, and subtract from sum if it is 3.

 double sum = 0.0;

 int MAX_DENOMINATOR = 1000; // Try 10000, 100000, 1000000
 for (int denominator = 1; denominator <= MAX_DENOMINATOR; denominator += 2)
{
 // denominator = 1, 3, 5, 7, ..., MAX_DENOMINATOR
 if (denominator % 4 == 1) {
 sum +=;
 } else if (denominator % 4 == 3) {
 sum -=;
 } else { // remainder of 0 or 2
 System.out.println("Impossible!!!");
 }
 }

Try

1. Instead of using maximum denominator as the terminating condition, rewrite your program to use

the maximum number of terms (MAX_TERM) as the terminating condition.

int MAX_TERM = 10000; // number of terms used in computation
 int sum = 0.0;
 for (int term = 1; term <= MAX_TERM; term++) {
 // term = 1, 2, 3, 4, ..., MAX_TERM
 if (term % 2 == 1) { // odd term number: add
 sum += 1.0 / (term * 2 - 1);
 } else { // even term number: subtract

 }
 }

2. JDK maintains the value of π in a built-in double constant called Math.PI (=3.141592653589793).

Add a statement to compare the values obtained and the Math.PI, in percents of Math.PI,

i.e., (piComputed / Math.PI) * 100.

3.5 CozaLozaWoza (Decision & Loop)

Write a program called CozaLozaWoza which prints the numbers 1 to 110, 11 numbers per line.

The program shall print "Coza" in place of the numbers which are multiples of 3, "Loza" for multiples

of 5, "Woza" for multiples of 7, "CozaLoza" for multiples of 3 and 5, and so on. The output shall look

like:

1 2 Coza 4 Loza Coza Woza 8 Coza Loza 11

Coza 13 Woza CozaLoza 16 17 Coza 19 Loza CozaWoza 22

23 Coza Loza 26 Coza Woza 29 CozaLoza 31 32 Coza

......

Hints

public class CozaLozaWoza { // Save as "CozaLozaWoza.java"
 public static void main(String[] args) {
 final int LOWERBOUND = 1, UPPERBOUND = 110;
 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
 // number = LOWERBOUND+1, LOWERBOUND+2, ..., UPPERBOUND
 // Print "Coza" if number is divisible by 3
 if (......) {
 System.out.print("Coza");
 }
 // Print "Loza" if number is divisible by 5
 if (......) {
 System.out.print(.....);
 }
 // Print "Woza" if number is divisible by 7

 // Print the number if it is not divisible by 3, 5 and 7 (i.e., it has
not been processed above)
 if (......) {

 }
 // After processing the number, print a newline if number is divisible by
11;
 // else print a space
 if (......) {
 System.out.println(); // print newline
 } else {
 System.out.print(......); // print a space
 }
 }
 }
}

Notes

1. You cannot use nested-if (if ... else if ... else if ... else) for this problem. It is because the tests are

not mutually exclusive. For example, 15 is divisible by both 3 and 5. Nested-if is only applicable

if the tests are mutually exclusive.

2. The tests above look messy. A better solution is to use a boolean flag to keep track of whether

the number has been processed, as follows:

 final int LOWERBOUND = 1, UPPERBOUND = 110;

 boolean printed;
 for (int number = LOWERBOUND; number <= UPPERBOUND; ++number) {
 printed = false; // init before processing each number
 // Print "Coza" if number is divisible by 3
 if (......) {
 System.out.print(......);
 printed = true; // processed!
 }
 // Print "Loza" if number is divisible by 5
 if (......) {
 System.out.print(.....);
 printed = true; // processed!
 }
 // Print "Woza" if number is divisible by 7

 // Print the number if it has not been processed
 if (!printed) {

 }
 // After processing the number, print a newline if it is divisible by 11;
 // else, print a space

 }

3.6 Fibonacci (Decision & Loop)

Write a program called Fibonacci to print the first 20 Fibonacci numbers F(n), where F(n)=F(n–

1)+F(n–2) and F(1)=F(2)=1. Also compute their average. The output shall look like:

The first 20 Fibonacci numbers are:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

The average is 885.5

Hints

/**
 * Print first 20 Fibonacci numbers and their average
 */
public class Fibonacci {
 public static void main (String[] args) {
 int n = 3; // The index n for F(n), starting from n=3, as n=1 and
n=2 are pre-defined
 int fn; // F(n) to be computed
 int fnMinus1 = 1; // F(n-1), init to F(2)
 int fnMinus2 = 1; // F(n-2), init to F(1)
 int nMax = 20; // maximum n, inclusive
 int sum = fnMinus1 + fnMinus2; // Need sum to compute average
 double average;

 System.out.println("The first " + nMax + " Fibonacci numbers are:");

 while (n <= nMax) { // n starts from 3
 // n = 3, 4, 5, ..., nMax

 // Compute F(n), print it and add to sum

 // Increment the index n and shift the numbers for the next iteration
 ++n;
 fnMinus2 = fnMinus1;
 fnMinus1 = fn;
 }

 // Compute and display the average (=sum/nMax).
 // Beware that int/int gives int.

 }
}

Try

1. Tribonacci numbers are a sequence of numbers T(n) similar to Fibonacci numbers, except that a

number is formed by adding the three previous numbers, i.e., T(n)=T(n-1)+T(n-2)+T(n-3), T(1)

=T(2)=1, and T(3)=2. Write a program called Tribonacci to produce the first twenty Tribonacci

numbers.

3.7 ExtractDigits (Decision & Loop)

Write a program called ExtractDigits to extract each digit from an int, in the reverse order. For

example, if the int is 15423, the output shall be "3 2 4 5 1", with a space separating the digits.

Hints

The coding pattern for extracting individual digits from an integer n is:

1. Use (n % 10) to extract the last (least-significant) digit.

2. Use n = n / 10 to drop the last (least-significant) digit.

3. Repeat if (n > 0), i.e., more digits to extract.

Take note that n is destroyed in the process. You may need to clone a copy.

 int n = ...;

 while (n > 0) {

 int digit = n % 10; // Extract the least-significant digit
 // Print this digit

 n = n / 10; // Drop the least-significant digit and repeat the loop
 }

4. Exercises on Input, Decision and Loop

4.1 Add2Integer (Input)

Write a program called Add2Integers that prompts user to enter two integers. The program shall

read the two integers as int; compute their sum; and print the result. For example,

Enter first integer: 8
Enter second integer: 9
The sum is: 17

Hints

import java.util.Scanner; // For keyboard input
/**
 * 1. Prompt user for 2 integers
 * 2. Read inputs as "int"
 * 3. Compute their sum in "int"
 * 4. Print the result
 */
public class Add2Integers { // Save as "Add2Integers.java"
 public static void main (String[] args) {
 // Declare variables
 int number1, number2, sum;

 // Put up prompting messages and read inputs as "int"
 Scanner in = new Scanner(System.in); // Scan the keyboard for input
 System.out.print("Enter first integer: "); // No newline for prompting
message
 number1 = in.nextInt(); // Read next input as "int"

 in.close(); // Close Scanner

 // Compute sum
 sum =

 // Display result
 System.out.println("The sum is: " + sum); // Print with newline
 }
}

4.2 SumProductMinMax3 (Arithmetic & Min/Max)

Write a program called SumProductMinMax3 that prompts user for three integers. The program shall

read the inputs as int; compute the sum, product, minimum and maximum of the three integers; and

print the results. For example,

Enter 1st integer: 8
Enter 2nd integer: 2
Enter 3rd integer: 9
The sum is: 19
The product is: 144
The min is: 2
The max is: 9

Hints

 // Declare variables
 int number1, number2, number3; // The 3 input integers
 int sum, product, min, max; // To compute these

 // Prompt and read inputs as "int"
 Scanner in = new Scanner(System.in); // Scan the keyboard

 in.close();

 // Compute sum and product

 sum =
 product =

 // Compute min
 // The "coding pattern" for computing min is:
 // 1. Set min to the first item
 // 2. Compare current min with the second item and update min if second item
is smaller
 // 3. Repeat for the next item
 min = number1; // Assume min is the 1st item
 if (number2 < min) { // Check if the 2nd item is smaller than current min
 min = number2; // Update min if so
 }
 if (number3 < min) { // Continue for the next item
 min = number3;
 }

 // Compute max - similar to min

 // Print results

Try

1. Write a program called SumProductMinMax5 that prompts user for five integers. The program shall

read the inputs as int; compute the sum, product, minimum and maximum of the five integers; and

print the results. Use five int variables: number1, number2, ..., number5 to store the inputs.

4.3 CircleComputation (double & printf())

Write a program called CircleComputation that prompts user for the radius of a circle in

floating point number. The program shall read the input as double; compute the diameter,

circumference, and area of the circle in double; and print the values rounded to 2 decimal places. Use

System-provided constant Math.PI for pi. The formulas are:

diameter = 2.0 * radius;

area = Math.PI * radius * radius;

circumference = 2.0 * Math.PI * radius;

Hints

 // Declare variables
 double radius, diameter, circumference, area; // inputs and results - all
in double

 // Prompt and read inputs as "double"
 System.out.print("Enter the radius: ");
 radius = in.nextDouble(); // read input as double

 // Compute in "double"

 // Print results using printf() with the following format specifiers:
 // %.2f for a double with 2 decimal digits
 // %n for a newline

 System.out.printf("Diameter is: %.2f%n", diameter);

Try

1. Write a program called SphereComputation that prompts user for the radius of a sphere in

floating point number. The program shall read the input as double; compute the volume and surface

area of the sphere in double; and print the values rounded to 2 decimal places. The formulas are:

surfaceArea = 4 * Math.PI * radius * radius;

volume = 4 /3 * Math.PI * radius * radius * radius; // But this does not work in
programming?! Why?

Take note that you cannot name the variable surface area with a space or surface-area with a

dash. Java's naming convention is surfaceArea. Other languages recommend surface_area with an

underscore.

2. Write a program called CylinderComputation that prompts user for the

base radius and height of a cylinder in floating point number. The program shall read the inputs

as double; compute the base area, surface area, and volume of the cylinder; and print the values

rounded to 2 decimal places. The formulas are:

baseArea = Math.PI * radius * radius;

surfaceArea = 2.0 * Math.PI * radius + 2.0 * baseArea;

volume = baseArea * height;

4.4 Swap2Integers

Write a program called Swap2Integers that prompts user for two integers. The program shall read

the inputs as int, save in two variables called number1 and number2; swap the contents of the two

variables; and print the results. For examples,

Enter first integer: 9
Enter second integer: -9
After the swap, first integer is: -9, second integer is: 9

Hints

To swap the contents of two variables x and y, you need to introduce a temporary storage, say temp,

and do: temp ⇐ x; x ⇐ y; y ⇐ temp.

4.5 IncomeTaxCalculator (Decision)

The progressive income tax rate is mandated as follows:

Taxable Income Rate (%)

First $20,000 0

Next $20,000 10

Next $20,000 20

The remaining 30

For example, suppose that the taxable income is $85000, the income tax payable is $20000*0% +

$20000*10% + $20000*20% + $25000*30%.

Write a program called IncomeTaxCalculator that reads the taxable income (in int). The

program shall calculate the income tax payable (in double); and print the result rounded to 2 decimal

places. For examples,

Enter the taxable income: $41234
The income tax payable is: $2246.80

Enter the taxable income: $67891
The income tax payable is: $8367.30

Enter the taxable income: $85432
The income tax payable is: $13629.60

Enter the taxable income: $12345
The income tax payable is: $0.00

Hints

 // Declare constants first (variables may use these constants)
 // The keyword "final" marked these as constant (i.e., cannot be changed).
 // Use uppercase words joined with underscore to name constants
 final double TAX_RATE_ABOVE_20K = 0.1;
 final double TAX_RATE_ABOVE_40K = 0.2;
 final double TAX_RATE_ABOVE_60K = 0.3;

 // Declare variables
 int taxableIncome;
 double taxPayable;

 // Compute tax payable in "double" using a nested-if to handle 4 cases
 if (taxableIncome <= 20000) { // [0, 20000]
 taxPayable =;
 } else if (taxableIncome <= 40000) { // [20001, 40000]
 taxPayable =;
 } else if (taxableIncome <= 60000) { // [40001, 60000]
 taxPayable =;
 } else { // [60001,]
 taxPayable =;
 }
 // Alternatively, you could use the following nested-if conditions
 // but the above follows the table data
 //if (taxableIncome > 60000) { // [60001,]
 //
 //} else if (taxableIncome > 40000) { // [40001, 60000]
 //
 //} else if (taxableIncome > 20000) { // [20001, 40000]
 //
 //} else { // [0, 20000]
 //
 //}

 // Print results rounded to 2 decimal places
 System.out.printf("The income tax payable is: $%.2f%n", ...);

Try

Suppose that a 10% tax rebate is announced for the income tax payable, capped at $1,000, modify

your program to handle the tax rebate. For example, suppose that the tax payable is $12,000, the

rebate is $1,000, as 10% of $12,000 exceed the cap.

4.6 IncomeTaxCalculatorWithSentinel (Decision & Loop)

Based on the previous exercise, write a program called IncomeTaxCalculatorWithSentinel which

shall repeat the calculation until user enter -1. For example,

Enter the taxable income (or -1 to end): $41000
The income tax payable is: $2200.00

Enter the taxable income (or -1 to end): $62000
The income tax payable is: $6600.00

Enter the taxable income (or -1 to end): $73123
The income tax payable is: $9936.90

Enter the taxable income (or -1 to end): $84328
The income tax payable is: $13298.40

Enter the taxable income: $-1
bye!

The -1 is known as the sentinel value. (Wiki: In programming, a sentinel value, also referred to as a flag

value, trip value, rogue value, signal value, or dummy data, is a special value which uses its presence as

a condition of termination.)

Hints

The coding pattern for handling input with sentinel value is as follows:

 // Declare constants first
 final int SENTINEL = -1; // Terminating value for input

 // Declare variables
 int taxableIncome;
 double taxPayable;

 // Read the first input to "seed" the while loop
 System.out.print("Enter the taxable income (or -1 to end): $");
 taxableIncome = in.nextInt();

 while (taxableIncome != SENTINEL) {
 // Compute tax payable

 // Print result

 // Read the next input
 System.out.print("Enter the taxable income (or -1 to end): $");
 taxableIncome = in.nextInt();
 // Repeat the loop body, only if the input is not the SENTINEL value.

 // Take note that you need to repeat these two statements
inside/outside the loop!
 }
 System.out.println("bye!");

Take note that we repeat the input statements inside and outside the loop. Repeating statements is

NOT a good programming practice. This is because it is easy to repeat (Cntl-C/Cntl-V), but hard to

maintain and synchronize the repeated statements. In this case, we have no better choices!

4.7 PensionContributionCalculatorWithSentinel (Decision & Loop)

Based on the previous PensionContributionCalculator,

write a program called PensionContributionCalculatorWithSentinel which shall repeat the

calculations until user enter -1 for the salary. For examples,

Enter the monthly salary (or -1 to end): $5123
Enter the age: 21
The employee's contribution is: $1024.60
The employer's contribution is: $870.91
The total contribution is: $1895.51

Enter the monthly salary (or -1 to end): $5123
Enter the age: 64
The employee's contribution is: $384.22
The employer's contribution is: $461.07
The total contribution is: $845.30

Enter the monthly salary (or -1 to end): $-1
bye!

Hints

 // Read the first input to "seed" the while loop
 System.out.print("Enter the monthly salary (or -1 to end): $");
 salary = in.nextInt();

 while (salary != SENTINEL) {
 // Read the remaining
 System.out.print("Enter the age: ");
 age = in.nextInt();

 // Read the next input and repeat
 System.out.print("Enter the monthly salary (or -1 to end): $");
 salary = in.nextInt();
 }

4.8 SalesTaxCalculator (Decision & Loop)

A sales tax of 7% is levied on all goods and services consumed. It is also mandatory that all the price

tags should include the sales tax. For example, if an item has a price tag of $107, the actual price

is $100 and $7 goes to the sales tax.

Write a program using a loop to continuously input the tax-inclusive price (in double); compute the

actual price and the sales tax (in double); and print the results rounded to 2 decimal places. The

program shall terminate in response to input of -1; and print the total price, total actual price, and

total sales tax. For examples,

Enter the tax-inclusive price in dollars (or -1 to end): 107
Actual Price is: $100.00, Sales Tax is: $7.00

Enter the tax-inclusive price in dollars (or -1 to end): 214
Actual Price is: $200.00, Sales Tax is: $14.00

Enter the tax-inclusive price in dollars (or -1 to end): 321
Actual Price is: $300.00, Sales Tax is: $21.00

Enter the tax-inclusive price in dollars (or -1 to end): -1
Total Price is: $642.00
Total Actual Price is: $600.00
Total Sales Tax is: $42.00

Hints

 // Declare constants
 final double SALES_TAX_RATE = 0.07;
 final int SENTINEL = -1; // Terminating value for input

 // Declare variables
 double price, actualPrice, salesTax; // inputs and results
 double totalPrice = 0.0, totalActualPrice = 0.0, totalSalesTax = 0.0; // to
accumulate

 // Read the first input to "seed" the while loop
 System.out.print("Enter the tax-inclusive price in dollars (or -1 to end):
");
 price = in.nextDouble();

 while (price != SENTINEL) {
 // Compute the tax

 // Accumulate into the totals

 // Print results

 // Read the next input and repeat
 System.out.print("Enter the tax-inclusive price in dollars (or -1 to
end): ");
 price = in.nextDouble();
 }
 // print totals

4.9 ReverseInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int; and

print the "reverse" of the input integer. For examples,

Enter a positive integer: 12345
The reverse is: 54321

Hints

Use the following coding pattern which uses a while-loop with repeated modulus/divide operations to

extract and drop the last digit of a positive integer.

 // Declare variables
 int inNumber; // to be input
 int inDigit; // each digit

 // Extract and drop the "last" digit repeatably using a while-loop with
modulus/divide operations
 while (inNumber > 0) {
 inDigit = inNumber % 10; // extract the "last" digit
 // Print this digit (which is extracted in reverse order)

 inNumber /= 10; // drop "last" digit and repeat
 }

4.10 SumOfDigitsInt (Loop with Modulus/Divide)

Write a program that prompts user for a positive integer. The program shall read the input as int;

compute and print the sum of all its digits. For examples,

Enter a positive integer: 12345
The sum of all digits is: 15

Hints

See "ReverseInt".

4.11 InputValidation (Loop with boolean flag)

Your program often needs to validate the user's inputs, e.g., marks shall be between 0 and 100.

Write a program that prompts user for an integer between 0-10 or 90-100. The program shall read

the input as int; and repeat until the user enters a valid input. For examples,

Enter a number between 0-10 or 90-100: -1
Invalid input, try again...
Enter a number between 0-10 or 90-100: 50
Invalid input, try again...
Enter a number between 0-10 or 90-100: 101
Invalid input, try again...
Enter a number between 0-10 or 90-100: 95
You have entered: 95

Hints

Use the following coding pattern which uses a do-while loop controlled by a boolean flag to do input

validation. We use a do-while instead of while-do loop as we need to execute the body to prompt and

process the input at least once.

 // Declare variables
 int numberIn; // to be input
 boolean isValid; // boolean flag to control the loop

 // Use a do-while loop controlled by a boolean flag
 // to repeatably read the input until a valid input is entered
 isValid = false; // default assuming input is not valid
 do {
 // Prompt and read input

 // Validate input by setting the boolean flag accordingly
 if (numberIn) {
 isValid = true; // exit the loop
 } else {
 System.out.println(......); // Print error message and repeat
 }
 } while (!isValid);

4.12 AverageWithInputValidation (Loop with boolean flag)

Write a program that prompts user for the mark (between 0-100 in int) of 3 students; computes the

average (in double); and prints the result rounded to 2 decimal places. Your program needs to

perform input validation. For examples,

Enter the mark (0-100) for student 1: 56
Enter the mark (0-100) for student 2: 101
Invalid input, try again...
Enter the mark (0-100) for student 2: -1
Invalid input, try again...
Enter the mark (0-100) for student 2: 99
Enter the mark (0-100) for student 3: 45
The average is: 66.67

Hints

 // Declare constant
 final int NUM_STUDENTS = 3;

 // Declare variables
 int numberIn;
 boolean isValid; // boolean flag to control the input validation loop
 int sum = 0;
 double average;

 for (int studentNo = 1; studentNo <= NUM_STUDENTS; ++studentNo) {
 // Prompt user for mark with input validation

 isValid = false; // reset assuming input is not valid
 do {

 } while (!isValid);

 sum +=;

 }

5. Exercises on Nested-Loops

5.1 SquarePattern (nested-loop)

Write a program called SquarePattern that prompts user for the size (a non-negative integer

in int); and prints the following square pattern using two nested for-loops.

Enter the size: 5

Hints

The code pattern for printing 2D patterns using nested loops is:

 // Outer loop to print each of the rows
 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size
 // Inner loop to print each of the columns of a particular row
 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size
 System.out.print(......); // Use print() without newline inside
the inner loop

 }
 // Print a newline after printing all the columns
 System.out.println();
 }

Notes

1. You should name the loop indexes row and col, NOT i and j, or x and y, or a and b, which are

meaningless.

2. The row and col could start at 1 (and upto size), or start at 0 (and upto size-1). As computer

counts from 0, it is probably more efficient to start from 0. However, since humans counts

from 1, it is easier to read if you start from 1.

Try

Rewrite the above program using nested while-do loops.

5.2 CheckerPattern (nested-loop)

Write a program called CheckerPattern that prompts user for the size (a non-negative integer

in int); and prints the following checkerboard pattern.

Enter the size: 7

 # # # # # # #

 # # # # # # #

 # # # # # # #

Hints

 // Outer loop to print each of the rows
 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size
 // Inner loop to print each of the columns of a particular row
 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size
 if ((row % 2) == 0) { // row 2, 4, 6, ...

 }
 System.out.print(......); // Use print() without newline inside
the inner loop

 }
 // Print a newline after printing all the columns
 System.out.println();
 }

5.3 TimeTable (nested-loop)

Write a program called TimeTable that prompts user for the size (a positive integer in int); and

prints the multiplication table as shown:

Enter the size: 10
 * | 1 2 3 4 5 6 7 8 9 10
--
 1 | 1 2 3 4 5 6 7 8 9 10
 2 | 2 4 6 8 10 12 14 16 18 20
 3 | 3 6 9 12 15 18 21 24 27 30
 4 | 4 8 12 16 20 24 28 32 36 40
 5 | 5 10 15 20 25 30 35 40 45 50
 6 | 6 12 18 24 30 36 42 48 54 60
 7 | 7 14 21 28 35 42 49 56 63 70
 8 | 8 16 24 32 40 48 56 64 72 80
 9 | 9 18 27 36 45 54 63 72 81 90
10 | 10 20 30 40 50 60 70 80 90 100

Hints

1. Use printf() to format the output, e.g., each cell is %4d.

2. See "Java Basics" article.

5.4 TriangularPattern (nested-loop)

Write 4 programs called TriangularPatternX (X = A, B, C, D) that prompts user for the size

(a non-negative integer in int); and prints each of the patterns as shown:

Enter the size: 8

 (a) (b) (c) (d)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,

where row and col begin from 1.

2. You need to print the leading blanks, in order to push the # to the right. The trailing blanks are

optional, which does not affect the pattern.

3. For pattern (a), if (row >= col) print #. Trailing blanks are optional.

4. For pattern (b), if (row + col <= size + 1) print #. Trailing blanks are optional.

5. For pattern (c), if (row >= col) print #; else print blank. Need to print

the leading blanks.

6. For pattern (d), if (row + col >= size + 1) print #; else print blank . Need to print

the leading blanks.

7. The coding pattern is:

// Outer loop to print each of the rows
 for (int row = 1; row <= size; row++) { // row = 1, 2, 3, ..., size
 // Inner loop to print each of the columns of a particular row
 for (int col = 1; col <= size; col++) { // col = 1, 2, 3, ..., size
 if (......) {
 System.out.print("# ");
 } else {
 System.out.print(" "); // Need to print the "leading" blanks
 }
 }
 // Print a newline after printing all the columns
 System.out.println();
 }

5.5 BoxPattern (nested-loop)

Write 4 programs called BoxPatternX (X = A, B, C, D) that prompts user for the size (a non-

negative integer in int); and prints the pattern as shown:

Enter the size: 8

 (a) (b) (c) (d) (e)

Hints

1. On the main diagonal, row = col. On the opposite diagonal, row + col = size + 1,

where row and col begin from 1.

2. For pattern (a), if (row == 1 || row == size || col == 1 || col == size) print #;

else print blank. Need to print the intermediate blanks.

3. For pattern (b), if (row == 1 || row == size || row == col) print #; else print

blank.

5.6 HillPattern (nested-loop)

Write 3 programs called HillPatternX (X = A, B, C, D) that prompts user for the size (a non-

negative integer in int); and prints the pattern as shown:

Enter the rows: 6

 # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #
 # # # # # # # # # # # # # # # # # # # # # # # # #

 (a) (b) # # # # # # # # # # # # #
 # # # # # # # # # # # # #
 # # # # # # # # # # # # #
 # # # # # # # # # # # # #
 # # # # # # # # # # # #
 (c) (d)

Hints

For pattern (a):

for (int row = 1;) {

 // numCol = 2*numRows - 1
 for (int col = 1;) {
 if ((row + col >= numRows + 1) && (row >= col - numRows + 1)) {
 ;
 } else {
 ;
 }
 }
 ;
 }

or, use 2 sequential inner loops to print the columns:

 for (int row = 1; row <= rows; row++) {

 for (int col = 1; col <= rows; col++) {

 if ((row + col >= rows + 1)) {

 } else {

 }

 }

 for (int col = 2; col <= rows; col++) { // skip col = 1
 if (row >= col) {

 } else {

 }
 }

 }

5.7 NumberPattern (nested-loop)

Write 4 programs called NumberPatternX (X = A, B, C, D) that prompts user for the size (a non-

negative integer in int); and prints the pattern as shown:

Enter the size: 8

1 1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1
1 2 1 2 3 4 5 6 7 2 1 7 6 5 4 3 2 1
1 2 3 1 2 3 4 5 6 3 2 1 6 5 4 3 2 1
1 2 3 4 1 2 3 4 5 4 3 2 1 5 4 3 2 1
1 2 3 4 5 1 2 3 4 5 4 3 2 1 4 3 2 1
1 2 3 4 5 6 1 2 3 6 5 4 3 2 1 3 2 1
1 2 3 4 5 6 7 1 2 7 6 5 4 3 2 1 2 1
1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1 1
 (a) (b) (c) (d)

6. Magic(Special) Numbers

6.1. Amicable umbers

Two different numbers are said to be so Amicable numbers if each sum of divisors is equal to the

other number. Amicalble Numbers are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232,

6368). For example,

Enter 1st number: 228

Enter 2nd number: 220

The numbers are Amicable Numbers.

Hints

220 and 284 are Amicable Numbers.

Divisors of 220 = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

1+2+4+5+10+11+20+22+44+55+110 = 284

Divisors of 284 = 1, 2, 4, 71, 142

1+2+4+71+142 = 220

6.2. Armstrong Number

Armstrong number is a positive number if it is equal to the sum of cubes of its digits is called

Armstrong number and if its sum is not equal to the number then it’s not a Armstrong number. For

example,

Enter number=145

145 is not an Armstrong Number

Enter number = 153

153 is an Armstrong Number

Hints

Examples: 153 is Armstrong

(1*1*1)+(5*5*5)+(3*3*3) = 153

6.3. Capricorn Number

A number is called Capricorn or Kaprekar number whose square is divided into two parts in any

conditions and parts are added, the additions of parts is equal to the number, is called Capricorn or

Kaprekar number. For example,

Enter a number : 45

45 is a Capricorn/Kaprekar number

Enter a number : 297

297 is a Capricorn/Kaprekar number

Enter a number : 44

44 is not a Capricorn/Kaprekar number

Hints

Number = 45

(45)2 = 2025

All parts for 2025:

202 + 5 = 207 (not 45)

20 + 25 = 45

2+ 025 = 27 (not 45)

From the above we can see one combination is equal to number so that 45 is Capricorn or Kaprekar

number.

Try

Write a Java program to generate and show all Kaprekar numbers less than 1000.

6.4. Circular Prime

A circular prime is a prime number with the property that the number generated at each intermediate

step when cyclically permuting its digits will be prime. For example, 1193 is a circular prime, since

1931, 9311 and 3119 all are also prime. For example,

Enter a number : 137

137 is a Circular Prime

Enter a number : 44

44 is not a Circular Prime

6.5. Happy Number

A happy number is a natural number in a given number base that eventually reaches 1 when iterated

over the perfect digital invariant function for. Those numbers that do not end in 1 are -unhappy

numbers. For example,

Enter a number : 31

31 is a Happy number

Enter a number : 32

32 is not a Happy number

6.6. Automorphic Number

An Automorphic number is a number whose square “ends” in the same digits as the number itself. For

example,

Enter a number : 5

5 is a Automorphic Number

Enter a number : 25

25 is a Automorphic Number

Enter a number : 2

2 is not a Automorphic Number

Hints

5*5 = 25, 6*6 = 36, 25*25 = 625

5,6,25 are automorphic numbers

6.7. Disarium Number

A number is called Disarium number if the sum of its power of the positions from left to right is equal

to the number. For example,

Enter a number : 135

135 is a Disarium Number

Enter a number : 32

32 is not a Disarium Number

Hints

1
1
 + 3

2
 + 5

3
 = 1 + 9 + 125 = 135

6.8. Magic Number

Magic number is the if the sum of its digits recursively are calculated till a single digit If the single digit

is 1 then the number is a magic number. Magic number is very similar with Happy Number. For

example,

Enter a number : 226

226 is a Magic Number

Enter a number : 32

32 is not a Magic Number

Enter number = 541

153 is a Magic Number

Hints

226 is said to be a magic number

2+2+6=10 sum of digits is 10 then again 1+0=1 now we get a single digit number is 1.if we single

digit number will now 1 them it would not a magic number.

6.9. Neon Number

A neon number is a number where the sum of digits of square of the number is equal to the number.

For example if the input number is 9, its square is 9*9 = 81 and sum of the digits is 9. i.e. 9 is a neon

number. For example,

Enter a number: 9

9 is a Neon Number

Enter a number: 8

8 is not a Neon Number

6.10. Palindromic Number

A palindromic number is a number that remains the same when its digits are reversed. For example,

Enter a number : 16461

16461 is a Palendromic Number

Enter a number : 1234

1234 is not a Plaindromic Number

6.11. Perfect Number

A perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the

number itself. For instance, 6 has divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. For

example,

Enter a number : 6

6 is a Perfect Number

Enter a number : 3

3 is not a Perfect Number

6.12. Special Number

A number is said to be special number when the sum of factorial of its digits is equal to the number

itself. Example- 145 is a Special Number as 1!+4!+5!=145. For example,

Enter a number : 145

145 is a Special Number

Enter a number : 23

23 is not a Special Number

6.13. Spy Number

A spy number is a number where the sum of its digits equals the product of its digits. For example,

1124 is a spy number, the sum of its digits is 1+1+2+4=8 and the product of its digits is 1*1*2*4=8.

For example,

Enter a number : 1124

1124 is a Spy Number

Enter a number : 12

12 is not a Spy Number

6.14. Ugly Number

A number is said to be an Ugly number if positive numbers whose prime factors only include 2, 3, 5.

For example, 6(2×3), 8(2x2x2), 15(3×5) are ugly numbers while 14(2×7) is not ugly since it includes

another prime factor 7. Note that 1 is typically treated as an ugly number. For example,

Enter a number : 6

6 is an Ugly Number

Enter a number : 14

14 is not an Ugly Number

7. Exercises on String and char Operations

7.1 ReverseString (String & char)

Write a program called ReverseString, which prompts user for a String, and prints

the reverse of the String by extracting and processing each character. The output shall look like:

Enter a String: abcdef
The reverse of the String "abcdef" is "fedcba".

Hints

For a String called inStr, you can use inStr.length() to get the length of the String;

and inStr.charAt(idx) to retrieve the char at the idx position, where idx begins at 0, up

to instr.length() - 1.

 // Define variables
 String inStr; // input String
 int inStrLen; // length of the input String

 // Prompt and read input as "String"
 System.out.print("Enter a String: ");
 inStr = in.next(); // use next() to read a String
 inStrLen = inStr.length();

 // Use inStr.charAt(index) in a loop to extract each character
 // The String's index begins at 0 from the left.
 // Process the String from the right
 for (int charIdx = inStrLen - 1; charIdx >= 0; --charIdx) {
 // charIdx = inStrLen-1, inStrLen-2, ... ,0

 }

7.2 CountVowelsDigits (String & char)

Write a program called CountVowelsDigits, which prompts the user for a String, counts the

number of vowels (a, e, i, o, u, A, E, I, O, U) and digits (0-9) contained in the string, and prints the

counts and the percentages (rounded to 2 decimal places). For example,

Enter a String: testing12345
Number of vowels: 2 (16.67%)
Number of digits: 5 (41.67%)

Hints

1. To check if a char c is a digit, you can use boolean expression (c >= '0' && c <= '9'); or

use built-in boolean function Character.isDigit(c).

2. You could use in.next().toLowerCase() to convert the input String to lowercase to reduce

the number of cases.

3. To print a % using printf(), you need to use %%. This is because % is a prefix for format

specifier in printf(), e.g., %d and %f.

7.3 PhoneKeyPad (String & char)

On you phone keypad, the alphabets are mapped to digits as follows:

 ABC(2), DEF(3), GHI(4), JKL(5), MNO(6), PQRS(7), TUV(8), WXYZ(9).

Write a program called PhoneKeyPad, which prompts user for a String (case insensitive), and

converts to a sequence of keypad digits. Use (a) a nested-if, (b) a switch-case-default.

Hints

1. You can use in.next().toLowerCase() to read a String and convert it to lowercase to reduce
your cases.

2. In switch-case, you can handle multiple cases by omitting the break statement, e.g.,

switch (inChar) {

 case 'a': case 'b': case 'c': // No break for 'a' and 'b', fall thru 'c'

 System.out.print(2); break;
 case 'd': case 'e': case 'f':

 default:

}

7.4 Caesar's Code (String & char)

Caesar's Code is one of the simplest encryption techniques. Each letter in the plaintext is replaced by a

letter some fixed number of position (n) down the alphabet cyclically. In this exercise, we shall

pick n=3. That is, 'A' is replaced by 'D', 'B' by 'E', 'C' by 'F', ..., 'X' by 'A', ..., 'Z' by 'C'.

Write a program called CaesarCode to cipher the Caesar's code. The program shall prompt user for a

plaintext string consisting of mix-case letters only; compute the ciphertext; and print the ciphertext in

uppercase. For example,

Enter a plaintext string: Testing
The ciphertext string is: WHVWLQJ

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to

reduce the number of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'). But it is much better to

consider 'A' to 'W' as one case; 'X', 'Y' and 'Z' as 3 separate cases.

3. Take note that char 'A' is represented as Unicode number 65 and char 'D' as 68.

However, 'A' + 3 gives 68. This is because char + int is implicitly casted to int +

int which returns an int value. To obtain a char value, you need to perform explicit type

casting using (char)('A' + 3). Try printing ('A' + 3) with and without type casting.

7.5 Decipher Caesar's Code (String & char)

Write a program called DecipherCaesarCode to decipher the Caesar's code described in the previous

exercise. The program shall prompts user for a ciphertext string consisting of mix-case letters only;

compute the plaintext; and print the plaintext in uppercase. For example,

Enter a ciphertext string: wHVwLQJ
The plaintext string is: TESTING

7.6 Exchange Cipher (String & char)

This simple cipher exchanges 'A' and 'Z', 'B' and 'Y', 'C' and 'X', and so on.

Write a program called ExchangeCipher that prompts user for a plaintext string consisting of mix-

case letters only. You program shall compute the ciphertext; and print the ciphertext in uppercase. For

examples,

Enter a plaintext string: abcXYZ
The ciphertext string is: ZYXCBA

Hints

1. Use in.next().toUpperCase() to read an input string and convert it into uppercase to

reduce the number of cases.

2. You can use a big nested-if with 26 cases ('A'-'Z'), or use the following relationship:

'A' + 'Z' == 'B' + 'Y' == 'C' + 'X' == ... == plainTextChar + cipherTextChar

Hence, cipherTextChar = 'A' + 'Z' - plainTextChar

7.7 TestPalindromicWord and TestPalindromicPhrase (String & char)

A word that reads the same backward as forward is called a palindrome, e.g., "mom", "dad", "racecar",

"madam", and "Radar" (case-insensitive).

Write a program called TestPalindromicWord, that prompts user for a word and prints ""xxx"

is|is not a palindrome".

A phrase that reads the same backward as forward is also called a palindrome, e.g., "Madam, I'm

Adam", "A man, a plan, a canal - Panama!" (ignoring punctuation and capitalization).

Modify your program (called TestPalindromicPhrase) to check for palindromic phrase.

Use in.nextLine() to read a line of input.

Hints

1. Maintain two indexes, forwardIndex (fIdx) and backwardIndex (bIdx), to scan the phrase

forward and backward.

 int fIdx = 0, bIdx = strLen - 1;

 while (fIdx < bIdx) {

 ++fIdx;

 --bIdx;

 }

 // or
 for (int fIdx = 0, bIdx = strLen - 1; fIdx < bIdx; ++fIdx, --bIdx) {

 }

2. You can check if a char c is a letter either using built-

in boolean function Character.isLetter(c); or boolean expression (c >= 'a' && c <= 'z').

Skip the index if it does not contain a letter.

7.8 CheckBinStr (String & char)

The binary number system uses 2 symbols, 0 and 1. Write a program called CheckBinStr to verify a

binary string. The program shall prompt user for a binary string; and decide if the input string is a valid

binary string. For example,

Enter a binary string: 10101100
"10101100" is a binary string

Enter a binary string: 10120000
"10120000" is NOT a binary string

Hints

Use the following coding pattern which involves a boolean flag to check the input string.

// Declare variables
 String inStr; // The input string
 int inStrLen; // The length of the input string
 char inChar; // Each char of the input string

 boolean isValid; // "is" or "is not" a valid binary string?

 isValid = true; // Assume that the input is valid, unless our check fails
 for (......) {
 inChar =;
 if (!(inChar == '0' || inChar == '1')) {
 isValid = false;
 break; // break the loop upon first error, no need to continue for
more errors
 // If this is not encountered, isValid remains true after the
loop.
 }
 }
 if (isValid) {
 System.out.println(......);
 } else {
 System.out.println(......);
 }
 // or using one liner
 //System.out.println(isValid ? ... : ...);

7.9 CheckHexStr (String & char)

The hexadecimal (hex) number system uses 16 symbols, 0-9 and A-F (or a-f). Write a program to

verify a hex string. The program shall prompt user for a hex string; and decide if the input string is a

valid hex string. For examples,

Enter a hex string: 123aBc
"123aBc" is a hex string

Enter a hex string: 123aBcx
"123aBcx" is NOT a hex string

Hints

if (!((inChar >= '0' && inChar <= '9')

 || (inChar >= 'A' && inChar <= 'F')

 || (inChar >= 'a' && inChar <= 'f'))) { // Use positive logic and then
reverse

}

7.10 Bin2Dec (String & char)

Write a program called Bin2Dec to convert an input binary string into its equivalent decimal number.

Your output shall look like:

Enter a Binary string: 1011
The equivalent decimal number for binary "1011" is: 11

Enter a Binary string: 1234
error: invalid binary string "1234"

Hints

See "Code Example".

7.11 Hex2Dec (String & char)

Write a program called Hex2Dec to convert an input hexadecimal string into its equivalent decimal

number. Your output shall look like:

Enter a Hexadecimal string: 1a
The equivalent decimal number for hexadecimal "1a" is: 26

Enter a Hexadecimal string: 1y3
error: invalid hexadecimal string "1y3"

Hints

See "Code Example".

7.12 Oct2Dec (String & char)

Write a program called Oct2Dec to convert an input Octal string into its equivalent decimal number.

For example,

Enter an Octal string: 147
The equivalent decimal number "147" is: 103

8. Exercises on Arrays

8.1 PrintArray (Array)

Write a program called PrintArray which prompts user for the number of items in an array (a non-

negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user for the values

of all the items and saves them in an int array called items. The program shall then print the

contents of the array in the form of [x1, x2, ..., xn]. For example,

Enter the number of items: 5
Enter the value of all items (separated by space): 3 2 5 6 9
The values are: [3, 2, 5, 6, 9]

Hints

 // Declare variables
 tinal int NUM_ITEMS;
 int[] items; // Declare array name, to be allocated after NUM_ITEMS is
known

 // Prompt for for the number of items and read the input as "int"

 NUM_ITEMS =

 // Allocate the array
 items = new int[NUM_ITEMS];

 // Prompt and read the items into the "int" array, if array length > 0
 if (items.length > 0) {

 for (int i = 0; i < items.length; ++i) { // Read all items

 }
 }

 // Print array contents, need to handle first item and subsequent items
differently

 for (int i = 0; i < items.length; ++i) {
 if (i == 0) {
 // Print the first item without a leading commas

 } else {
 // Print the subsequent items with a leading commas

 }
 // or, using a one liner
 //System.out.print((i == 0) ? :);
 }

8.2 PrintArrayInStars (Array)

Write a program called printArrayInStars which prompts user for the number of items in an

array (a non-negative integer), and saves it in an int variable called NUM_ITEMS. It then prompts user

for the values of all the items (non-negative integers) and saves them in an int array called items.

The program shall then print the contents of the array in a graphical form, with the array index and

values represented by number of stars. For examples,

Enter the number of items: 5
Enter the value of all items (separated by space): 7 4 3 0 7
0: *******(7)
1: ****(4)
2: ***(3)
3: (0)
4: *******(7)

Hints

 // Declare variables
 final int NUM_ITEMS;
 int[] items; // Declare array name, to be allocated after NUM_ITEMS is
known

 // Print array in "index: number of stars" using a nested-loop
 // Take note that rows are the array indexes and columns are the value in
that index
 for (int idx = 0; idx < items.length; ++idx) { // row
 System.out.print(idx + ": ");
 // Print value as the number of stars
 for (int starNo = 1; starNo <= items[idx]; ++starNo) { // column
 System.out.print("*");
 }

 }

8.3 GradesStatistics (Array)

Write a program which prompts user for the number of students in a class (a non-negative integer),

and saves it in an int variable called numStudents. It then prompts user for the grade of each of the

students (integer between 0 to 100) and saves them in an int array called grades. The program shall

then compute and print the average (in double rounded to 2 decimal places) and

minimum/maximum (in int).

Enter the number of students: 5
Enter the grade for student 1: 98
Enter the grade for student 2: 78
Enter the grade for student 3: 78
Enter the grade for student 4: 87
Enter the grade for student 5: 76
The average is: 83.40
The minimum is: 76
The maximum is: 98

8.4 Hex2Bin (Array for Table Lookup)

Write a program called Hex2Bin that prompts user for a hexadecimal string and print its equivalent

binary string. The output shall look like:

Enter a Hexadecimal string: 1abc
The equivalent binary for hexadecimal "1abc" is: 0001 1010 1011 1100

Hints

1. Use an array of 16 Strings containing binary strings corresponding to hexadecimal number 0-9A-

F (or a-f), as follows

final String[] HEX_BITS = {"0000", "0001", "0010", "0011",

 "0100", "0101", "0110", "0111",

 "1000", "1001", "1010", "1011",

 "1100", "1101", "1110", "1111"};

8.5 Dec2Hex (Array for Table Lookup)

Write a program called Dec2Hex that prompts user for a positive decimal number, read as int, and

print its equivalent hexadecimal string. The output shall look like:

Enter a decimal number: 1234
The equivalent hexadecimal number is 4D2

9. Exercises on Methods

9.1 exponent() (method)

Write a method called exponent(int base, int exp) that returns an int value of base raises to

the power of exp. The signature of the method is:

 public static int exponent(int base, int exp);

Assume that exp is a non-negative integer and base is an integer. Do not use any Math library

functions.

Also write the main() method that prompts user for the base and exp; and prints the result. For

example,

Enter the base: 3
Enter the exponent: 4
3 raises to the power of 4 is: 81

Hints

......

public class Exponent {

 public static void main(String[] args) {
 // Declare variables
 int exp; // exponent (non-negative integer)
 int base; // base (integer)

 // Prompt and read exponent and base

 // Print result
 System.out.println(base + " raises to the power of " + exp + " is: "
+ exponent(base, exp));
 }

 // Returns "base" raised to the power "exp"
 public static int exponent(int base, int exp) {
 int product = 1; // resulting product

 // Multiply product and base for exp number of times
 for (......) {
 product *= base;
 }

 return product;
 }
}

9.2 isOdd() (method)

Write a boolean method called isOdd() in a class called OddEvenTest, which takes an int as

input and returns true if the it is odd. The signature of the method is as follows:

public static boolean isOdd(int number);

Also write the main() method that prompts user for a number, and prints "ODD" or "EVEN". You

should test for negative input. For examples,

Enter a number: 9
9 is an odd number

Enter a number: 8

8 is an even number

Enter a number: -5
-5 is an odd number

Hints

See Notes.

9.3 hasEight() (method)

Write a boolean method called hasEight(), which takes an int as input and returns true if the

number contains the digit 8 (e.g., 18, 168, 1288). The signature of the method is as follows:

public static boolean hasEight(int number);

Write a program called MagicSum, which prompts user for integers (or -1 to end), and produce the

sum of numbers containing the digit 8. Your program should use the above methods. A sample

output of the program is as follows:

Enter a positive integer (or -1 to end): 1

Enter a positive integer (or -1 to end): 2

Enter a positive integer (or -1 to end): 3

Enter a positive integer (or -1 to end): 8

Enter a positive integer (or -1 to end): 88

Enter a positive integer (or -1 to end): -1

The magic sum is: 96

Hints

The coding pattern to repeat until input is -1 (called sentinel value) is:

final int SENTINEL = -1; // Terminating input
int number;

// Read first input to "seed" the while loop
System.out.print("Enter a positive integer (or -1 to end): ");
number = in.nextInt();

while (number != SENTINEL) { // Repeat until input is -1

 // Read next input. Repeat if the input is not the SENTINEL
 // Take note that you need to repeat these codes!
 System.out.print("Enter a positive integer (or -1 to end): ");
 number = in.nextInt();
}

You can either repeatably use modulus/divide (n%10 and n=n/10) to extract and drop each digit

in int; or convert the int to String and use the String's charAt() to inspect each char.

9.4 print() (Array & Method)

Write a method called print(), which takes an int array and print its contents in the form of [a1,

a2, ..., an]. Take note that there is no comma after the last element. The method's signature is as

follows:

public static void print(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-

element array).

How to handle double[] or float[]? You need to write a overloaded version for double[] and a

overloaded version for float[], with the following signatures:

public static void print(double[] array)
public static void print(float[] array)

The above is known as method overloading, where the same method name can have many versions,

differentiated by its parameter list.

Hints

For the first element, print its value; for subsequent elements, print commas followed by the value.

9.5 arrayToString() (Array & Method)

Write a method called arrayToString(), which takes an int array and return a String in the form

of [a1, a2, ..., an]. Take note that this method returns a String, the previous exercise

returns void but prints the output. The method's signature is as follows:

public static String arrayToString(int[] array);

Also write a test driver to test this method (you should test on empty array, one-element array, and n-

element array).

Notes: This is similar to the built-in function Arrays.toString(). You could study its source code.

9.6 contains() (Array & Method)

Write a boolean method called contains(), which takes an array of int and an int; and

returns true if the array contains the given int. The method's signature is as follows:

public static boolean contains(int[] array, int key);

Also write a test driver to test this method.

9.7 search() (Array & Method)

Write a method called search(), which takes an array of int and an int; and returns the

array index if the array contains the given int; or -1 otherwise. The method's signature is as follows:

public static int search(int[] array, int key);

Also write a test driver to test this method.

9.8 equals() (Array & Method)

Write a boolean method called equals(), which takes two arrays of int and returns true if the two

arrays are exactly the same (i.e., same length and same contents). The method's signature is as follows:

public static boolean equals(int[] array1, int[] array2)

Also write a test driver to test this method.

9.9 copyOf() (Array & Method)

Write a boolean method called copyOf(), which takes an int Array and returns a copy of the given

array. The method's signature is as follows:

public static int[] copyOf(int[] array)

Also write a test driver to test this method.

Write another version for copyOf() which takes a second parameter to specify the length of the new

array. You should truncate or pad with zero so that the new array has the required length.

public static int[] copyOf(int[] array, int newLength)

NOTES: This is similar to the built-in function Arrays.copyOf().

9.10 swap() (Array & Method)

Write a method called swap(), which takes two arrays of int and swap their contents if they have

the same length. It shall return true if the contents are successfully swapped. The method's signature

is as follows:

public static boolean swap(int[] array1, int[] array2)

Also write a test driver to test this method.

Hints

You need to use a temporary location to swap two storage locations.

// Swap item1 and item2
int item1, item2, temp;
temp = item1;
item1 = item2;
item2 = item1;
// You CANNOT simply do: item1 = item2; item2 = item2;

9.11 reverse() (Array & Method)

Write a method called reverse(), which takes an array of int and reverse its contents. For

example, the reverse of [1,2,3,4] is [4,3,2,1]. The method's signature is as follows:

public static void reverse(int[] array)

Take note that the array passed into the method can be modified by the method (this is called "pass

by reference"). On the other hand, primitives passed into a method cannot be modified. This is

because a clone is created and passed into the method instead of the original copy (this is called "pass

by value").

Also write a test driver to test this method.

Hints

You might use two indexes in the loop, one moving forward and one moving backward to point to the

two elements to be swapped.

for (int fIdx = 0, bIdx = array.length - 1; fIdx < bIdx; ++fIdx, --bIdx) {

 // Swap array[fIdx] and array[bIdx]
 // Only need to transverse half of the array elements
}

You need to use a temporary location to swap two storage locations.

// Swap item1 and item2
int item1, item2, temp;
temp = item1;
item1 = item2;
item2 = item1;
// You CANNOT simply do: item1 = item2; item2 = item2;

9.12 GradesStatistics (Array & Method)

Write a program called GradesStatistics, which reads in n grades (of int between 0 and 100,

inclusive) and displays the average, minimum, maximum, median and standard deviation. Display the

floating-point values upto 2 decimal places. Your output shall look like:

Enter the number of students: 4
Enter the grade for student 1: 50
Enter the grade for student 2: 51
Enter the grade for student 3: 56
Enter the grade for student 4: 53
The grades are: [50, 51, 56, 53]
The average is: 52.50
The median is: 52.00
The minimum is: 50
The maximum is: 56
The standard deviation is: 2.29

The formula for calculating standard deviation is:

Hints:

public class GradesStatistics {
 public static int[] grades; // Declare an int[], to be allocated later.
 // This array is accessible by all the methods.

 public static void main(String[] args) {
 readGrades(); // Read and save the inputs in global int[] grades
 System.out.println("The grades are: ");
 print(grades);
 System.out.println("The average is " + average(grades));
 System.out.println("The median is " + median(grades));
 System.out.println("The minimum is " + min(grades));
 System.out.println("The maximum is " + max(grades));
 System.out.println("The standard deviation is " + stdDev(grades));
 }

 // Prompt user for the number of students and allocate the global "grades"
array.
 // Then, prompt user for grade, check for valid grade, and store in "grades".

 public static void readGrades() { }

 // Print the given int array in the form of [x1, x2, x3,..., xn].
 public static void print(int[] array) { }

 // Return the average value of the given int[]
 public static double average(int[] array) { }

 // Return the median value of the given int[]
 // Median is the center element for odd-number array,
 // or average of the two center elements for even-number array.
 // Use Arrays.sort(anArray) to sort anArray in place.
 public static double median(int[] array) { }

 // Return the maximum value of the given int[]
 public static int max(int[] array) {
 int max = array[0]; // Assume that max is the first element
 // From second element, if the element is more than max, set the max to this
element.

 }

 // Return the minimum value of the given int[]
 public static int min(int[] array) { }

 // Return the standard deviation of the given int[]
 public static double stdDev(int[] array) { }
}

Take note that besides readGrade() that relies on global variable grades, all the methods are self-

contained general utilities that operate on any given array.

9.13 GradesHistogram (Array & Method)

Write a program called GradesHistogram, which reads in n grades (as in the previous exercise),

and displays the horizontal and vertical histograms. For example:

 0 - 9: ***

 10 - 19: ***

 20 - 29:

 30 - 39:

 40 - 49: *

 50 - 59: *****

 60 - 69:

 70 - 79:

 80 - 89: *

 90 -100: **

 *

 *

 * * *

 * * * *

 * * * * * *

 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-100

10. Exercises on Command-line Arguments, Recursion

10.1 Arithmetic (Command-Line Arguments)

Write a program called Arithmetic that takes three command-line arguments: two integers

followed by an arithmetic operator (+, -, * or /). The program shall perform the corresponding

operation on the two integers and print the result. For example:

java Arithmetic 3 2 +
3+2=5

java Arithmetic 3 2 -
3-2=1

java Arithmetic 3 2 /
3/2=1

Hints

The method main(String[] args) takes an argument: "an array of String", which is often (but not

necessary) named args. This parameter captures the command-line arguments supplied by the user

when the program is invoked. For example, if a user invokes:

java Arithmetic 12345 4567 +

The three command-line arguments "12345", "4567" and "+" will be captured in

a String array {"12345", "4567", "+"} and passed into the main() method as the

argument args. That is,

args is: {"12345", "4567", "+"} // args is a String array
args.length is: 3 // length of the array
args[0] is: "12345" // 1st element of the String array
args[1] is: "4567" // 2nd element of the String array
args[2] is: "+" // 3rd element of the String array
args[0].length() is: 5 // length of 1st String element
args[1].length() is: 4 // length of the 2nd String element
args[2].length() is: 1 // length of the 3rd String element

public class Arithmetic {
 public static void main (String[] args) {
 int operand1, operand2;
 char theOperator;

 // Check if there are 3 command-line arguments in the
 // String[] args by using length variable of array.
 if (args.length != 3) {
 System.err.println("Usage: java Arithmetic int1 int2 op");
 return;
 }

 // Convert the 3 Strings args[0], args[1], args[2] to int and char.
 // Use the Integer.parseInt(aStr) to convert a String to an int.
 operand1 = Integer.parseInt(args[0]);
 operand2 =

 // Get the operator, assumed to be the first character of
 // the 3rd string. Use method charAt() of String.
 theOperator = args[2].charAt(0);
 System.out.print(args[0] + args[2] + args[1] + "=");

 switch(theOperator) {
 case ('-'): System.out.println(operand1 - operand2); break;
 case ('+'):
 case ('*'):
 case ('/'):
 default:
 System.err.println("Error: invalid operator!");
 }
 }
}

Notes:

 To provide command-line arguments, use the "cmd" or "terminal" to run your program in the

form "java ClassName arg1 arg2".

 To provide command-line arguments in Eclipse, right click the source code ⇒ "Run As" ⇒ "Run

Configurations..." ⇒ Select "Main" and choose the proper main class ⇒ Select "Arguments" ⇒

Enter the command-line arguments, e.g., "3 2 +" in "Program Arguments".

 To provide command-line arguments in NetBeans, right click the "Project" name ⇒ "Set

Configuration" ⇒ "Customize..." ⇒ Select categories "Run" ⇒ Enter the command-line arguments,

e.g., "3 2 +" in the "Arguments" box (but make sure you select the proper Main class).

Question: Try "java Arithmetic 2 4 *" (in CMD shell and Eclipse/NetBeans) and explain the result

obtained. How to resolve this problem?

In Windows' CMD shell, * is known as a wildcard character, that expands to give the list of file in the

directory (called Shell Expansion). For example, "dir *.java" lists all the file with extension of

".java". You could double-quote the * to prevent shell expansion. Eclipse has a bug in handling this,

even * is double-quoted. NetBeans??

SumDigits (Command-line Arguments)

Write a program called SumDigits to sum up the individual digits of a positive integer, given in the

command line. The output shall look like:

java SumDigits 12345
The sum of digits = 1 + 2 + 3 + 4 + 5 = 15

Exercises on Recursion

In programming, a recursive function (or method) calls itself. The classical example is factorial(n),

which can be defined recursively as f(n)=n*f(n-1). Nonetheless, it is important to take note that a

recursive function should have a terminating condition (or base case), in the case of factorial, f(0)=1.

Hence, the full definition is:

factorial(n) = 1, for n = 0

factorial(n) = n * factorial(n-1), for all n > 1

For example, suppose n = 5:

// Recursive call
factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0)
factorial(0) = 1 // Base case
// Unwinding
factorial(1) = 1 * 1 = 1
factorial(2) = 2 * 1 = 2
factorial(3) = 3 * 2 = 6
factorial(4) = 4 * 6 = 24
factorial(5) = 5 * 24 = 120 (DONE)

10.2 Factorial Recursive

Write a recursive method called factorial() to compute the factorial of the given integer.

public static int factorial(int n)

The recursive algorithm is:

factorial(n) = 1, if n = 0

factorial(n) = n * factorial(n-1), if n > 0

Compare your code with the iterative version of the factorial():

factorial(n) = 1*2*3*...*n

Hints

Writing recursive function is straight forward. You simply translate the recursive definition into code

with return.

// Return the factorial of the given integer, recursively
public static int factorial(int n) {
 if (n == 0) {
 return 1; // base case
 } else {
 return n * factorial(n-1); // call itself
 }
 // or one liner
 // return (n == 0) ? 1 : n*factorial(n-1);
}

Notes

1. Recursive version is often much shorter.

2. The recursive version uses much more computational and storage resources, and it need to

save its current states before each successive recursive call, so as to unwind later.

10.3 Fibonacci (Recursive)

Write a recursive method to compute the Fibonacci number of n, defined as follows:

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2) for n >= 2

Compare the recursive version with the iterative version written earlier.

Hints

// Translate the recursive definition into code with return statements
public static int fibonacci(int n) {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fibonacci(n-1) + fibonacci(n-2);
 }
}

10.4 Length of a Running Number Sequence (Recursive)

A special number sequence is defined as follows:

S(1) = 1

S(2) = 12

S(3) = 123

S(4) = 1234

......

S(9) = 123456789 // length is 9
S(10) = 12345678910 // length is 11
S(11) = 1234567891011 // length is 13
S(12) = 123456789101112 // length is 15
......

Write a recursive method to compute the length of S(n), defined as follows:

len(1) = 1

len(n) = len(n-1) + numOfDigits(n)

Also write an iterative version.

10.5 GCD (Recursive)

Write a recursive method called gcd() to compute the greatest common divisor of two given integers.

public static void int gcd(int a, int b)

gcd(a,b) = a, if b = 0

gcd(a,b) = gcd(b, remainder(a,b)), if b > 0

11. More (Difficult) Exercises

11.1 JDK Source Code

Extract the source code of the class Math from the JDK source code (JDK Installed Directory ⇒ "lib" ⇒

"src.zip" ⇒ "java.base" ⇒ "java" ⇒ "lang" ⇒ "Math.java"). Study how constants such

as E and PI are defined. Also study how methods such as abs(), max(), min(), toDegree(), etc, are

written.

Also study the "Integer.java", "String.java".

11.2 Matrices (2D Arrays)

Similar to Math class, write a Matrix library that supports matrix operations (such as addition,

subtraction, multiplication) via 2D arrays. The operations shall support both double and int. Also

write a test class to exercise all the operations programmed.

Hints

public class Matrix {
 // Method signatures
 public static void print(int[][] m);
 public static void print(double[][] m);
 public static boolean haveSameDimension(int[][] m1, int[][] m2); // Used in
add(), subtract()
 public static boolean haveSameDimension(double[][] m1, double[][] m2);
 public static int[][] add(int[][] m1, int[][] m2);
 public static double[][] add(double[][] m1, double[][] m2);
 public static int[][] subtract(int[][] m1, int[][] m2);
 public static double[][] subtract(double[][] m1, double[][] m2);
 public static int[][] multiply(int[][] m1, int[][] m2);
 public static double[][] multiply(double[][] m1, double[][] m2);

}

11.3 PrintAnimalPattern (Special Characters and Escape Sequences)

Write a program called PrintAnimalPattern, which uses println() to produce this pattern:

 '__'

 (©©)

 /========\/

 / || %% ||

* ||----||

 ¥¥ ¥¥

 "" ""

Hints

Use escape sequence \uhhhh where hhhh are four hex digits to display Unicode characters such as ¥

and ©. ¥ is 165 (00A5H) and © is 169 (00A9H) in both ISO-8859-1 (Latin-1) and Unicode character sets.

Double-quote (") and black-slash (\) require escape sequence inside a String. Single quote (') does

not require escape sign.

Try

Print the same pattern using printf(). (Hints: Need to use %% to print a % in printf() because % is

the suffix for format specifier.)

11.4 Print Patterns (nested-loop)

Write a method to print each of the followings patterns using nested loops in a class

called PrintPatterns. The program shall prompt user for the sizde of the pattern. The signatures of

the methods are:

public static void printPatternX(int size); // X: A, B, C,...; size is a positive
integer.

 # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # #

 # # # # # # # # # # # # # # # # # # # # # # #

 (a) (b) # # # # # # # # #

 # # # # # # #

 # # # # #

 # # #

 #

 (c)

1 1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1

1 2 1 2 3 4 5 6 7 2 1 7 6 5 4 3 2 1

1 2 3 1 2 3 4 5 6 3 2 1 6 5 4 3 2 1

1 2 3 4 1 2 3 4 5 4 3 2 1 5 4 3 2 1

1 2 3 4 5 1 2 3 4 5 4 3 2 1 4 3 2 1

1 2 3 4 5 6 1 2 3 6 5 4 3 2 1 3 2 1

1 2 3 4 5 6 7 1 2 7 6 5 4 3 2 1 2 1

1 2 3 4 5 6 7 8 1 8 7 6 5 4 3 2 1 1

 (d) (e) (f) (g)

 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

 1 2 1 1 2 3 4 5 6 7 6 5 4 3 2 1

 1 2 3 2 1 1 2 3 4 5 6 5 4 3 2 1

 1 2 3 4 3 2 1 1 2 3 4 5 4 3 2 1

 1 2 3 4 5 4 3 2 1 1 2 3 4 3 2 1

 1 2 3 4 5 6 5 4 3 2 1 1 2 3 2 1

 1 2 3 4 5 6 7 6 5 4 3 2 1 1 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1

 (h) (i)

1 1 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1

1 2 2 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

1 2 3 3 2 1 1 2 3 4 5 6 6 5 4 3 2 1

1 2 3 4 4 3 2 1 1 2 3 4 5 5 4 3 2 1

1 2 3 4 5 5 4 3 2 1 1 2 3 4 4 3 2 1

1 2 3 4 5 6 6 5 4 3 2 1 1 2 3 3 2 1

1 2 3 4 5 6 7 7 6 5 4 3 2 1 1 2 2 1

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 1 1

 (j) (k)

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

 5 6 7 8 9 8 7 6 5

 6 7 8 9 0 1 0 9 8 7 6

 7 8 9 0 1 2 3 2 1 0 9 8 7

8 9 0 1 2 3 4 5 4 3 2 1 0 9 8

 (l)

11.5 Print Triangles (nested-loop)

Write a method to print each of the following patterns using nested-loops in a class

called PrintTriangles. The program shall prompt user for the number of rows. The signatures of the

methods are:

public static void printXxx(int numRows); // Xxx is the pattern's name

 1

 1 2 1

 1 2 4 2 1

 1 2 4 8 4 2 1

 1 2 4 8 16 8 4 2 1

 1 2 4 8 16 32 16 8 4 2 1

 1 2 4 8 16 32 64 32 16 8 4 2 1

1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

 (a) PowerOf2Triangle

1 1

1 1 1 1

1 2 1 1 2 1

1 3 3 1 1 3 3 1

1 4 6 4 1 1 4 6 4 1

1 5 10 10 5 1 1 5 10 10 5 1

1 6 15 20 15 6 1 1 6 15 20 15 6 1

(b) PascalTriangle1 (c) PascalTriangle2

11.6 Trigonometric Series

Write a method to compute sin(x) and cos(x) using the following series expansion, in a class

called TrigonometricSeries. The signatures of the methods are:

public static double sin(double x, int numTerms); // x in radians, NOT degrees
public static double cos(double x, int numTerms);

Compare the values computed using the series with the JDK

methods Math.sin(), Math.cos() at x=0, π/6, π/4, π/3, π/2 using various numbers of terms.

Hints

Do not use int to compute the factorial; as factorial of 13 is outside the int range. Avoid generating

large numerator and denominator. Use double to compute the terms as:

11.7 Exponential Series

Write a method to compute e and exp(x) using the following series expansion, in a class

called ExponentialSeries. The signatures of the methods are:

public static double exp(int numTerms); // x in radians
public static double exp(double x, int numTerms);

11.8 Special Series

Write a method to compute the sum of the series in a class called SpecialSeries. The signature of

the method is:

public static double specialSeries(double x, int numTerms);

11.9 FactorialInt (Handling Overflow)

Write a program called FactorialInt to list all the factorials that can be expressed as an int (i.e., 32-

bit signed integer in the range of [-2147483648, 2147483647]). Your output shall look like:

The factorial of 1 is 1

The factorial of 2 is 2

...

The factorial of 12 is 479001600

The factorial of 13 is out of range

Hints

The maximum and minimum values of a 32-bit int are kept in

constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);

System.out.println(Integer.MIN_VALUE);

System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently

wraps the number around. Hence, you cannot use F(n) * (n+1) > Integer.MAX_VALUE to check

for overflow. Instead, overflow occurs for F(n+1) if (Integer.MAX_VALUE / Factorial(n)) <

(n+1), i.e., no more room for the next number.

Try

Modify your program called FactorialLong to list all the factorial that can be expressed as

a long (64-bit signed integer). The maximum value for long is kept in a constant

called Long.MAX_VALUE.

11.10 FibonacciInt (Handling Overflow)

Write a program called FibonacciInt to list all the Fibonacci numbers, which can be expressed as

an int (i.e., 32-bit signed integer in the range of [-2147483648, 2147483647]). The output shall

look like:

F(0) = 1

F(1) = 1

F(2) = 2

...

F(45) = 1836311903

F(46) is out of the range of int

Hints

The maximum and minimum values of a 32-bit int are kept in

constants Integer.MAX_VALUE and Integer.MIN_VALUE, respectively. Try these statements:

System.out.println(Integer.MAX_VALUE);

System.out.println(Integer.MIN_VALUE);

System.out.println(Integer.MAX_VALUE + 1);

Take note that in the third statement, Java Runtime does not flag out an overflow error, but silently

wraps the number around. Hence, you cannot use F(n) = F(n-1) + F(n-2) >

Integer.MAX_VALUE to check for overflow. Instead, overflow occurs for F(n) if Integer.MAX_VALUE

– F(n-1) < F(n-2) (i.e., no more room for the next Fibonacci number).

Try

Write a similar program called TribonacciInt for Tribonacci numbers.

11.11 Number System Conversion

Write a method call toRadix() which converts a positive integer from one radix into another. The

method has the following header:

public static String toRadix(String in, int inRadix, int outRadix) // The input
and output are treated as String.

Write a program called NumberConversion, which prompts the user for an input string, an input

radix, and an output radix, and display the converted number. The output shall look like:

Enter a number and radix: A1B2
Enter the input radix: 16
Enter the output radix: 2
"A1B2" in radix 16 is "1010000110110010" in radix 2.

11.12 NumberGuess

Write a program called NumberGuess to play the number guessing game. The program shall generate

a random number between 0 and 99. The player inputs his/her guess, and the program shall response

with "Try higher", "Try lower" or "You got it in n trials" accordingly. For example:

java NumberGuess
Key in your guess:
50
Try higher
70
Try lower
65
Try lower
61
You got it in 4 trials!

Hints

Use Math.random() to produce a random number in double between 0.0 (inclusive)

and 1.0 (exclusive). To produce an int between 0 and 99, use:

final int SECRET_NUMBER = (int)(Math.random()*100); // truncate to int

11.13 WordGuess

Write a program called WordGuess to guess a word by trying to guess the individual characters. The

word to be guessed shall be provided using the command-line argument. Your program shall look

like:

java WordGuess testing
Key in one character or your guess word: t
Trial 1: t__t___
Key in one character or your guess word: g
Trial 2: t__t__g
Key in one character or your guess word: e
Trial 3: te_t__g
Key in one character or your guess word: testing
Congratulation!
You got in 4 trials

Hints

Set up a boolean array (of the length of the word to be guessed) to indicate the positions of the word

that have been guessed correctly.

Check the length of the input String to determine whether the player enters a single character or a

guessed word. If the player enters a single character, check it against the word to be guessed, and

update the boolean array that keeping the result so far.

Try

Try retrieving the word to be guessed from a text file (or a dictionary) randomly.

11.14 DateUtil

Complete the following methods in a class called DateUtil:

 boolean isLeapYear(int year): returns true if the given year is a leap year. A year is a leap year if it is divisible by 4 but

not by 100, or it is divisible by 400.

 boolean isValidDate(int year, int month, int day) : returns true if the

given year, month and day constitute a given date. Assume that year is between 1 and 9999, month is between 1 (Jan) to 12 (Dec) and day

shall be between 1 and 28|29|30|31 depending on the month and whether it is a leap year.

 int getDayOfWeek(int year, int month, int day) : returns the day of the week, where 0 for SUN, 1 for MON, ...,

6 for SAT, for the given date. Assume that the date is valid.

 String toString(int year, int month, int day) : prints the given date in the format "xxxday d mmm
yyyy", e.g., "Tuesday 14 Feb 2012". Assume that the given date is valid.

Hints

To find the day of the week (Reference: Wiki "Determination of the day of the week"):

1. Based on the first two digit of the year, get the number from the following "century" table.

2. Take note that the entries 4, 2, 0, 6 repeat.

3. Add to the last two digit of the year.

4. Add to "the last two digit of the year divide by 4, truncate the fractional part".

5. Add to the number obtained from the following month table:

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Non-Leap Year 0 3 3 6 1 4 6 2 5 0 3 5

Leap Year 6 2 same as above

6. Add to the day.

7. The sum modulus 7 gives the day of the week, where 0 for SUN, 1 for MON, ..., 6 for SAT.

For example: 2012, Feb, 17

(6 + 12 + 12/4 + 2 + 17) % 7 = 5 (Fri)

The skeleton of the program is as follows:

1700- 1800- 1900- 2000- 2100- 2200- 2300- 2400-

4 2 0 6 4 2 0 6

/* Utilities for Date Manipulation */
public class DateUtil {

 // Month's name – for printing
 public static String[] strMonths
 = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

 // Number of days in each month (for non-leap years)
 public static int[] daysInMonths
 = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

 // Returns true if the given year is a leap year
 public static boolean isLeapYear(int year) { }

 // Return true if the given year, month, day is a valid date
 // year: 1-9999
 // month: 1(Jan)-12(Dec)
 // day: 1-28|29|30|31. The last day depends on year and month
 public static boolean isValidDate(int year, int month, int day) { }

 // Return the day of the week, 0:Sun, 1:Mon, ..., 6:Sat
 public static int getDayOfWeek(int year, int month, int day) { }

 // Return String "xxxday d mmm yyyy" (e.g., Wednesday 29 Feb 2012)
 public static String printDate(int year, int month, int day) { }

 // Test Driver
 public static void main(String[] args) {
 System.out.println(isLeapYear(1900)); // false
 System.out.println(isLeapYear(2000)); // true
 System.out.println(isLeapYear(2011)); // false
 System.out.println(isLeapYear(2012)); // true

 System.out.println(isValidDate(2012, 2, 29)); // true
 System.out.println(isValidDate(2011, 2, 29)); // false
 System.out.println(isValidDate(2099, 12, 31)); // true
 System.out.println(isValidDate(2099, 12, 32)); // false

 System.out.println(getDayOfWeek(1982, 4, 24)); // 6:Sat
 System.out.println(getDayOfWeek(2000, 1, 1)); // 6:Sat
 System.out.println(getDayOfWeek(2054, 6, 19)); // 5:Fri
 System.out.println(getDayOfWeek(2012, 2, 17)); // 5:Fri

 System.out.println(toString(2012, 2, 14)); // Tuesday 14 Feb 2012
 }
}

Notes

You can compare the day obtained with the Java's Calendar class as follows:

// Construct a Calendar instance with the given year, month and day
Calendar cal = new GregorianCalendar(year, month - 1, day); // month is 0-based
// Get the day of the week number: 1 (Sunday) to 7 (Saturday)
int dayNumber = cal.get(Calendar.DAY_OF_WEEK);
String[] calendarDays = { "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday" };
// Print result
System.out.println("It is " + calendarDays[dayNumber - 1]);

The calendar we used today is known as Gregorian calendar, which came into effect in October 15,

1582 in some countries and later in other countries. It replaces the Julian calendar. 10 days were

removed from the calendar, i.e., October 4, 1582 (Julian) was followed by October 15, 1582

(Gregorian). The only difference between the Gregorian and the Julian calendar is the "leap-year rule".

In Julian calendar, every four years is a leap year. In Gregorian calendar, a leap year is a year that is

divisible by 4 but not divisible by 100, or it is divisible by 400, i.e., the Gregorian calendar omits

century years which are not divisible by 400. Furthermore, Julian calendar considers the first day of the

year as march 25th, instead of January 1st.

This above algorithm work for Gregorian dates only. It is difficult to modify the above algorithm to

handle pre-Gregorian dates. A better algorithm is to find the number of days from a known date.

12. Exercises on Classes and Objects

12.1 The Rectangle Class

A class called Rectangle, which models a rectangle with a length and a width (in float), is designed

as shown in the following class diagram. Write the Rectangle class.

Hints:

The expected output is:

Rectangle[length=1.2,width=3.4]
Rectangle[length=1.0,width=1.0]
Rectangle[length=5.6,width=7.8]
length is: 5.6
width is: 7.8
area is: 43.68
perimeter is: 26.80

12.2 The Employee Class

A class called Employee, which models an employee with an ID, name and salary, is designed as

shown in the following class diagram. The method raiseSalary(percent) increases the salary by

the given percentage. Write the Employee class.

Hints:

The expected out is:

Employee[id=8,name=Peter Tan,salary=2500]
Employee[id=8,name=Peter Tan,salary=999]
id is: 8
firstname is: Peter
lastname is: Tan
salary is: 999
name is: Peter Tan
annual salary is: 11988
1098
Employee[id=8,name=Peter Tan,salary=1098]

12.3 The InvoiceItem Class

A class called InvoiceItem, which models an item of an invoice, with ID, description, quantity and

unit price, is designed as shown in the following class diagram. Write the InvoiceItem class.

Hints:

The expected output is:

InvoiceItem[id=A101,desc=Pen Red,qty=888,unitPrice=0.08]
InvoiceItem[id=A101,desc=Pen Red,qty=999,unitPrice=0.99]
id is: A101
desc is: Pen Red
qty is: 999
unitPrice is: 0.99
The total is: 989.01

12.4 The Account Class

A class called Account, which models a bank account of a customer, is designed as shown in the

following class diagram. The methods credit(amount) and debit(amount) add or subtract the

given amount to the balance. The method transferTo(anotherAccount, amount) transfers the

given amount from this Account to the given anotherAccount. Write the Account class.

Hints:

The expected output is:

Account[id=A101,name=Tan Ah Teck,balance=88]
Account[id=A102,name=Kumar,balance=0]
ID: A101
Name: Tan Ah Teck
Balance: 88
Account[id=A101,name=Tan Ah Teck,balance=188]
Account[id=A101,name=Tan Ah Teck,balance=138]
Amount exceeded balance
Account[id=A101,name=Tan Ah Teck,balance=138]
Account[id=A101,name=Tan Ah Teck,balance=38]
Account[id=A102,name=Kumar,balance=100]

12.5 The Date Class

A class called Date, which models a calendar date, is designed as shown in the following class

diagram. Write the Date class.

Hints:

The expected output is:

01/02/2014
09/12/2099
Month: 12
Day: 9
Year: 2099
03/04/2016

13. Exercises on Inheritance

13.1 An Introduction to OOP Inheritance -

The Circle and Cylinder Classes

This exercise shall guide you through the important concepts in inheritance.

In this exercise, a subclass called Cylinder is derived from the superclass Circle as shown in the

class diagram (where an an arrow pointing up from the subclass to its superclass). Study how the

subclass Cylinder invokes the superclass' constructors (via super() and super(radius)) and

inherits the variables and methods from the superclass Circle.

You can reuse the Circle class that you have created in the previous exercise. Make sure that you

keep "Circle.class" in the same directory.

public class Cylinder extends Circle { // Save as "Cylinder.java"
 private double height; // private variable

 // Constructor with default color, radius and height
 public Cylinder() {
 super(); // call superclass no-arg constructor Circle()
 height = 1.0;
 }
 // Constructor with default radius, color but given height
 public Cylinder(double height) {
 super(); // call superclass no-arg constructor Circle()
 this.height = height;
 }
 // Constructor with default color, but given radius, height
 public Cylinder(double radius, double height) {
 super(radius); // call superclass constructor Circle(r)
 this.height = height;
 }

 // A public method for retrieving the height
 public double getHeight() {
 return height;
 }

 // A public method for computing the volume of cylinder
 // use superclass method getArea() to get the base area
 public double getVolume() {
 return getArea()*height;
 }
}

Method Overriding and "Super": The subclass Cylinder inherits getArea() method from its

superclass Circle. Try overriding the getArea() method in the subclass Cylinder to compute the

surface area (=2π×radius×height + 2×base-area) of the cylinder instead of base area. That is,

if getArea() is called by a Circle instance, it returns the area. If getArea() is called by

a Cylinder instance, it returns the surface area of the cylinder.

If you override the getArea() in the subclass Cylinder, the getVolume() no longer works. This is

because the getVolume() uses the overridden getArea() method found in the same class. (Java

runtime will search the superclass only if it cannot locate the method in this class). Fix

the getVolume().

Hints: After overridding the getArea() in subclass Cylinder, you can choose to invoke

the getArea() of the superclass Circle by calling super.getArea().

Try:

Provide a toString() method to the Cylinder class, which overrides the toString() inherited from

the superclass Circle, e.g.,

@Override

public String toString() { // in Cylinder class
 return "Cylinder: subclass of " + super.toString() // use Circle's toString()
 + " height=" + height;
}

Try out the toString() method in TestCylinder.

13.2 Superclass Person and its subclasses

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

13.3 Point2D and Point3D

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

Hints:

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you

need to add a suffix f, e.g. 0.0f, 1.1f.

2. The instance variables x and y are private in Point2D and cannot be accessed directly in the

subclass Point3D. You need to access via the public getters and setters. For example,

public void setXYZ(float x, float y, float z) {

 setX(x); // or super.setX(x), use setter in superclass
 setY(y);
 this.z = z;
 }

3. The method getXY() shall return a float array:

public float[] getXY() {

 float[] result = new float[2]; // construct an array of 2 elements
 result[0] = ...
 result[1] = ...
 return result; // return the array
 }

13.4 Point and MovablePoint

Write the classes as shown in the following class diagram. Mark all the overridden methods with

annotation @Override.

Hints

1. You cannot assign floating-point literal say 1.1 (which is a double) to a float variable, you

need to add a suffix f, e.g. 0.0f, 1.1f.

2. The instance variables x and y are private in Point and cannot be accessed directly in the

subclass MovablePoint. You need to access via the public getters and setters. For example,

you cannot write x += xSpeed, you need to write setX(getX() + xSpeed).

13.5 Superclass Shape and its subclasses Circle, Rectangle and Square

Write a superclass called Shape (as shown in the class diagram)

Write a test program to test all the methods defined in Shape.

Write two subclasses of Shape called Circle and Rectangle, as shown in the class diagram.

Write a class called Square, as a subclass of Rectangle. Convince yourself that Square can be

modeled as a subclass of Rectangle. Square has no instance variable, but inherits the instance

variables width and length from its superclass Rectangle.

 Provide the appropriate constructors (as shown in the class diagram).

Hints:

public Square(double side) {

 super(side, side); // Call superclass Rectangle(double, double)
}

 Override the toString() method to return "A Square with side=xxx, which is a

subclass of yyy", where yyy is the output of the toString() method from the superclass.

 Do you need to override the getArea() and getPerimeter()? Try them out.

 Override the setLength() and setWidth() to change both the width and length, so as to

maintain the square geometry.

14. Exercises on Polymorphism, Abstract Classes and Interfaces

14.1 Ex: Abstract Superclass Shape and Its Concrete Subclasses

Rewrite the superclass Shape and its subclasses Circle, Rectangle and Square, as shown in the class

diagram.

Shape is an abstract class containing 2 abstract methods: getArea() and getPerimeter(),

where its concrete subclasses must provide its implementation. All instance variables shall

have protected access, i.e., accessible by its subclasses and classes in the same package. Mark all the

overridden methods with annotation @Override.

In this exercise, Shape shall be defined as an abstract class, which contains:

 Two protected instance variables color(String) and filled(boolean). The protected variables can

be accessed by its subclasses and classes in the same package. They are denoted with a '#' sign in

the class diagram.

 Getter and setter for all the instance variables, and toString().

 Two abstract methods getArea() and getPerimeter() (shown in italics in the class diagram).

 Subclasses Circle and Rectangle shall override the abstract methods getArea() and getPerim

eter() and provide the proper implementation. They also override the toString().

Write a test class to test these statements involving polymorphism and explain the outputs. Some

statements may trigger compilation errors. Explain the errors, if any.

Shape s1 = new Circle(5.5, "red", false); // Upcast Circle to Shape
System.out.println(s1); // which version?
System.out.println(s1.getArea()); // which version?
System.out.println(s1.getPerimeter()); // which version?
System.out.println(s1.getColor());
System.out.println(s1.isFilled());
System.out.println(s1.getRadius());

Circle c1 = (Circle)s1; // Downcast back to Circle
System.out.println(c1);
System.out.println(c1.getArea());
System.out.println(c1.getPerimeter());
System.out.println(c1.getColor());
System.out.println(c1.isFilled());
System.out.println(c1.getRadius());

Shape s2 = new Shape();

Shape s3 = new Rectangle(1.0, 2.0, "red", false); // Upcast
System.out.println(s3);
System.out.println(s3.getArea());
System.out.println(s3.getPerimeter());
System.out.println(s3.getColor());
System.out.println(s3.getLength());

Rectangle r1 = (Rectangle)s3; // downcast
System.out.println(r1);
System.out.println(r1.getArea());
System.out.println(r1.getColor());
System.out.println(r1.getLength());

Shape s4 = new Square(6.6); // Upcast
System.out.println(s4);
System.out.println(s4.getArea());
System.out.println(s4.getColor());
System.out.println(s4.getSide());

// Take note that we downcast Shape s4 to Rectangle,
// which is a superclass of Square, instead of Square
Rectangle r2 = (Rectangle)s4;
System.out.println(r2);
System.out.println(r2.getArea());
System.out.println(r2.getColor());
System.out.println(r2.getSide());
System.out.println(r2.getLength());

// Downcast Rectangle r2 to Square
Square sq1 = (Square)r2;
System.out.println(sq1);
System.out.println(sq1.getArea());
System.out.println(sq1.getColor());
System.out.println(sq1.getSide());
System.out.println(sq1.getLength());

Try:

Explain the usage of the abstract method and abstract class?

14.2 GeometricObject Interface and its Implementation Classes Circle and Rectangle

Write an interface called GeometricObject, which contains 2 abstract methods: getArea() and

getPerimeter(), as shown in the class diagram. Also write an implementation class called Circle.

Mark all the overridden methods with annotation @Override.

14.3 Ex: Movable Interface and its Implementation MovablePoint Class

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(),

moveLeft() and moveRight(), as shown in the class diagram. Also write an implementation class

called MovablePoint. Mark all the overridden methods with annotation @Override.

14.4 Movable Interface and

Classes MovablePoint and MovableCircle

Write an interface called Movaable, which contains 4 abstract methods moveUp(), moveDown(),
moveLeft() and moveRight(),

as shown in the class diagram.

Write the implementation classes called MovablePoint and MovableCircle. Mark all the overridden

methods with annotation @Override.

14.5 Interfaces Resizable and GeometricObject

Write the interface called GeometricObject, which declares two abstract methods: getParameter()

and getArea(), as specified in the class diagram.

Hints:

public interface GeometricObject {
 public double getPerimeter();

}

Write the implementation class Circle, with a protected variable radius, which implements the

interface GeometricObject.

Hints:

public class Circle implements GeometricObject {
 // Private variable

 // Constructor

 // Implement methods defined in the interface GeometricObject
 @Override
 public double getPerimeter() { }

}

Write a test program called TestCircle to test the methods defined in Circle.

The class ResizableCircle is defined as a subclass of the class Circle, which also implements an

interface called Resizable, as shown in class diagram. The interface Resizable declares

an abstract method resize(), which modifies the dimension (such as radius) by the given

percentage. Write the interface Resizable and the class ResizableCircle.

Hints:

public interface Resizable {
 public double resize(...);
}

public class ResizableCircle extends Circle implements Resizeable {

 // Constructor
 public ResizableCircle(double radius) {
 super(...);
 }

 // Implement methods defined in the interface Resizable
 @Override
 public double resize(int percent) { }
}

Try:

Write a test program called TestResizableCircle to test the methods defined

in ResizableCircle.

14.6 Abstract Superclass Animal and its Implementation Subclasses

Write the codes for all the classes shown in the class diagram. Mark all the overridden methods with

annotation @Override.

14.7 Another View of Abstract Superclass Animal and its Implementation

Subclasses

Examine the following codes and draw the class diagram.

abstract public class Animal {
 abstract public void greeting();
}

public class Cat extends Animal {
 @Override
 public void greeting() {
 System.out.println("Meow!");
 }
}
public class Dog extends Animal {
 @Override
 public void greeting() {
 System.out.println("Woof!");

 }

 public void greeting(Dog another) {
 System.out.println("Woooooooooof!");
 }
}

public class BigDog extends Dog {
 @Override
 public void greeting() {
 System.out.println("Woow!");
 }

 @Override
 public void greeting(Dog another) {
 System.out.println("Woooooowwwww!");
 }
}

Try:

Explain the outputs (or error) for the following test program.

public class TestAnimal {
 public static void main(String[] args) {
 // Using the subclasses
 Cat cat1 = new Cat();
 cat1.greeting();
 Dog dog1 = new Dog();
 dog1.greeting();
 BigDog bigDog1 = new BigDog();
 bigDog1.greeting();

 // Using Polymorphism
 Animal animal1 = new Cat();
 animal1.greeting();
 Animal animal2 = new Dog();
 animal2.greeting();
 Animal animal3 = new BigDog();
 animal3.greeting();
 Animal animal4 = new Animal();

 // Downcast
 Dog dog2 = (Dog)animal2;
 BigDog bigDog2 = (BigDog)animal3;
 Dog dog3 = (Dog)animal3;
 Cat cat2 = (Cat)animal2;
 dog2.greeting(dog3);
 dog3.greeting(dog2);
 dog2.greeting(bigDog2);
 bigDog2.greeting(dog2);
 bigDog2.greeting(bigDog1);
 }
}

15. Final Notes

The only way to learn programming is program, program and program on challenging problems. The

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging

problems available – used in training for various programming contests (such as International

Collegiate Programming Contest (ICPC), International Olympiad in Informatics (IOI)). Check out these

sites:

 The ACM - ICPC International collegiate programming contest (https://icpc.global/)

 The Topcoder Open (TCO) annual programming and design contest

(https://www.topcoder.com/)

 Universidad de Valladolid’s online judge (https://uva.onlinejudge.org/).

 Peking University’s online judge (http://poj.org/).

 USA Computing Olympiad (USACO) Training Program @ http://train.usaco.org/usacogate.

 Google’s coding competitions (https://codingcompetitions.withgoogle.com/codejam,

https://codingcompetitions.withgoogle.com/hashcode)

 The ICFP programming contest (https://www.icfpconference.org/)

 BME International 24-hours programming contest (https://www.challenge24.org/)

 The International Obfuscated C Code Contest (https://www0.us.ioccc.org/main.html)

 Internet Problem Solving Contest (https://ipsc.ksp.sk/)

 Microsoft Imagine Cup (https://imaginecup.microsoft.com/en-us)

 Hewlett Packard Enterprise (HPE) Codewars (https://hpecodewars.org/)

 OpenChallenge (https://www.openchallenge.org/)

Coding Contests Scores

Students must solve problems and attain scores in the following coding contests:

 Name of the contest Minimum number of problems to

solve

Required score

 CodeChef 20 200

 Leetcode 20 200

 GeeksforGeeks 20 200

 SPOJ 5 50

 InterviewBit 10 1000

 Hackerrank 25 250

 Codeforces 10 100

 BuildIT 50 500

Total score need to obtain 2500

Student must have any one of the following certifications:

 HackerRank – Java Basic Skills Certification

 Oracle Certified Associate Java Programmer OCAJP

 CodeChef - Learn Java Certification

 NPTEL – Programming in Java

 NPTEL – Data Structures and Algorithms in Java

V. TEXT BOOKS:

1. Farrell, Joyce.Java Programming, Cengage Learning B S Publishers, 8
th

 Edition, 2020

2. Schildt, Herbert. Java: The Complete Reference 11
th

 Edition, McGraw-Hill Education, 2018.

VI. REFERENCE BOOKS:

1. Deitel, Paul and Deitel, Harvey. Java: How to Program, Pearson, 11
th

 Edition, 2018.

2. Evans, Benjamin J. and Flanagan, David. Java in a Nutshell, O’Reilly Media, 7
th

 Edition, 2018.

3. Bloch, Joshua. Effective Java, Addison-Wesley Professional, 3
rd

 Edition, 2017.

https://icpc.global/
https://www.topcoder.com/
https://uva.onlinejudge.org/
http://poj.org/
http://train.usaco.org/usacogate
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/hashcode
https://www.icfpconference.org/
https://www.challenge24.org/
https://www0.us.ioccc.org/main.html
https://ipsc.ksp.sk/
https://imaginecup.microsoft.com/en-us
https://hpecodewars.org/
https://www.openchallenge.org/

4. Sierra, Kathy and Bates, Bert. Head First Java, O’Reilly Media, 2
nd

 Edition, 2005

VII. ELECTRONICS RESOURCES:

1. https://docs.oracle.com/en/java/

2. https://www.geeksforgeeks.org/java

3. https://www.tutorialspoint.com/java/index.htm

4. https://www.coursera.org/courses?query=java

VIII. MATERIALS ONLINE;

1. Syllabus
2. Lab manual

https://docs.oracle.com/en/java/
https://www.geeksforgeeks.org/java
https://www.tutorialspoint.com/java/index.htm
https://www.coursera.org/courses?query=java

