

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

COMMUNICATION SYSTEMS LABORATORY								
IV Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AECD15	Core	L	T	P	С	CIA	SEE	Total
		-	-	2	1	40	60	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		
Prerequisite: Signals and	d Stochastic Process	•				•		

I. COURSE OVERVIEW:

Communication engineering is the field of study concerned with the transmission of information either in analog or digital form. The objective of this lab course provides a platform to the students to understand the basics of analog and digital communication systems, modulation techniques, data transmission, multiplexing, etc. There are a wide variety of applications for communications like outdoor broadcasting transmissions and long distance telephone calls.

II. COURSES OBJECTIVES:

The students will try to learn

- I. The basic theory of communication system in practice..
- II. The concept of analog to digital conversion for pulse modulation techniques.
- III. The analog and digital modulation techniques using MATLAB tool.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

- CO1 Discriminate the generation and detection of amplitude modulated and frequency modulated signals to calculate the modulation index and frequency deviation.
- CO2 Analyze the analog pulse modulation and demodulation methods for transmitting the information by pulses.
- CO3 Apply the concept of pulse code modulation and demodulation for encoded data in analog to digital conversion.
- CO4 Select the time division or frequency division multiplexing techniques for transmitting multiple signals at a time in the communication system.
- CO5 Examine the digital modulation techniques for convey more information, high quality and security
- CO6 Choose appropriate techniques for signal processing and filtering in communication systems.

IV. LIST OF EXPERIMENTS:

WEEK-1: Getting Started Exercises

Verification of Communication is the process of establishing connection or link between two points for information exchange.

WEEK-2: Exercises on Analog Modulation Techniques

Design of amplitude modulation (AM) systems

WEEK-3: Exercises on Angle Modulation Techniques

Calculation of Frequency Deviation and modulation index in Frequency Modulation (FM).

WEEK-4: Exercises on Analog Pulse Modulation Techniques

Verification of Analog Pulse Modulation Techniques

WEEK-5: Exercises on Digital Pulse Modulation Techniques

Verification of Digital Pulse Modulation Techniques.

WEEK -6: Exercises on Digital Modulation Techniques

Verification of Digital Modulation Techniques.

WEEK -7: Exercises on Signal Processing in Communication Systems

Obtain the frequency response curve of the CE amplifier and determine the mid frequency gain, Amid, lower and higher cutoff frequency.

WEEK -8: Exercises on Signal filtering

Implement the filtering of signals

WEEK -9: Exercises on Wireless Communication Systems

Implement: Internet of Things (IoT) Connectivity Trials.

WEEK -10: Exercises on Data transmission

Implement the Data transmission.

WEEK -11: Exercises on Generation of Noises

Implement the Multiplexing like frequency division, time division multiplexing

WEEK -12: Exercises on Generation of Noises

Obtain the hands-on experience on generation of noises.

WEEK -13: Exercises on case study: Software-Defined Radio (SDR)

Creating a complete Software-Defined Radio (SDR) system in MATLAB

WEEK -14: Exercises on case study: Communication Systems Design and Simulation Create a simple voice communication system using microcontrollers and wireless modules.

IV. TEXT BOOKS:

- 1. J. G. Proakis, Digital Communications, McGraw-Hill, 5th edition, 2006.
- 2. B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3rd edition, 2004.

V. REFERENCE BOOKS:

1. Wayne Tomasi, "Electronics Communication Systems-Fundamentals" 5th edition, 2009.

VI. ELECTRONICS RESOURCES:

- 1. https://archive.org/details/analog communications
- 2. https://archive.org/details/digital communications

VII. MATERIALS ONLINE

- 1. Course template
- 2. Lab Manual