
Page | 1

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title COMPILER DESIGN

Course Code AIT004

Programme B.Tech

Semester V CSE | IT

Course Type Core

Regulation IARE - R16

Course Structure

Theory Practical

Lectures Tutorials Credits Laboratory Credits

3 1 4 - -

Chief Coordinator Dr. K Srinivasa Reddy, Professor

Course Faculty Ch. Suresh Kumar Raju, Assistant Professor

I. COURSE OVERVIEW:

This course deals with the basic techniques of compiler construction and tools that can be used to

perform syntax-directed translation of a high-level programming language into an executable

code. This will provide deeper insights into the more advanced semantics aspects of

programming languages, code generation, machine independent optimizations, dynamic memory

allocation, types and their inferences and object orientation.

II. COURSE PRE-REQUISITES:

Level
Course

Code
Semester Prerequisites credits

UG ACS001 I Computer Programming 3

UG ACS002 II Data Structures 4

UG AHS013 III Discrete Mathematical Structures 4

UG AIT002 IV Theory of Computation 3

Page | 2

III. MARKS DISTRIBUTION:

Subject SEE Examination CIA Examination Total Marks

Compiler Design 70 Marks 30 Marks 100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✔ Chalk & Talk ✔ Quiz ✔ Assignments ✘ MOOCs

✔ LCD / PPT ✔ Seminars ✘ Mini Project ✔ Videos

✘ Open Ended Experiments

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal

Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted

for CIA during the semester, marks are awarded by taking average of two CIA examinations or

the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration.

The syllabus for the theory courses is divided into FIVE modules and each module carries equal

weightage in terms of marks distribution. The question paper pattern is as follows. Two full

questions with “either” or ‟choice” will be drawn from each module. Each question carries 14

marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 % To test the objectiveness of the concept.

50 % To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal

Examination (CIE), 05 marks for Quiz/Alternative Assessment Tool (AAT).

 Table 1: Assessment pattern for CIA

Component Theory
Total Marks

Type of Assessment CIE Exam Quiz / AAT

CIA Marks 25 05 30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester

respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two

parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five

Page | 3

questions have to be answered where, each question carries 5 marks. Marks are awarded by

taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are

be answered by choosing the correct answer from a given set of choices (commonly four).

Marks shall be awarded considering the average of two quizzes for every course. The AAT may

include seminars, assignments, term paper, open ended experiments, five minutes video and

MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs) Strength Proficiency assessed

by

PO 1 Engineering knowledge: Apply the knowledge of

mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of

complex engineering problems.

3 Assignments

PO 2 Problem analysis: Identify, formulate, review research

literature, and analyze complex engineering problems

reaching substantiated conclusions using first

principles of mathematics, natural sciences, and

engineering sciences

3 Seminars

PO 3 Design/development of solutions: Design solutions

for complex engineering problems and design system

components or processes that meet the specified needs

with appropriate consideration for the public health and

safety, and the cultural, societal, and environmental

considerations

3 Assignments

PO 4 Conduct investigations of complex problems: Use

research-based knowledge and research methods

including design of experiments, analysis and

interpretation of data, and synthesis of the information

to provide valid conclusions.

2 Seminars

 3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSOs) Strength Proficiency assessed

by

PSO 1 Professional Skills: The ability to understand, analyze

and develop computer programs in the areas related to

algorithms, system software, multimedia, web design,

2 Assignments

Page | 4

Program Specific Outcomes (PSOs) Strength Proficiency assessed

by

big data analytics, and networking for efficient design

of computer-based systems of varying complexity.

PSO 2 Problem-Solving Skills: The ability to apply standard

practices and strategies in software project

development using open-ended programming

environments to deliver a quality product for business

success.

2 Seminars

PSO 3 Successful Career and Entrepreneurship: The

ability to employ modern computer languages,

environments, and platforms in creating innovative

career paths to be an entrepreneur, and a zest for higher

studies.

- -

 3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The course should enable the students to:

I Apply the principles in the theory of computation to the various stages in the design of

compilers.

II Demonstrate the phases of the compilation process and able to describe the purpose and

operation of each phase.

III Analyze problems related to the stages in the translation process.

IV Exercise and reinforce prior programming knowledge with a non-trivial programming project

to construct a compiler.

IX. COURSE OUTCOMES (COs):

COs Course Outcome CLOs Course Learning Outcome

CO 1 Understand the various

phases of compiler and

design the lexical

analyzer.

CLO 1 Define the phases of a typical compiler, including

the front and backend.

CLO 2 Recognize the underlying formal models such as

finite state automata, push-down automata and their

connection to language definition through regular

expressions and grammars.

CLO 3 Identify tokens of a typical high-level programming

language; define regular expressions for tokens and

design and implement a lexical analyzer using a

typical scanner generator.

CO 2 Explore the similarities

and differences among

various parsing

techniques and grammar

transformation techniques

CLO 4 Explain the role of a parser in a compiler and relate

the yield of a parse tree to a grammar derivation

CLO 5 Apply an algorithm for a top-down or a bottom-up

parser construction; construct a parser for a given

context-free grammar.

CLO 6 Demonstrate Lex tool to create a lexical analyzer and

Yacc tool to create a parser.

CO 3 Analyze and implement

syntax directed

translations schemes and

intermediate code

generation.

CLO 7 Understand syntax directed translation schemes for a

given context free grammar.

CLO 8 Implement the static semantic checking and type

checking using syntax directed definition (SDD) and

syntax directed translation (SDT).

Page | 5

COs Course Outcome CLOs Course Learning Outcome

CLO 9 Understand the need of intermediate code generation

phase in compilers.

CLO 10 Write intermediate code for statements like

assignment, conditional, loops and functions in high

level language.

CLO 11 Explain the role of a semantic analyzer and type

checking; create a syntax-directed definition

and an annotated parse tree; describe the purpose of a

syntax tree.

CLO 12 Design syntax directed translation schemes for a

given context free grammar.

CO 4 Describe the concepts of

type checking and analyze

runtime allocation

strategies.

CLO 13 Explain the role of different types of runtime

environments and memory organization for

implementation of programming languages.

CLO 14 Differentiate static vs. dynamic storage allocation

and the usage of activation records to manage

program modules and their data.

CLO 15 Understand the role of symbol table data structure in

the construction of compiler.

CO 5 Demonstrate the

algorithms to perform

code optimization and

code generation.

CLO 16 Learn the code optimization techniques to improve

the performance of a program in terms of speed &

space.

CLO 17 Implement the global optimization using data flow

analysis such as basic blocks and DAG.

CLO 18 Understand the code generation techniques to

generate target code.

CLO 19 Design and implement a small compiler using a

software engineering approach.

CLO 20 Apply the optimization techniques to intermediate

code and generate machine code

X. COURSE LEARNING OUTCOMES (CLOs):

CLO

Code

CLO’s At the end of the course, the student will have

the ability to:

PO’s

Mapped

Strength of

Mapping

AIT004.01 CLO 1 Define the phases of a typical compiler, including

the front and backend.

PO 1,

PO 2

3

AIT004.02 CLO 2 Recognize the underlying formal models such as

finite state automata, push-down automata and

their connection to language definition through

regular expressions and grammars.

PO 1,

PO 4

3

AIT004.03 CLO 3 Identify tokens of a typical high-level

programming language; define regular expressions

for tokens and design and implement a lexical

analyzer using a typical scanner generator.

PO 3 3

AIT004.04 CLO 4 Explain the role of a parser in a compiler and relate

the yield of a parse tree to a grammar derivation.

PO 1,

PO 2

3

AIT004.05 CLO 5 Apply an algorithm for a top-down or a bottom-up

parser construction; construct a parser for a

given context-free grammar.

PO 2 2

 AIT004.06 CLO 6 Demonstrate Lex tool to create a lexical analyzer

and Yacc tool to create a parser.

PO 1,

PO 4

3

AIT004.07 CLO 7 Understand syntax directed translation schemes for

a given context free grammar.

PO 1,

PO 4

3

AIT004.08 CLO 8 Implement the static semantic checking and type

checking using syntax directed definition

(SDD) and syntax directed translation (SDT).

PO 1,

PO 2

3

Page | 6

CLO

Code

CLO’s At the end of the course, the student will have

the ability to:

PO’s

Mapped

Strength of

Mapping

AIT004.09 CLO 9 Understand the need of intermediate code

generation phase in compilers.

PO 3,

PO 4

3

AIT004.10 CLO 10 Write intermediate code for statements like

assignment, conditional, loops and functions in

high level language.

PO 1,

PO 4

3

AIT004.11 CLO 11 Explain the role of a semantic analyzer and type

checking; create a syntax-directed definition

and an annotated parse tree; describe the purpose of

a syntax tree.

PO 4 2

AIT004.12 CLO 12 Design syntax directed translation schemes for a

given context free grammar.

PO 1,

PO 3

3

AIT004.13 CLO 13 Explain the role of different types of runtime

environments and memory organization for

implementation of programming languages.

PO 1 2

AIT004.14 CLO 14 Differentiate static vs. dynamic storage allocation

and the usage of activation records to manage

program modules and their data.

PO 2 3

AIT004.15 CLO 15 Understand the role of symbol table data structure

in the construction of compiler.

PO 1 2

AIT004.16 CLO 16 Learn the code optimization techniques to improve

the performance of a program in terms of speed &

space.

PO 2

3

 AIT004.17 CLO 17 Implement the global optimization using data flow

analysis such as basic blocks and DAG.

PO 1

2

AIT004.18 CLO 18 Understand the code generation techniques to

generate target code.

PO 3 3

AIT004.19 CLO 19 Design and implement a small compiler using a

software engineering approach.

PO 1,

PO 3

3

AIT004.20 CLO 20 Apply the optimization techniques to intermediate

code and generate machine code

PO 1,

PO 4

3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM

OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

 Course

Outcomes

 (COs)

Program Outcomes (POs) Program Specific Outcomes (PSOs)

PO1 PO2 PO3 PO4 PSO1 PSO2

CO 1 3 2 3 2 3 3

CO 2 3 3 3 3 3

CO 3 3 3 3 3 2 3

CO 4 2 3 2 2

CO 5 3 3 3 2 2 3

 3 = High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT

OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course

Learning

Outcomes

(CLOs)

Program Outcomes (POs)
Program Specific

Outcomes (PSOs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CLO 1 3 2 3 2

Page | 7

Course

Learning

Outcomes

(CLOs)

Program Outcomes (POs)
Program Specific

Outcomes (PSOs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CLO 2 3 2 2

CLO 3 3

CLO 4 2 3 2

CLO 5 2 3

CLO 6 3 2 3

CLO 7 2 3 2

CLO 8 2 3

CLO 9 3 3 2 3

CLO 10 3 2

CLO 11 2 3

CLO 12 3 3 2

CLO 13 2 2

CLO 14 3 2

CLO 15 2 2

CLO 16 3 2

CLO 17 2 2

CLO 18 3

CLO 19 3 3 2

CLO 20 3 2 2 3

 3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams

PO1, PO2,

PO3,PO4,

PSO1,PSO2

 SEE

Exams

PO1, PO2,

PO3,PO4,

PSO1,PSO2

Assignments
PO1,PO3,

PSO1
Seminars

PO2,PO4,

PSO2

Laboratory

Practices
-

Student

Viva
- Mini Project - Certification -

Term Paper

PO1, PO2,

PO3,PO4,

PSO1,PSO2

Page | 8

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

✔ Early Semester Feedback ✔ End Semester OBE Feedback

✘ Assessment of Mini Projects by Experts

XV. SYLLABUS

UNIT-I INTRODUCTION TO COMPILERS AND PARSING

Introduction to compilers: Definition of compiler, interpreter and its differences, the phases of a

compiler, role of lexical analyzer, regular expressions, finite automata, from regular expressions to finite

automata, pass and phases of translation, bootstrapping, LEX-lexical analyzer generator; Parsing:

Parsing, role of parser, context free grammar, derivations, parse trees, ambiguity, elimination of left

recursion, left factoring, eliminating ambiguity from dangling-else grammar, classes of parsing, top-

down parsing: backtracking, recursive-descent parsing, predictive parsers, LL(1) grammars.

UNIT-II BOTTOM-UP PARSING

Bottom-up parsing: Definition of bottom-up parsing, handles, handle pruning, stack implementation of

shift- reduce parsing, conflicts during shift-reduce parsing, LR grammars, LR parsers-simple LR,

canonical LR and Look Ahead LR parsers, error recovery in parsing, parsing ambiguous grammars,

YACC-automatic parser generator.

UNIT-III
SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE CODE

GENERATION

Syntax-directed translation: Syntax directed definition, construction of syntax trees, S-attributed and

Lattributed definitions, translation schemes, emitting a translation.

Intermediate code generation: Intermediate forms of source programs– abstract syntax tree, polish

notation and three address code, types of three address statements and its implementation, syntax

directed translation into three-address code, translation of simple statements, Boolean expressions and

flow-of control statements

UNIT-IV TYPE CHECKING AND RUN TIME ENVIRONMENT

Type checking: Definition of type checking, type expressions, type systems, static and dynamic checking

of types, specification of a simple type checker, equivalence of type expressions, type conversions,

overloading of functions and operators; Run time environments: Source language issues, Storage

organization, storage- allocation strategies, access to nonlocal names, parameter passing, symbol tables,

and language facilities for dynamic storage allocation.

UNIT-V CODE OPTIMIZATION AND CODE GENERATOR

Code optimization: The principle sources of optimization, optimization of basic blocks, loops in flow

graphs, peephole optimization; Code generator: Issues in the design of a code generator, the target

machine, runtime storage management, basic blocks and flow graphs, a simple code generator, register

allocation and assignment, DAG representation of basic blocks.

Text Books:

1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, ―Compilers–Principles, Techniques and Tools‖,

Pearson Education, Low Price Edition, 2004

Reference Books:

1. Kenneth C. Louden, Thomson, ―Compiler Construction– Principles and Practice‖, PWS Publishing

 1
st
 Edition ,1997

2. Andrew W. Appel, ―Modern Compiler Implementation C‖, Cambridge University Press, Revised

Edition, 2004.

3. Richard Arnold Johnson, Irwin Miller and John E. Freund, “Probability and Statistics for

 Engineers”, Prentice Hall, 8
th

 Edition, 2013.

Page | 9

XVI. COURSE PLAN:

 The course plan is meant as a guideline. Probably there may be changes.
Lecture

No

Topics to be covered

Course

Learning

Outcomes

(CLOs)

Reference

1-4 Introduction, Analysis of the source program, Difference of

compiler and interpreter, Phases of compilation, Grouping of

phases, role of lexical analyzer.

CLO 1 T1:1.1-1.5

R1:1.1

5-6 Construction of regular grammar from regular expression,

NFA,DFA.

CLO 2 T1: 3.6-3.7

R1:2.2-2.4

7 Concept of pass and difference between pass and phase. CLO 1 T1: 1.5

8 Bootstrapping and types of compiler. CLO 3 T1: 1.1

R1:1.6

9-11 Lex-Lexical analyzer generator, Derivations and parse tree,

regular expressions v/s context free grammar.

CLO 6 T1: 3.8-4.3

R1:3.1-3.3

12-15 Backtracking, eliminating ambiguity from dangling-else

grammar, Elimination of left recursion and left factoring,

Recursive decent parsing, Finding FIRST and FOLLOW.

CLO 4 T1: 4.3-4.4

R1:4.1

16-18 Construction of parse tables, Predictive parsing, LL(1)

grammar.

CLO 4 T1: 4.5-4.7

R1:4.3-4.5

19-21
Handles, handle pruning, Shift reduce parsing, Conflicts during

shift-reduce parsing, LR parsers- Goto and closure functions.

CLO 5 T1: 4.5-4.7

R1:5.1-5.2

22-24 LR(0) and SLR and construction of parser table for SLR. CLO 5 T1: 4.7

R1:5.3

25-27 CLR operations and construction of parser table for LALR.,

LALR operations and construction of parser table for LALR.

CLO 5 T1: 4.7

R1:5.4-5.5

28 Description of error recovery. CLO 11 T1: 4.7

R1:5.6

29 Yacc parser generator. CLO 6 T1: 4.9

R1:5.5

30 Abstract syntax tree, three address code. CLO 9 T1: 4.9

31-32 Introduction to attributes grammars, Syntax directed

definitions, applications of SDD, Implementing L-attributed

SDD’s.

CLO 8 T1: 5.1-5.4

R1:6.1

33 Control flow, back patching, translation of simple statements,

Boolean expressions.

CLO 10 T1:8.4-8.6

34-35 Type checking, type expressions, type systems, Type

conversions, Overloading.

CLO 11 T1: 6.1

R1:6.4-6.5

 36-37 Source language issues, Storage organization, storage-allocation

strategies. Access to nonlocal names, parameter passing.

CLO 14 T1: 7.1-7.5

R1:7.1

38-39 Symbol tables, and language facilities for dynamic storage

allocation.

CLO 15 T1: 7.6-7.7

40 Principle sources of optimization. CLO 16 T1: 10.2

41-47 Optimization of basic blocks - Local, global and scope

optimization, Loops in flow graphs, peephole optimization.

CLO 17 T1:10.1-10.2

T1: 10.4,9.9

48-49 Introduction, issues in code generation, , the target machine. CLO 18 T1: 9.1-9.2

50 Runtime storage management. CLO 13 T1: 9.3

R1:7.6

51-52 Basic blocks and flow graphs. CLO 17 T1: 9.4

53-54 A simple code generator, register allocation and assignment. CLO 20 T1: 9.6-9.7

R1:8.1-8.8

55 DAG construction, applications. CLO17 T1: 9.8

Page | 10

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO Description Proposed

Actions

Relevance With

POS

Relevance With

PSOS

1 ANother Tool for Language
Recognition (ANTLR)

Seminars /
Guest

Lectures

PO1, PO3, PO4 PSO 1

2 Java Compiler
Compiler(JAVACC)

Seminars /
Guest

Lectures

PO 1, PO 3,PO4 PSO 3

3 Familiarization Lexer and Parser

Tools

Seminars PO 1 PSO 1

4 Awareness on Computer

Architecture for fine tuning

Target Codes

Seminars /

NPTEL Video

Lectures/

Moocs

PO 3

 PSO 2

Prepared by:

Ms. E Uma Shankari, Assistant Professor

 HOD, IT

