

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COURSE CONTENT

OBJECT ORIENTED PROGRAMMING								
I Semester: AE / ME / CE / ECE / EEE / CSE / CSE (AI & ML) / CSE (DS) / IT								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
ACSE01	Foundation	L	T	P	C	CIA	SEE	Total
		3	0	0	3	40	60	100
Contact Classes: 48	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 48		
Prerequisites: There are no prerequisites to take this course.								

I. COURSE OVERVIEW:

The course provides a solid foundation in object-oriented programming concepts in using them. It includes concepts object-oriented concepts such as information hiding, encapsulation, and polymorphism. It contrasts the use of inheritance and composition as techniques for software reuse. It provides an understanding of object-oriented design using graphical design notations such as Unified Modelling Language (UML) as well as object design patterns.

II. COURSES OBJECTIVES:

The students will try to learn

- I. The fundamental concepts and principles of object-oriented programming in high-level programming languages.
- II. The advanced concepts for developing well-structured and efficient programs that involve complex data structures, numerical computations, or domain-specific operations.
- III. The design and implementation of features such as inheritance, polymorphism, and encapsulation for tackling complex problems and creating well-organized, modular, and maintainable code.
- IV. The usage of input/output interfaces to transmit and receive data to solve real-time computing problems.

III. COURSE OUTCOMES:

At the end of the course, students should be able to:

- CO 1 Interpret the features of object-oriented programming languages, comparison, and evaluation of programming languages.
- CO 2 Model the real-world scenario using class diagrams and exhibit communication between objects.
- CO 3 Estimate the need for special functions for data initialization.
- CO 4 Outline the features of object-oriented programming for binding the attributes and behavior of a real-world entity.
- CO 5 Use the concepts of streams and files that enable data management to enhance programming skills.
- CO 6 Develop contemporary solutions to software design problems using object-oriented principles.

IV. COURSE CONTENT:

MODULE - I: Object-oriented concepts (09)

Objects and legacy systems, procedural versus Object-oriented programming, top-down and bottom-up approaches and their differences, benefits of OOP, applications of OOP, features of OOP.

Abstraction: Layers of abstraction, forms of abstraction, abstraction mechanisms.

MODULE - II: Classes and objects (09)

Classes and objects: Object data, object behaviors, creating objects, attributes, methods, messages, creating class diagrams.

Access specifiers and initialization of class members: Accessing members and methods, access specifiers - public, private, protected, memory allocation. Static members, static methods.

MODULE - III: Special member functions and overloading (09)

Constructors and destructors: Need for constructors and destructors, copy constructors, dynamic constructors, parameterized constructors, destructors, constructors and destructors with static members.

Overloading: Function overloading, constructor overloading, operator overloading - rules for overloading operators, overloading unary and binary operators, friend functions.

MODULE – IV: Inheritance and polymorphism (09)

Inheritance: types of inheritance, base class, derived class, usage of final, ambiguity in multiple and multipath inheritance, virtual base class, overriding member functions, order of execution of constructors and destructors.

Polymorphism and virtual functions: Virtual functions, pure virtual functions, abstract classes, introduction to polymorphism, static polymorphism, dynamic polymorphism.

MODULE -V: Console I/O and working with files (09)

Console I/O: Concept of streams, hierarchy of console stream classes, unformatted I/O operations, managing output with manipulators.

Working with files: Opening, reading, writing, appending, processing, and closing different types of files, command line arguments.

V. TEXTBOOKS:

1. Matt Weisfeld, *The Object-Oriented Thought Process*, Addison Wesley Object Technology Series, 4th Edition, 2013.

VI. REFERENCE BOOKS:

- 1. Timothy Budd, *Introduction to object-oriented programming*, Addison Wesley Object Technology Series, 3rd Edition, 2002.
- 2. Gaston C. Hillar, Learning Object-Oriented Programming, Packt Publishing, 2015.
- 3. Kingsley Sage, *Concise Guide to Object-Oriented Programming*, Springer International Publishing, 1st Edition, 2019.
- 4. Rudolf Pecinovsky, OOP Learn Object Oriented Thinking and Programming, Tomas Bruckner, 2013.
- 5. Grady Booch, *Object-oriented analysis and design with applications*, Addison Wesley Object Technology Series, 3rd Edition, 2007.

VII. ELECTRONICS RESOURCES:

- 1. https://docs.oracle.com/javase/tutorial/java/concepts/
- 2. https://www.w3schools.com/cpp/
- 3. https://www.edx.org/learn/object-oriented-programming/
- 4. https://www.geeksforgeeks.org/introduction-of-object-oriented-programming/

VIII. MATERIALS ONLINE

- 1. Course template
- 2. Tutorial question bank
- 3. Tech talk topics
- 4. Open-ended experiments
- 5. Definitions and terminology

- 6. Assignments
 7. Model question paper I
 8. Model question paper II
 9. Lecture notes
 10. PowerPoint presentation
 11. E-Learning Readiness Videos (ELRV)