Hall Tick	xet No	Question Paper Code: CMB421
	INSTITUTE OF AERONAUTICAL ENG	GINEERING
EIARE	(Autonomous)	
TON FOR LIBER	MBA IV Semester End Examinations (Regular) - Με	ay/June, 2018
	Regulation: IARE–R16	
	FINANCIAL DERIVATIVES	

Time: 3 Hours

(MBA)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	(a)	Explain the growth and development of derivatives market in India.	[7M]
	(b)	Define derivatives. Write the uses of financial derivatives in detail.	[7M]
2.	(a)	Discuss the different players in the derivatives markets with their roles. [[7M]
	(b)	Explain the classification based on linearity and on the basis of financial and non financial de	riva-
		tives. [[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Briefly e	xplain about	forward rat	te agreements in	forward	contract.	7M	[
----	-----	-----------	--------------	-------------	------------------	---------	-----------	----	---

- (b) Calculate the price of 100 forward contract using the following information. Price of share Rs 75. Time to expiration 9months. Dividend expected Rs 2.20per share. Time to dividend 4 months. Continuously compounded risk free rate of interest is 12%. [7M]
- 4. (a) Explain about currency rate futures in derivatives market.
 - (b) From the following Table 1, prepare the margin account of the trader who has taken the long position: number of contracts- 1; number of units per contract- 50; price per unit on day 1-Rs.700; initial margin- 12%; maintenance margin- 75%. [7M]

Table	1
	_

Day	1	2	3	4	5	6	7	8	9
Closing Price(Rs)	693	682	663	648	623	610	633	638	621

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) Write short notes on American option and European option.
 - (b) A butterfly spread is created when large price changes are not expected but instead small changes are anticipated. Consider the data in Table 2 about call options on BHEL for which one contract involves 1100 shares.

[7M]

[7M]

Strike price(Rs)	$\operatorname{Premium}(\operatorname{Rs})$
170	21.10
180	14.00
190	8.00

Help the investor to build a butterfly spread. Find the pay-off for him at various ranges of stock prices. Illustrate by taking stock prices as Rs 168, Rs 176, Rs 185, Rs 189, and Rs 198. [7M]

- 6. (a) What is a Bull Spread? Explain the payoffs arising out of Bull Spread (Using calls). [7M]
 - (b) Using the data given below, calculate the theoretical values of (i) call (ii) put options on futures S and P CNX Nifty futures contract price = 1625 Exercise price of the option = 1632 Time to expiration of the option = 60 days Risk-free interest rate = 7% Volatility, $\sigma = 28\%$ [7M]
 - $\mathbf{UNIT}-\mathbf{IV}$

7.	(a) Discuss about basis risk in commodity trading market.	[7M]
	(b) Explain briefly about commodity futures contract with a suitable examples.	[7M]
8.	(a) Explain commodity options contract with a suitable examples.	[7M]
	(b) Explain how swaps commodity works in commodity derivative market.	[7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Define swaps. Explain the features of swaps.	[7M]
	(b) Discuss about currency swaps as a tool to hedge risk.	[7M]
10.	(a) How do you value interest rate swaps.	[7M]
	(b) Suppose that zero interest rates with continuous compounding are given in Table 3.	

Maturity (years)	Rate (% per annum)
1	8.0
2	7.5
3	7.2
4	7.0
5	6.9

Table 3

Calculate forward interest rates for the second, third, fourth and fifth years.

[7M]