

DEFINITIONS AND TERMINOLOGYQUESTION BANK

$\begin{array}{\|c} \hline \mathbf{S} \\ \text { No } \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
UNIT - I					
1	What is a function?	Let S be a non empty subset of C then f maps S tends C is said to be a function if every element of S associates with an element of C	Jnderstand	CLO1	$\begin{gathered} \hline \text { CAHS004.0 } \\ 1 \\ \hline \end{gathered}$
2	What is a complex number?	The number which can be written as $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is called a complex number.	Inderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
3	Identify Modulus of a complex number	If $\mathrm{z}=\mathrm{a}+\mathrm{ib}$, then its modulus is $\|z\|=\sqrt{a^{2}+b^{2}}$	nderstand	CLO1	$\begin{gathered} \hline \text { CAHS004.0 } \\ 1 \end{gathered}$
4	Describe Argument of complex number	argument of a complex number $\mathrm{z}=\mathrm{a}+\mathrm{ib}=\mathrm{r}(\cos \theta+\sin \theta)$ is the value of θ satisfying $\mathrm{r} \cos \theta=\mathrm{a}$ and $\mathrm{r} \sin \theta=\mathrm{b}$. Thus the argument of $\mathrm{z}=\theta, \boldsymbol{\pi}-\theta,-\boldsymbol{\pi}+\theta,-\theta, \theta=\tan ^{-1}\|\mathrm{a} / \mathrm{b}\|$, according as $\mathrm{z}=\mathrm{a}+\mathrm{ib}$ lies in I, II, III or $\mathrm{IV}^{\mathrm{th}}$ quadrant.	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
4	Define Limit?	A function $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is said to have a limit at w_{0} as z approchhes to z_{o} when $\in>0$ in domain then $\mathrm{f}(\mathrm{z})$ approaches to w_{0} when $\delta>0$ in codomain when ever modulus of $\mathrm{z}-\mathrm{z}_{0}$ less than \in then modulus of $\mathrm{f}(\mathrm{z})-\mathrm{w}_{0}$ less than δ We shall use the notation $w_{0}=\lim _{z \rightarrow z_{0}} f(z)$.	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
5	Define the continuity of the function	A function is said to be continuity at a point if limit of the function exit and the limit value is equals to functional value	Remember	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
6	Explain Differentation of complex function.	Let $\mathrm{w}=\mathrm{f}(\mathrm{z})$ be a given function defined for all z in a neighbourhood of z_{0}.If $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ exists, the function $\mathrm{f}(\mathrm{z})$ is said to be derivable at z_{0} and the limit is denoted by $f^{\prime}\left(z_{0}\right) \cdot f^{\prime}\left(z_{0}\right)$ if exists is called the derivative of $f(z)$ at z_{0}.	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
7	Explain the properties of limit.	z tends to then it is unique If the limit of a function $f(z)$ exists as	Jnderstand	CLO1	$\begin{gathered} \hline \text { CAHS004.0 } \\ 1 \end{gathered}$
8	$\begin{aligned} & \hline \text { Define } \\ & \text { Analytic } \\ & \text { function. } \\ & \hline \end{aligned}$	A complex function is said to be analytic on a region R if it is complex differentiable at every point in R .	Remember	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$

$\begin{array}{\|c} \mathbf{S} \\ \text { No } \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
9	Define Singularities	A complex function may fail to be analytic at one or more points through the presence of singularities.	Remember	CLO2	$\begin{gathered} \text { CAHS004.0 } \\ 2 \end{gathered}$
10	Explain the term Entire function.	A complex function that is analytic at all finite points of the complex plane is said to be entire function.	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
12	Define complex potential function.	Let $w=\emptyset(x, y)+i \varphi(x, y)$ if this function is analytic then it's called complex potential function.	Jnderstand	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
13	Define harmonic function.	Analytic functions are intimately related to harmonic functions. We say that a real-valued function $h(x, y)$ on the plane is harmonic if it obeys Laplace's equation: $\frac{\partial^{2} h}{\partial^{2} x}+\frac{\partial^{2} h}{\partial^{2} y}=0$	Remember	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
14	State Milne Thomson method.	$f^{\prime}(z)$ express completely in terms of z by replacing x by z and y by zero.	Jnderstand	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
15	Define Harmonic Conjugate.	Given a function $u(x, y)$ harmonic in an open disk, then we can find another harmonic function $v(x, y)$ so that $u+i v$ is an analytic function of z in the disk. Such a function v is called a harmonic conjugate of u.	Remember	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
16	$\begin{aligned} & \text { What is real } \\ & \text { part of the } \\ & \text { complex } \\ & \text { number } z=x \\ & + \text { iy? } \end{aligned}$	The real part of the complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is x .	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
17	What is complex conjugate?	The complex number $\mathrm{z}=\mathrm{x}-\mathrm{iy}$ is called the complex conjugate of z .	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
18	What is imaginary part of the complex number $\mathrm{z}=\mathrm{x}$ + iy ?.	The imaginary part of the complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ is y	Remember	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$

$\begin{array}{\|c} \hline \mathrm{S} \\ \mathrm{No} \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
19	Explain Limit of the complex Function.	A function $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is said to tend to limit l as z approaches a point z_{0}, if for every real ε, we can find a positive δ such that $\|f(z)-l\|<\varepsilon$ for $0<\left\|z-z_{0}\right\|<\delta$.we write $\underset{z \rightarrow z_{0}}{\operatorname{Lt}} f(z)=l$	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
20	Explain Differentiabili ty of complex function.	Let $\mathrm{w}=\mathrm{f}(\mathrm{z})$ be a given function defined for all z in a neighbourhood of z_{0}.If $\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ exists, the function $\mathrm{f}(\mathrm{z})$ is said to be derivable at z_{0} and the limit is denoted by $f^{\prime}\left(z_{0}\right) \cdot f^{\prime}\left(z_{0}\right)$ if exists is called the derivative of $\mathrm{f}(\mathrm{z})$ at z_{0}.	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
21	List polar form of the CauchyRiemann equation.	If $f(z)=f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$ and $\mathrm{f}(\mathrm{z})$ is derivable at $z_{0}=r_{0} e^{i \theta_{0}}$ then $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$	Jnderstand	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
22	Define Regular function.	A complex function is said to be analytic on a region R if it is complex differentiable at every point in R .	Remember	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
23	Define Singularities.	A complex function may fail to be analytic at one or more points through the presence of singularities.	Remember	CLO2	$\begin{gathered} \text { CAHS004.0 } \\ 2 \end{gathered}$
24	Explain the term Entire function.	A complex function that is analytic at all finite points of the complex plane is said to be entire function.	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
25	State Cauchy- Riemann equations.	The Cauchy-Riemann equations on a pair of real-valued functions of two real variables $u(x, y)$ and $v(x, y)$ are the two equations: 1. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ 2. $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ Typically u and v are taken to be the real and imaginary parts respectively of a complex-valued function of a single complex variable $\mathrm{z}=\mathrm{x}+\mathrm{iy}, \mathrm{f}(\mathrm{x}+\mathrm{iy})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$	Jnderstand	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
26	Define harmonic function.	Solutions of laplace equations having second order partial derivatives are called harmonic functios.	Remember	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$

$\begin{array}{\|c} \mathbf{S} \\ \mathbf{N o} \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
27	Define Conjugate harmonic function.	If two harmonic functions u and v satisfy the Cauchy-Reimann equations in a domain D and they are real and imaginary parts of an analytic function f in D then v is said to be a conjugate harmonic function of u in D.If $f(z)=u+i v$ is an analytic function and if u and v satisfy Laplace's equation, then u and v are called conjugate harmonic functions.	Remember	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
28	State Milne Thomson method.	To express $f^{\prime}(z)$ completely in terms of z by replacing x by z and y by zero.	Jnderstand	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ \hline \end{gathered}$
29	Define Harmonic Conjugate.	Given a function $u(x, y)$ harmonic in an open disk, then we can find another harmonic function $v(x, y)$ so that $u+i v$ is an analytic function of z in the disk, Such a function v is called a harmonic conjugate of u.	Remember	CLO3	$\begin{gathered} \text { CAHS004.0 } \\ 3 \end{gathered}$
30	What is the value of $f^{\prime}(z)$	The value of $f^{\prime}(z)$ is $f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$	Jnderstand	CLO1	$\begin{gathered} \text { CAHS004.0 } \\ 1 \end{gathered}$
UNIT - II					
1	Write the properties of continuous	All polynomials, exponential, logarithmic and trigonometric functions are continuous.	Remember	CLO1	CAHS004.0
2	Write the properties of derivative	Every differentiable functions is a continuous but converse need not be true	Remember	CLO1	CAHS004.0
3	Define a Complex function?	Let D be a nonempty set in C. A single-valued complex function or, simply, a complex function $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{C}$ is a map that assigns to each complex argument $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ in D a unique complex number $\mathrm{w}=\mathrm{u}+\mathrm{iv}$. We write $\mathrm{w}=\mathrm{f}(\mathrm{z})$.	Remember	CLO1	$\begin{gathered} \hline \text { CAHS004.0 } \\ 1 \end{gathered}$
4	What is the reciprocal of complex number?	The reciprocal of complex number is $x-i y / x^{2}+y^{2}$	Jnderstand	CLO1	$\begin{gathered} \hline \text { CAHS004.0 } \\ 1 \end{gathered}$
5	What is a line integral?	A line integral is just an integral of a function along a path or curve. In this case, the curve is a straight line - a segment of the x-axis that starts at $x=a$ and ends at $x=b$.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
6	State Cauchy goursat Theorem.	let $\mathrm{F}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ be analytic on and within a simple closed contour (or curve) ' c ' and let $\mathrm{f}^{\prime}(\mathrm{z})$ be continuous there,then and if integral $f(z) d z$ is equal to zero	Jnderstand	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$

$\begin{array}{\|c\|} \hline \mathbf{S} \\ \text { No } \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
7	Write nth order Cauchy integral formula.	Let $f(z)$ be an regular function everywhere on and within a closed contour c. If $z=a$ is any point within c then $f^{n}(a)=\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z$	Remember	CLO6	$\begin{gathered} \text { CAHS004.0 } \\ 6 \end{gathered}$
8	Define pole	A point at which a function $f(z)$ is not analytic is called a pole.	Remember	CLO5	$\begin{gathered} \hline \text { CAHS004.0 } \\ 5 \\ \hline \end{gathered}$
9	Define the contour integrals	Contour integration is the process of calculating the values of a contour_integrals around a given contour in the complex plane	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
10	Define the continuous function.	A function $\mathrm{f}(\mathrm{z})$ is said to be continuous at $\mathrm{z}=\mathrm{z}_{0}$, $\mathrm{f} \mathrm{f}\left(\mathrm{z}_{0}\right)$ is defined and $\underset{z \rightarrow z_{0}}{\operatorname{Lt}} f(z)=f\left(z_{0}\right)$	Remember	CLO5	$\begin{gathered} \hline \text { CAHS004.0 } \\ 5 \end{gathered}$
11	Define the orthogonality curves	Two curves intersecting at a point p are said to intersect orthogonally.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
12	Define the simple closed curve.	A curve which does not intersect is called a simple closed curve.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
13	State the moreras theorem.	If a function f is continuous throughout a simple connected domain d and if integral $f(z) d z$ is equal to zero for every closed contour c in D then $f(z)$ is analytic in D.	Jnderstand	CLO6	$\begin{gathered} \text { CAHS004.0 } \\ 6 \end{gathered}$
14	What is Path independence	We say the integral $f(z) d z$ is path independent if it has the same value for any two paths with the same endpoints.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
15	Explain Extensions of Cauchy's theorem?	Cauchy's theorem requires that the function $f(z)$ be analytic on a simply connected region. In cases where it is not, we can extend it in a useful way. Suppose R is the region between the two simple closed curves C1 and C2. Note, both C1 and C2 are oriented in a counterclockwise direction.	Jnderstand	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
16	What is a domain?	An open and connected subset $\mathrm{G} \subseteq \mathrm{C}$ is called a domain.	Jnderstand	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \\ \hline \end{gathered}$
17	Define line integral.	A line integral is an integral where the function to be integrated is evaluated along a curve. we define $\int_{a}^{b} F(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t$	Remember	CLO5	$\begin{gathered} \hline \text { CAHS004.0 } \\ 5 \end{gathered}$
18	What is real part of	The real part of $\int_{a}^{b} F(t) d t$ is $\int_{a}^{b} u(t) d t$	Jnderstand	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$

$\begin{array}{\|c\|} \hline \text { S } \\ \text { No } \\ \hline \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
	$\int_{a}^{b} F(t) d t ?$				
19	What is imaginary part of $\int_{a}^{b} F(t) d t$	The imaginary part of $\int_{a}^{b} F(t) d t$ is $\int_{a}^{b} v(t) d t$	Jnderstand	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
20	State Cauchy integral Theorem.	let $\mathrm{F}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ be an analytic on and within a simple closed contour (or curve) ' c ' and let f ' (z) be continuous there, then $\int_{c} f(z) d z=0$	Jnderstand	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
21	State Cauchy integral formula.	Let $f(z)$ be an analytic function everywhere on and within a closed contour c. If $z=a$ is any point within c then $f(a)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)} d z$ where the integral is taken in the positive sense around c.	Jnderstand	CLO6	$\begin{gathered} \text { CAHS004.0 } \\ 6 \end{gathered}$
22	State generalization of Cauchy integral formula.	Let $f(z)$ be an analytic function everywhere on and within a closed contour c. If $z=a$ is any point within c then $f^{n}(a)=\frac{n!}{2 \pi i} \int_{c} \frac{f(z)}{(z-a)^{n+1}} d z$	Jnderstand	CLO6	$\begin{gathered} \text { CAHS004.0 } \\ 6 \end{gathered}$
23	Define indefinite integral.	The integral $\int f(z) d z$ is called indefinite integral.	Remember	CLO6	$\begin{gathered} \text { CAHS004.0 } \\ 6 \end{gathered}$
24	State morera's theorem.	If a function f is continuous through out a simple connected domain D and if $\int_{c} f(z) d z=0$ for every closed contour c in D then $f(z)$ is analytic in D.	Jnderstand	CLO6	$\begin{gathered} \text { CAHS004.0 } \\ 6 \end{gathered}$
25	Define singular point.	A point at which a function $f(z)$ is not analytic is called a singular point	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
26	Define contour.	A continuous arc without multiple point is called contour.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \\ \hline \end{gathered}$
27	Define continuous function.	A function $\mathrm{f}(\mathrm{z})$ is said to be continuous at $\mathrm{z}=\mathrm{z}_{0}$, if $\mathrm{f}\left(\mathrm{z}_{0}\right)$ is defined and $\underset{z \rightarrow z_{0}}{\operatorname{Lt}} f(z)=f\left(z_{0}\right)$	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
28	Define laplace equation.	If $f(z)$ is analytic function in a domain D, then U and v satisfies the equation $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=0$	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$

$\begin{array}{\|c\|} \hline \mathbf{S} \\ \text { No } \\ \hline \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
29	Define orthogonality.	Two curves intersecting at a point p are said to intersect orthogonally.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \\ \hline \end{gathered}$
30	Define laplacian operator.	The operator $\nabla=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is called laplacian operator.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \end{gathered}$
31	Define simple closed curve.	A curve which does not intersect is called a simple closed curve.	Remember	CLO5	$\begin{gathered} \text { CAHS004.0 } \\ 5 \\ \hline \end{gathered}$
UNIT - III					
1	Define singularity of analytic function.	A zero of an analytic function $f(z)$ is a value of z such that $f(z)=0$. Particularly a point a is called a singularity of an analytic function $f(z)$ if $f(a)=0$	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
2	Define singularity ofm ${ }^{\text {th }}$ order.	If an analytic function $\mathrm{f}(\mathrm{z})$ can be expressed in the form $f(z)=(z-a)^{m} \Phi(z)$ where $\Phi(z)$ is analytic function and $\Phi(a) \neq 0$ then $\mathrm{z}=\mathrm{a}$ is called singularity of $\mathrm{m}^{\text {th }}$ order. of the function $\mathrm{f}(\mathrm{z})$.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
3	Define Singular point of an analytic function.	A point at which an analytic function $f(z)$ is not analytic, i.e. at which $f^{\prime}(z)$ fails to exist, is called a singular point or singularity of the function.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \backslash \end{gathered}$
4	Define Isolated singularity?	A singular point z_{0} is called an isolated singular point of an analytic function $f(z)$ if there exists a deleted ε spherical neighborhood of z_{0} that contains no singularity. If no such neighborhood can be found, z_{0} is called a non-isolated singular point.	Remember	CLO10	$\begin{gathered} \text { CAHSO04.1 } \\ 0 \end{gathered}$
5	Define nonisolated singularity?	A singular point z_{0} is called an isolated singular point of an analytic function $f(z)$ if there exists a deleted ε spherical neighborhood of z_{0} that contains no singularity. If no such neighborhood can be found, z_{0} is called a non-isolated singular point.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
6	Define double pole.	A pole of order two is called a simple pole.	Remember	CLO11	$\begin{gathered} \hline \text { CAHS004.1 } \\ 1 \end{gathered}$
7	Define Removable singularity?	An isolated singular point z_{0} such that f can be defined, or redefined, at z_{0} in such a way as to be analytic at z_{0}. A singular point z_{0} is removable if $\lim _{z \rightarrow z_{0}} f(z) \text { exist }$	Remember	CLO10	$\begin{gathered} \text { CAHSO04.1 } \\ 0 \end{gathered}$

$\begin{array}{\|c} \hline \mathbf{S} \\ \text { No } \\ \hline \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
8	Define Essential singularity	A singular point that is not a pole or removable singularity is called an essential singular point.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
9	Define Residues at Poles.	If $\mathrm{f}(\mathrm{z})$ has a simple pole at z_{0}, then $\operatorname{Re}\left[\left[f, z_{0}\right]=\lim _{Z \rightarrow Z_{0}}\left(z-z_{0}\right) f(z)\right.$	Remember	CLO11	$\begin{gathered} \text { CAHS004.1 } \\ 1 \end{gathered}$
10	Stat Cauchy's Residue Theorem.	$\int_{c} f(z) d z=2 \pi i \sum_{a \in A} \operatorname{Re}_{z=a_{i}} f(z)$ Where A is the set of poles contained inside the contour	Jnderstand	CLO11	$\begin{gathered} \text { CAHS004.1 } \\ 1 \end{gathered}$
12	Define Residue at infinity.	The residue at infinity is given by: $\operatorname{Res}[f(z)]_{Z=\infty}=-\frac{1}{2 \pi i} \int_{C} f(z) d z$ Where f is an analytic function except at finite number of singular points and C is a closed countour so all singular points lie inside it.	Remember	CLO11	$\begin{gathered} \text { CAHS004.1 } \\ 1 \end{gathered}$
13	Define the Power series.	A series of the form $\sum a_{n} z^{n}$ is called as power series. That is $\sum a_{n} z^{n}=a_{1} z+a_{2} z^{2}+\ldots \ldots \ldots+a_{n} z^{n}+\ldots .$.	Remember	CLO7	CAHS004.0 7
14	State Taylor's series.	The Taylor series is an infinite series, whereas a Taylor polynomial is a polynomial of degree n and has a finite number of terms. The form of a Taylor polynomial of degree n for a function $f(z)$ at $x=a$ is $f(z)=f(a)+f^{\prime}(a)(z-a)+f^{\prime \prime}(0) \frac{(z)^{2}}{2!}+\ldots \ldots \ldots \ldots .\|z-a\|<r$	Remember	CLO9	$\begin{gathered} \hline \text { CAHS004.0 } \\ 9 \end{gathered}$
15	Write Taylor series at $\mathrm{x}=0$	Taylor series expansion of a function about $\mathrm{x}=0$, $\left.f(z)=f(0)+f^{\prime}(0) z\right)+f^{\prime \prime}(0) \frac{(z)^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{(z)^{3}}{3!}+\ldots \ldots \ldots+f^{n}(0) \frac{(z)^{n}}{n!}+$ This series is called astaylor series expansion of $\mathrm{z}=0$.	Remember	CLO9	$\begin{gathered} \text { CAHS004.0 } \\ 9 \end{gathered}$
16	State Laurent series.	The Laurent series for a complex function $f(z)$ about a point c is given by: $\begin{aligned} & f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \\ & \quad f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{n=1}^{\infty} b_{n} \frac{1}{(z-a)^{n}} \end{aligned}$	Remember	CLO9	$\begin{gathered} \text { CAHS004.0 } \\ 9 \end{gathered}$

$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { S } \\ \text { No } \end{array}\right. \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
		where the a_{n} and a are constants.			
17	Define the Power series.	A series of the form $\sum a_{n} z^{n}$ is called as power series. That is $\sum a_{n} z^{n}=a_{1} z+a_{2} z^{2}+\ldots \ldots \ldots+a_{n} z^{n}+\ldots$.	Remember	CLO7	$\begin{gathered} \text { CAHS004.0 } \\ 7 \end{gathered}$
18	State Power series.	A series of the form $\sum a_{n} z^{n}$ is called as power series. That is $\sum a_{n} z^{n}=a_{1} z+a_{2} z^{2}+\ldots \ldots \ldots+a_{n} z^{n}+\ldots \ldots$	Remember	CLO7	$\begin{gathered} \hline \text { CAHS004.0 } \\ 7 \end{gathered}$
19	State Taylor's series.	The Taylor series is an infinite series, whereas a Taylor polynomial is a polynomial of degree n and has a finite number of terms. The form of a Taylor polynomial of degree n for a function $\mathrm{f}(\mathrm{z})$ at $\mathrm{x}=\mathrm{a}$ is $f(z)=f(a)+f^{\prime}(a)(z-a)+f^{\prime \prime}(0) \frac{(z)^{2}}{2!}+\ldots\|z-a\|<r$	Remember	CLO9	$\begin{gathered} \text { CAHS004.0 } \\ 9 \end{gathered}$
20	State Maclaurin series.	A Maclaurin series is a Taylor series expansion of a function about $\mathrm{x}=0$, is called as macurins series.	Remember	CLO9	$\begin{gathered} \hline \text { CAHS004.0 } \\ 9 \end{gathered}$
21	State Laurent series.	The Laurent series for a complex function $f(z)$ about a point c is given by: $\begin{aligned} & f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \\ & \quad f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{n=1}^{\infty} b_{n} \frac{1}{(z-a)^{n}} \end{aligned}$ where the a_{n} and b_{n} are constants.	Remember	CLO9	$\begin{gathered} \text { CAHS004.0 } \\ 9 \end{gathered}$
22	Define Zero of an analytic function.	A zero of an analytic function $f(z)$ is a value of z such that $f(z)=0$. Particularly a point a is called a zero of an analytic function $\mathrm{f}(\mathrm{z})$ if $\mathrm{f}(\mathrm{a})=0$.	Remember	CLO10	$\begin{gathered} \hline \text { CAHS004.1 } \\ 0 \end{gathered}$
23	Define Zero of $\mathrm{m}^{\text {th }}$ order.	If an analytic function $\mathrm{f}(\mathrm{z})$ can be expressed in the form $f(z)=(z-a)^{m} \phi(z)$ where $\phi(z)$ is analytic function and $\phi(a) \neq 0$ then $\mathrm{z}=\mathrm{a}$ is called zero of $\mathrm{m}^{\text {th }}$ order of the function $\mathrm{f}(\mathrm{z})$.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
24	Define Singular point of an analytic function.	A point at which an analytic function $f(z)$ is not analytic, i.e. at which $f^{\prime}(z)$ fails to exist, is called a singular point or singularity of the function.	Remember	CLO10	$\begin{gathered} \hline \text { CAHS004.1 } \\ 0 \end{gathered}$

$\begin{array}{\|c\|} \hline \mathbf{S} \\ \text { No } \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
25	Define Isolated singular points.	A singular point z_{0} is called an isolated singular point of an analytic function $f(z)$ if there exists a deleted ε spherical neighborhood of z_{0} that contains no singularity. If no such neighborhood can be found, z_{0} is called a non-isolated singular point.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
26	Define nonisolated singular points.	A singular point z_{0} is called an isolated singular point of an analytic function $f(z)$ if there exists a deleted ε spherical neighborhood of z_{0} that contains no singularity. If no such neighborhood can be found, z_{0} is called a non-isolated singular point.	Remember	CLO10	$\begin{gathered} \hline \text { CAHS004.1 } \\ 0 \end{gathered}$
27	Define Simple pole.	A pole of order 1 is called a simple pole.	Remember	CLO11	$\begin{gathered} \text { CAHS004.1 } \\ 1 \end{gathered}$
28	Define Removable singular point.	An isolated singular point z_{0} such that f can be defined, or redefined, at z_{0} in such a way as to be analytic at z_{0}. A singular point Z_{0} is removable if exist $\lim _{z \rightarrow z_{0}} f(z) \text { exist. }$	Remember	CLO10	$\begin{gathered} \hline \text { CAHS004.1 } \\ 0 \end{gathered}$
29	Define Essential singular point.	A singular point that is not a pole or removable singularity is called an essential singular point.	Remember	CLO10	$\begin{gathered} \text { CAHS004.1 } \\ 0 \end{gathered}$
30	Define Residues at Poles	If $\mathrm{f}(\mathrm{z})$ has a simple pole at z_{0}, then $\operatorname{Re} s\left[f, z_{0}\right]=\lim _{Z \rightarrow Z_{0}}\left(z-z_{0}\right) f(z)$	Remember	CLO11	$\begin{gathered} \text { CAHS004.1 } \\ 1 \end{gathered}$
31	Stat Cauch's Residue Theorem.	$\int_{c} f(z) d z=2 \pi i \sum_{a \in A} \operatorname{Re}_{z=a_{i}} f(z)$ Where A is the set of poles contained inside the contour.	Jnderstand	CLO11	CAHS004.1
32	Define Residue at infinity.	The residue at infinity is given by: $\operatorname{Res}[f(z)]_{Z=\infty}=-\frac{1}{2 \pi i} \int_{C} f(z) d z$ Where f is an analytic function except at finite number of singular points and C is a closed countour so all singular points lie inside it.	Remember	CLO11	$\begin{gathered} \text { CAHS004.1 } \\ 1 \end{gathered}$
UNIT - IV					
1	Define expectation?	The sum of products of different values of x and the corresponding probabilities	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$

$11 \mid \mathrm{P}$ a g e

S No	QUESTION		ANSWER Level	CLO	CLO Code
2		What is predictable experiment?	An experiment is said to be predictable if the result can be predicted		Remember

$\mathbf{1 2 | P a g e}$

$\begin{array}{\|c\|} \hline \text { S } \\ \text { No } \\ \hline \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
11	What is predictable experiment?	An experiment is said to be predictable if the result can be predicted	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
12	What is exhaustive event?	The total number of events in any random experiment	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
13	What is mutually exclusive event?	It two or more events cannot obtain simultaneously in the same random experiment	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
14	What is equally likely event?	Two events are said to be equally likely events if they have equal chance of happening.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
15	Define dependent event.	If one event is effected by the another event the n the two events are called dependent events	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
16	What is random experiment?	An experiment is said to be predictable if the result cannot be predicted.	Remember	CLO15	$\begin{gathered} \hline \text { CAHS004.1 } \\ 5 \end{gathered}$
17	Define outcome.	The result of the experiment.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \\ \hline \end{gathered}$
18	Define sample space?	The collection of all possible outcomes in any random experiment.	Remember	CLO15	$\begin{gathered} \hline \text { CAHS004.1 } \\ 5 \\ \hline \end{gathered}$
19	What is an event?	A non empty subset of the sample space.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \\ \hline \end{gathered}$
20	What is exhaustive event?	The total number of events in any random experiment.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
21	What is mutually exclusive event?	It two or more events cannot obtain simultaneously in the same random experiment.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$

$\mathbf{1 3 | P a g e}$

$\begin{array}{\|c} \hline \mathrm{S} \\ \mathrm{No} \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
22	What is equally likely event?	Two events are said to be equally likely events if they have equal chance of happening.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
23	Define dependent event.	If one event is effected by the another event the n the two events are called dependent events.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
24	Define independent event.	If one event is not effected by the another event the n the two events are called independent events.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
25	What is favorable event?	The events which are favorable to one particular event in any random experiment.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
26	Define Probability.	Consider any random experiment the total number of events are n out of them m events are favorable to a particular event E then $P(E)=$ Favorable events/ total number of events	Jnderstand	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
27	Define random variable.	In any random experiment the sample space associated with a real number.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
28	What is discrete random variable?	A random variable is said to be discrete if the range of the random variable is finite.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
29	What is continuous random variable?	A random variable is said to be continuous if the range of the random variable is interval of two real numbers.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$
30	What is predictable experiment?	An experiment is said to be predictable if the result can be predicted.	Remember	CLO15	$\begin{gathered} \text { CAHS004.1 } \\ 5 \end{gathered}$

$\mathbf{1 4} \mid \mathrm{P}$ a g e

$\begin{array}{\|c\|} \hline \mathbf{S} \\ \text { No } \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
UNIT - V					
1	Define Normal distribution.	If X is a continuous random variable μ, σ^{2} are any two parameters then the normal distribution is denoted by $N\left(\mu, \sigma^{2}\right)=P\left(X_{1} \leq X \leq X_{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}},-\infty<X<\infty$	Jnderstand	CLO20	$\begin{gathered} \text { CAHS004.2 } \\ 0 \end{gathered}$
2	What is Normal curve?	Normal curve is bell shape. It is symmetric about $x=\mu$ and $\mathrm{z}=0$. The total area in a normal distribution is unity.	Remember	CLO20	$\begin{gathered} \text { CAHS004.2 } \\ 0 \end{gathered}$
3	What is the maximum probability	The maximum probability is one.	Jnderstand	CLO21	$\begin{gathered} \text { CAHS004.2 } \\ 1 \end{gathered}$
4	What is variance of binomial distribution?	The variance of binomial distribution is $\sigma=n p q$	Jnderstand	CLO21	$\begin{gathered} \hline \text { CAHS004.2 } \\ 1 \end{gathered}$
5	What is standard deviation of binomial distribution?	The standard deviation of binomial distribution is $\sigma=\sqrt{n p q}$	Jnderstand	CLO21	$\begin{gathered} \text { CAHSO04.2 } \\ 1 \end{gathered}$
6	What is mode of Poisson the distribution?	The mode of the Poisson distribution lies bet ween $\lambda-1$ and λ	Jnderstand	CLO23	$\begin{gathered} \text { CAHS004.2 } \\ 3 \end{gathered}$
7	What is variance of Poisson distribution?	The variance of Poisson distribution is λ	Jnderstand	CLO23	$\begin{gathered} \text { CAHS004.2 } \\ 3 \end{gathered}$
8	What is the recurrence relation of Poisson distribution?	The recurrence relation of Poisson distribution is $p(x)=\frac{\lambda}{x} p(x-1)$	Jnderstand	CLO23	$\begin{gathered} \text { CAHS004.2 } \\ 3 \end{gathered}$
9	Define binomial distribution.	Consider a random experiment having n trials. Let it succeed x times then the probability of getting x success is p^{x}, and the probability of n -x failures are $\mathrm{q}^{\mathrm{n-x}}$ Therefore the probability of getting x success out of n trials are	Jnderstand	CLO21	$\begin{gathered} \text { CAHS004.2 } \\ 1 \end{gathered}$

$\begin{array}{\|c} \hline \mathbf{S} \\ \text { No } \\ \hline \end{array}$	QUESTION	ANSWER	Blooms Level	CLO	CLO Code
		$\mathrm{b}(\mathrm{x}, \mathrm{n}, \mathrm{p})=\mathrm{P}(\mathrm{X}=\mathrm{X})=n_{c_{x}} p^{x} q^{n-x}, \mathrm{x}=0,1,2 \ldots \ldots . \mathrm{n}$			
10	What is the variance of K.	Variance of x	Understand	CLO21	$\begin{gathered} \text { CAHS004.2 } \\ 1 \\ \hline \end{gathered}$
11	Define probability function.	If X is a random variable then $\mathrm{P}(\mathrm{X}=\mathrm{x})$ is called probability distribution or probability function.	Jnderstand	CLO17	$\begin{gathered} \text { CAHS004.1 } \\ 7 \end{gathered}$
12	What is Bernuolli trial?	It is a random experiment having only two possible outcomes. Which are denoted by success and failure.	Remember	CLO21	CAHS004.2
13	Define binomial distribution.	Consider a random experiment having n trials. Let it succeed x times then the probability of getting x success is p^{x}, and the probability of n -x failures are $\mathrm{q}^{\mathrm{n-x}}$ Therefore the probability of getting x success out of n trials are $\mathrm{b}(\mathrm{x}, \mathrm{n}, \mathrm{p})=\mathrm{P}(\mathrm{X}=\mathrm{X})=n_{c_{x}} x^{x} q^{n-x}, \mathrm{x}=0,1,2 \ldots \ldots \mathrm{n}$	Understand	CLO21	CAHS004.2
14	Define Poisson distribution.	A random variable X is said to follow a Poisson distribution if it assumes only non-negative values and its probability mass function is given by $f(x, \lambda)=P(X=x)=\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}, x=0,1 \ldots . . \infty$	Jnderstand	CLO23	$\begin{gathered} \hline \text { CAHS004.2 } \\ 3 \end{gathered}$
15	Define Normal distribution.	If X is a continuous random variable μ, σ^{2} are any two parameters then the normal distribution is denoted by $N\left(\mu, \sigma^{2}\right)=P\left(X_{1} \leq X \leq X_{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{\left.-1-2,-\frac{\mu}{2}\right)^{2}}{\sigma}},-\infty<x<\infty$	Understand	CLO20	$\begin{gathered} \text { CAHS004.2 } \\ 0 \end{gathered}$
16	What is Normal curve?	Normal curve is bell shape. It is symmetric about $x=\mu$ and $\mathrm{z}=0$. The total area in a normal distribution is unity.	Remember	CLO20	$\begin{gathered} \text { CAHS004.2 } \\ 0 \end{gathered}$
17	What is mean of binomial distribution?	The mean of binomial distribution is $\mu=n p$	Understand	CLO21	CAHS004.2
18	What is variance of binomial distribution?	The variance of binomial distribution is $\sigma=n p q$	Understand	CLO21	CAHS004.2
19	What is standard deviation of	The standard deviation of binomial distribution is $\sigma=\sqrt{n p q}$	Jnderstand	CLO21	CAHS004.2

$\mathbf{1 6 | P a g e}$

$\begin{array}{\|c\|} \hline \text { S } \\ \text { No } \\ \hline \end{array}$	QUESTION	ANSWER		Blooms Level	CLO	CLO Code
	binomial distribution?					
20	What is mean of Poisson distribution?	The mean of Poisson distribution is $\mu=n p$		Jnderstand	CLO23	$\begin{gathered} \text { CAHS004.2 } \\ 3 \end{gathered}$
21	What is variance of Poisson distribution?	The variance of Poisson distribution is λ		Inderstand	CLO23	$\begin{gathered} \text { CAHS004.2 } \\ 3 \end{gathered}$
22	What is standard deviation of Poisson distribution?	The standard deviation of Poisson distribution is $\sigma=\sqrt{\lambda}$		Jnderstand	CLO23	$\begin{gathered} \hline \text { CAHS004.2 } \\ 3 \end{gathered}$
23	What is mean of Normal distribution?	The mean of Normal distribution is $\mu=b$		Jnderstand	CLO20	$\begin{gathered} \hline \text { CAHS004.2 } \\ 0 \end{gathered}$
24	What is variance of Normal distribution?	The variance of Normal distribution is σ^{2}		Jnderstand	CLO20	$\begin{aligned} & \text { CAHS004.2 } \\ & 0 \end{aligned}$
25	What is median of Normal distribution?	The median of Normal distribution is $\mu=M$		Jnderstand	CLO20	$\begin{gathered} \hline \text { CAHS004.2 } \\ 0 \end{gathered}$

Signature of the Faculty

