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Course Outcomes 

The course should enable the students to:   

CO 1 Understand the organization and levels of design in computer architecture  
and To understand the concepts of programming methodologies. 

CO 2 Describe Register transfer languages, arithmetic micro operations, logic 
micro operations, shift micro operations address sequencing, micro 
program example, and design of control unit. 

CO 3 Understand the Instruction cycle, data representation, memory reference 
instructions, input-output, and interrupt, addressing modes, data transfer 
and manipulation, program control. Computer arithmetic: Addition and 
subtraction, floating point arithmetic operations, decimal arithmetic unit. 

CO 4 Knowledge about Memory hierarchy, main memory, auxiliary memory, 
associative memory, cache memory, virtual memory Input or output 
Interface, asynchronous data transfer, modes of transfer, priority interrupt, 
direct memory access. 

CO 5 Explore the Parallel processing, pipelining-arithmetic pipeline, instruction 
pipeline Characteristics of multiprocessors, inter connection structures, 
inter processor arbitration, inter processor Communication and 
synchronization 



MODULE –I 
 

INTRODUCTION TO COMPUTER ORGANIZATION 



Course Learning Outcomes 

The course will enable the students to: 

CLO 1   Describe the various components like input/output units, 

memory unit, control unit, arithmetic logic unit connected in 

the basic organization of a computer. 

CLO 2 Understand the interfacing concept with memory 

subsystem organization and input/output subsystem 

organization. 

CLO 3 Understand instruction types, addressing modes and their 

formats in the assembly language programs. 

CLO 4 Describe the instruction set architecture design for 

relatively simple microprocessor or Central Processing Unit. 

CLO 5 Understand the organization and levels of design in 
computer architecture  and To understand the concepts of 
programming methodologies. 



Contents 

Basic computer organization 

• CPU organization 

• Memory subsystem organization and interfacing 

• Input or output subsystem organization and interfacing 

• A simple computer levels of programming languages 

• Assembly language instructions 

• Instruction set architecture design 

• A simple instruction set architecture. 



Basic Computer Organization 

• The basic computer organization has three main components: 

• CPU 

• Memory subsystem 

• I/O subsystem 

 



Generic computer Organization 
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system bus 

 • The system bus has three buses: 

• Address bus: The uppermost bus is the address bus. When the CPU 

reads data or instructions from or writes data to memory, it must specify  

the  address  of  the  memory  location  it  wishes  to access. 

• Data bus: Data  is  transferred  via  the  Data  bus.  When  CPU  fetches  

data from      memory  it  first  outputs  the  memory  address  on  to  its 

address bus. Then memory outputs the data onto the data bus. Memory 

then reads and stores the data at the proper locations. 

• Control bus: Control bus carries the control signal. Control signal is the  

collection  of  individual  control  signals.  These signals  indicate  

whether  data  is  to  be  read  into  or written out of the CPU. 

 

 

 

 



Instruction Cycle 

 

• Each program is a sequence of instructions. 

• The basic computer system each instruction is subdivided into  Four 

phases: 

    1. Fetch an Instruction from memory. 

    2. Decode the Instruction. 

    3. Read the effective address from the memory if 

        the instruction has an indirect address. 

    4. Execute the Instruction.  

• The above process continues indefinitely unless a HALT instruction 

is encountered. 

 



Fetch and Decode 

• Initially the program counter PC is loaded with the address of 

the first instruction. 

 

 

Instruction Cycle 



 Fig: Register Transfer for the fetch phase 

Instruction Cycle 



• In the above diagram shows the transfer of first two statements(T0 

and T1). 

• When timing signal T0=1then  

 1.  Place the contents of PC onto the bus by making the bus selection 

inputs S2S1S0 equal to 010. 

 2. Transfer the contents of the bus to AR by enabling the LD input of 

AR. 

• When timing signal T1=1 then 

 1. Enable the read input of memory. 

 2. Place the contents of Memory onto the bus by making 

S2S1S0=111. 

 3. Transfer the contents of the bus to IR by enabling the LD input of 

IR. 

 4. Increment PC by enabling the INR input of PC. 

Instruction Cycle 



Determine the Type of Instruction 

• After executing the timing signal T1 the control unit determines the 

type of instruction that is read from memory. 

• If D7=1 and the instruction must be a register-reference or input-out 

type. 

• If D7=0 the operation code must be one of the other seven values 000 

through 110 specifying a memory –reference Instruction. 

• The symbolic representation is : 

 
                           D'7IT3 : AR M[AR] 
                           D'7I'T3 : Nothing 
                           D7I'T3 : Execute a register-reference instr. 
                           D7IT3  :  Execute an input-output instr. 

 

 

 

Instruction Cycle 



 Fig : Flowchart for Instruction Cycle 

Instruction Cycle 



Control signals 

• The  READ  signal  is  a  signal  on  the  control  bus  which  

the microprocessor  asserts  when  it  is  ready  to  read  data  

from memory or I/O device. 

• When READ signal is asserted the memory subsystem places 

the instruction code be fetched on to the computer system‟s 

data bus. The microprocessor then inputs the data from the bus 

and stores its internal register. 

• READ signal causes the memory to read the data, the WRITE 

operation causes the memory to store the data 



Timing diagrams 



Memory read operation 

• In fig (a) the microprocessor places the address on to the bus at the  

beginning  of  a  clock  cycle,  a  0/1  sequence  of  clock.  One clock 

cycle later, to allow for memory to decode the address and access  its  

data,  the  microprocessor  asserts  the  READ  control signal. 

• This causes the memory to place its data onto the system data bus. 

During this clock cycle, the microprocessor reads the data off the 

system bus and stores it in one of the registers. 

• At the end of the clock cycle it removes the address from the address  

bus  and  de asserts  the  READ  signal.  Memory  then removes the 

data from the data from the data bus completing the memory read 

operation 



Memory write operation 

• In fig(b) the processor places the address and  data onto the system 

bus during the first clock pulse. 

• The  microprocessor then  asserts the  WRITE  control  signal  at 

the end of the second clock cycle. 

• At the end of the second clock cycle the processor completes the 

memory write operation by removing the address and data from the 

system bus and deasserting the WRITE signal. 



CPU Organization 

• Central processing  unit  (CPU)  is the  electronic  circuitry  within  a 

computer that carries out the instructions of a computer program by  

performing  the  basic     arithmetic,     logical,     control     and 

input/output (I/O) operations specified by the instructions. 

• In the computer all the all the major connected with the help 

of the system bus. 

• Data bus is used to shuffle data between the various 

components in a computer system. 

• When the software wants to access some particular memory location 

or I/O device it places the corresponding address on the address 

bus. 

• The control bus is an eclectic collection of signals that control how 

the processor communicates with the rest of the system. The read 

and write control lines control the direction of data on the data bus. 



CPU Organization 



CPU Organization 

• The register section, as its name implies, includes a set of registers 

and a bus or other communication mechanism. 

• The register in a processor‟s instruction set architecture are found in 

the section of the CPU. 

• The system address and data buses interact with this section of CPU. 

The register section also contains other registers that are not 

directly accessible by the programmer. 

• The  fetch  portion  of  the  instruction  cycle,  the  processor  first 

outputs the address of the instruction onto the address bus. The 

processor has a register called the ͞program counter ͟. 

• At   the   end   of   the   instruction   fetch,   the   CPU   reads   the 

instruction code from the system data bus. 

• It stores  this  value  in  an  internal  register,  usually  called  

the ͞instruction register”. 

 



CPU Organization 

• The arithmetic / logic unit (or) ALU performs most arithmetic and 

logic operations such as adding and ANDing values. 

• CPU controls the computer, the control unit controls the CPU. The 

control unit receives some data values from the register unit, which 

it used to generate the control signals. 

• The control unit also generates the signals for the system control 

bus such as READ, WRITE, IO/ signals 



Memory Subsystem Organization 

• Memory is the group of circuits used to store data. 

• Memory   components   have   some   number   of   memory locations, 

each word of which stores a binary value of some fixed length. 

• The number of locations  and the size of each  location  vary from 

memory chip to memory chip, but they are fixed within individual 

chip. 

• Memory is usually organized in the form of arrays, in which each 

cell is capable of storing one bit information. 

• Each row of cell constitutes a memory word, and all cells of a row 

are connected to a common column called word line, which is 

driven by the address decoder on the chip 



Types of Memory 

• There are two types of memory chips, 

1. Read Only Memory (ROM) 

2. Random Access Memory (RAM) 

• Masked ROM(or) simply ROM 

 

• PROM(Programmed Read Only Memory) 

 

• EPROM(Electrically Programmed Read Only Memory) 

 

• EEPROM(Electrically Erasable PROM) 

 

• Flash Memory 



Masked ROM 

• A masked ROM or simply ROM is programmed with data as 

chip is fabricated. 

• The mask is used to create the chip and chip is designed with 

the required data hardwired in it. 

• PROM 

• Some ROM designs allow the data to be loaded by the user, thus 

providing programmable ROM (PROM). 

• Once a program has been written onto a PROM, it remains there 

forever. 

• Unlike main memory, PROMs retain their contents when the 

computer is turned off. 

• PROM - (programmable read-only memory) is a memory chip on 

which data can be written only once.  

 

 

 

ROM Chips 



• EPROM 

• EPROM is the another ROM chip allows the stored data to  be  erased  

and  new  data  to    be  loaded.  Such  an erasable  reprogrammable  

ROM  is  usually  called  an EPROM. 

• EPROM is done by charging of capacitors. The charged and 

uncharged capacitors cause each word of memory to store the correct 

value. 

• The chip is erased by being placed under UV light,which causes the 

capacitor to leak their charge. 

 

 

ROM Chips 



• EEPROM 

• A   significant   disadvantage   of   the   EPROM   is  the   chip   is 

physically  removed  from  the  circuit  for  reprogramming  and that 

entire contents are erased by the UV light. 

• Another  version  of  EPROM  is  EEPROM  that  can  be  both 

programmed   and   erased   electrically,   such   chips   called 

EEPROM, do not have to remove for erasure. 

• The  only  disadvantage  of  EEPROM  is  that  different  voltages are 

need for erasing, writing, reading and stored data 

• Flash Memory 

ROM Chips 

• A special type of EEPROM is called a flash memory is electrically 

erase data in blocks rather than individual locations. 

• It is well suited for the applications that writes blocks of data and can 

be used as a solid state hard disk. It is also used for data storage in 

digital computers. 



Memory Subsystem Organization 

• RAM Chips: 

– RAM stands for Random access memory. This often 

referred to as read/write memory. Unlike the ROM it 

initially contains no data. 

– The data pins are bidirectional unlike in ROM. 

– A ROM chip loses its data once power is removed so it is a 

volatile memory. 

– RAM chips are differentiated based on the data they 

maintain. 

 

• Dynamic RAM (DRAM) 

• Static RAM (SRAM) 



Memory chips Internal organization 

• Dynamic RAM 

 

• DRAM chips are like leaky capacitors. Initially data is stored in the 

DRAM chip, charging its memory cells to their maximum values. 

• The charging slowly leaks out and would eventually go too low to 

represent valid data. 

• Before this a refresher circuit reads the content of the DRAM and 

rewrites data to its original locations. 

• DRAM is used to construct the RAM in personal computers. 

• Static RAM 

 

• Static RAM are more likely the register .Once the data is written to 

SRAM, its contents stay valid it does not have to be refreshed. 

• Static RAM is faster than DRAM but it is also much more expensive. 

Cache memory in the personal computer is constructed from SRAM. 

 



Memory subsystem configuration 



• There are two commonly used organizations for multi byte 

data. 

 

– Big endian 

– Little endian 

 

• In BIG-ENDIAN  systems the most significant byte of a multi- byte 

data item always has the lowest address, while the least significant 

byte has the highest address. 

 

• In  LITTLE-ENDIAN  systems,  the  least  significant  byte  of  a 

multi-byte data item always has the lowest address, while the most 

significant byte has the highest address. 

Multi byte organization 



I/O Subsystem Organization 

The I/O subsystem is treated as an independent unit in the 

computer The CPU initiates I/O commands generically 

 

• Read, write, scan, etc. 

• This simplifies the CPU 



Input Device 

The I/O subsystem is treated as an independent unit in the 

computer The CPU initiates I/O commands generically 

 

• Read, write, scan, etc. 

• This simplifies the CPU 



• The data from the input device goes to the tri-state buffers. When the 

value in the address and control buses are correct, the buffers are 

enabled and data passes on the data bus. 

• The  CPU  can  then  read  this  data.  If  the  conditions  are  not 

right the logic block does not enable the buffers and do not place on 

the bus. 

• The enable logic contains 8-bit address and also

 generates two control signals RD and I/O. 

Input Device 



Output Device 

• The design of the interface circuitry for an output device such as  a  

computer  monitor  is  somewhat  different  than  for  the input 

device. 

• Tri-state buffers are replaced by a register. 

• The tri-state buffers are used in input device

 interfaces to make sure that one device writes data to the bus at any 

time. 

• Since the output devices read from the bus, rather that writes data to 

it, they don‟t need the buffers. 

• The data can be made available to all output devices but the devices 

only contains the correct address will read it in 



An output device: (a) with its interface and (b) the enable logic for the registers 

Output Device 

• Some devices are used for both input and output. Personal computer  

and  hard  disk  devices  are  falls  into  this  category. Such a devices 

requires a combined interface that is essential two interfaces. 

• A bidirectional I/O device with its interface and enable load logic is 

shown in the Figure below. 



Figure :  A bidirectional I/O device with its interface and enable/load logic 

Output Device 



• Computer programming languages are divided into 3 categories. 

• High level language 

• Assembly level language 

• Machine level language 

• High level languages are platform independent that is these programs 

can run on computers with different microprocessor and operating 

systems without modifications. Languages such as C++, Java and 

FORTRAN are high level languages. 

• Assembly languages  are at much lower level of abstraction. Each 

processor has its own assembly language 

• The  lowest  level  of  programming  language  is  machine  level 

languages.  These  languages  contain  the  binary  values  that cause  

the  microprocessor   to  perform   certain   operations. When 

microprocessor reads and executes an instruction it‟s a machine 

language instruction. 

 

 

 

A Simple Computer- Levels of PL 



Figure 1.8: Levels of programming languages 

A Simple Computer- Levels of PL 



• High level language programs are compiled and assembly level 

language programs are assembled. 

• A program written in the high level language is input to the compiler. 

• compiler checks to make sure every statement in the program is valid. 

When the program has no syntax errors the compiler finishes the 

compiling the program that is source code and generates an object 

code file. 

• An object code is the machine language equivalent of source 

code. 

• A linker combines the object code to any other object code. 

This combined code stores in the executable file. 

 

A Simple Computer- Levels of PL 



A Simple Computer- Levels of PL 

Programming Languages 



• Programmers don‟t written the programs in machine language 

rather programs written in assembly or high level are the converted 

into machine level and then executed by microprocessor. 

• High level language programs are compiled and assembly level 

language programs are assembled. 

• A program written in the high level language is input to the 

compiler. The compiler checks to make sure every statement in  the  

program  is  valid.  When  the  program  has  no  syntax errors the 

compiler finishes the compiling the program that is source code 

and generates an object code file. 

•    An object code is the machine language equivalent of source code. 

•     A linker combines the object code to any other object code. 

     This combined code stores in the executable file. 

 

 

 

A Simple Computer- Levels of PL 



• Instruction types 

• Assembly languages instructions are grouped together based 

on the operation they performed. 

• Data transfer instructions 

• Data operational instructions 

• Program control instructions 

• Data transfer instructions 

• Load the data from memory into the microprocessor: These 

instructions copy data from memory into a microprocessor register. 

• Store the data from the microprocessor into the memory: This is 

similar to the load data expect data is copied in the opposite direction 

from a microprocessor register to memory. 

• Move data within the microprocessor: These operations copies data 

from one microprocessor register to another. 

• Input the data to the microprocessor: The microprocessor inputs the 

data from the input devices ex: keyboard in to one of its registers. 

Assembly Language Instructions 



• Data operational instructions 

• Data  operational  instructions  do  modify  their  data  values. 

They typically perform some operations using one or two data values 

(operands) and store result. 

multiply, or divide values fall into this category. An instruction 

that increment or decrement also falls in to this category. 

• Arithmetic instructions make up a large part of data 

operations instructions. Instructions that add, subtract, 

• Logical instructions perform basic logical operations on data. 

They AND, OR, or XOR two data values or complement a single 

value. 

• Shift operations as their name implies shift the bits of a data values 

also comes under this category 

Assembly Language Instructions 



• Program control instructions 

• Program control instructions are used to control the flow of a 

program.    Assembly    language    instructions    may    

include subroutines  like  in  high  level  language  program  

may  have subroutines, procedures, and functions. 

• A jump or branch instructions are generally used to go to 

another part of the program or subroutine. 

Assembly Language Instructions 



Instruction Set Architecture Design 

• Designing of the instructions the most important in designing the 

microprocessor. A poor designed ISA even it is implemented well 

leads to bad micro processor. 

• A well designed instruction set architecture on the other hand can 

result in a powerful processor that can meet variety of needs. 

• In designing ISA the designer must evaluate the tradeoffs in 

performance and such constrains issues as size and cost when 

designing ISA specifications. 

• The issue of completeness of the ISA is one of the criteria in 

designing the processor that means the processor must have complete 

set of instructions to perform the task of the given application. 

• Another criterion is instruction orthogonality. Instructions are 

orthogonal if they do not overlap, or perform the same function. A 

good instruction set minimizes the overlap between instructions. 

 



• Another  area  that  the  designer  can  optimize  the  ISA  is  the 

register set. Registers have a large effect on the performance of  a  

CPU.  The  CPU  Can  store  data  in  its  internal  registers instead  of  

memory.  The  CPU  can  retrieve  data  from  its registers much more 

likely than form the memory. 

• Having too few registers causes a program to make more reference 

to the memory thus reducing performance 

Instruction Set Architecture Design 



• This processor inputting the data from and outputting the data to 

external devices such as microwave ovens keypad and display are 

treated as memory accesses. There are two types of input/output 

interactions that can design a CPU to perform. 

• An isolated I/O input and output devices are treated as being 

separated from memory. Different instructions are used for memory 

and I/O. 

• Memory mapped I/O treats input and output devices as memory 

locations the CPU access these I/O devices using the same 

instructions that it uses to access memory. For relatively simple CPU 

memory mapped I/O is used. 

• There are three registers in ISA of this processor. 

– Accumulator (AC) 

– Register R 

– Zero flag (Z) 

Simple Instruction Set  



Simple Instruction Set  



• The final component is the instruction set architecture for this 

relatively simple CPU is shown in the table above. 

• The LDAC, STAC, JUMP, JMPZ AND JPNZ instructions all require 

a 16-bit memory address represented by the symbol Γ. 

• Since each byte of memory is 8-bit wide these instructions requires 3 

bytes in memory. The first byte contains the opcode for the 

instruction and the remaining 2 bytes for the address. 

Simple Instruction Set  



Relatively Simple Computer 

• In this relatively simple computer Figure 1:11 shown below, we put 

all the hard ware components of the computer together in one system. 

This computer will have 8K ROM starting at address 0 fallowed by 

8K RAM. It also has a memory mapped bidirectional I/O port at 

address 8000H. 

• First let us look at the CPU since it uses 16 bit address labeled A15 

through A0. System bus via pins through D7 to D0. The CPU also 

has the two control lines READ and WRITE. 

• Since it uses the memory mapped I/O it does not need a 

control signal such as . 

• The relatively simple computer is shown in the figure below. It only 

contains the CPU details. Each part will be developed in the design. 

 

 



Figure 1:11: A relatively simple computer: CPU details only 

Relatively Simple Computer 



• To  access  a  memory  chip  the  processor  must  supply  an address 

used by the chip. An 8K memory chip has 213 internal memory 

locations it has 13bit address input to select one of these locations. 

 

• The address input of each chip receives CPU address bits A12 to A0 

from system address bus. The remaining three bits A15, A14, and 

A13 will be used to select one of the memory chips. 

Relatively Simple Computer 



MODULE-II 

ORGANIZATION OF A COMPUTER 



Course Outcomes 

CO 1 Describe Register transfer languages, arithmetic micro 

operations, logic micro operations, shift micro operations 

address sequencing, micro program example, and design 

of control unit. 

CO 2 Classify the functionalities of various micro operations 

such as arithmetic, logic and shift micro operations. 

CO 3 Describe the Control  unit and Control memory 

operations. 

CO 4 Knowledge about address sequencing in Control memory 

CO 5 Explore the micro program example and design of control 

unit 



Contents 

Register transfer:  

• Register transfer language  

• Register transfer 

• Bus and memory transfers 

• Arithmetic micro operations 

• Logic micro operations 

• Shift micro operations 

Control unit:  

• Control memory 

• Address sequencing 

• Micro program example 

• and Design of control unit. 



Register Transfer Language 

• A digital system is a Interconnection of digital hardware modules that 

accomplish a specific information processing task. 

• Digital system uses a modular approach. 

• The modules are  constructed from such as digital components as 

registers ,decoders , arithmetic elements and control logic. 

• The operations are performed on the data in the registers. 

• The operations executed on the data in registers are called micro 

operations. 

• The functions built into registers are examples of micro operations 

– Shift  

– Load  

–  Clear  

–  Increment  ……. 



Register Transfer Language 

• The Micro operation is an elementary operation performed (during 
one clock pulse)on the information stored in one or more registers. 

 

 

 

 

 

 

 

 

 

• R  f(R, R) 

• f:  shift, load, clear, increment, add, subtract, complement, 

      and, or, xor, … 

 

 

ALU 
(f) 

Registers 
(R) 

1 clock cycle 



Register Transfer Language 

• The  internal organization of a computer is Defined as: 

   -  Set of registers and their functions 

  -  Micro operations set  

•  Set of allowable microoperations provided by the organization 

of the computer 

  -  Control signals that initiate the sequence of  micro operations (to 

perform the functions) 

 

 

• The symbolic notation used to describe the micro operation transfers 

among registers is called a register transfer language. 



Register Transfer 

• Registers are designated by capital letters, sometimes followed by 
numbers (e.g., A, R13, IR) 

• Often the names indicate function: 

– MAR - memory address register 

– PC - program counter 

– IR - instruction register 

• Information Transfer from one register to another register is 
designated in symbolic form by using a replacement operator. 

                   R2    R1 

• Registers and their contents can be viewed and represented in various 
ways: 

           -      A register can be viewed as a single entity: 

                    

              

MAR 



Register Transfer 

- Registers may also be represented showing the bits of data they 

contain 

 

 

 

- Numbering of  a registers 

          

             

 

 

 

 

 

 

 

 

Showing individual bits 

7     6     5     4     3     2     1     0 

Numbering of bits 

R2 

15 0 



Register Transfer 

- Portion of register 

    

 

Control Function 

• The actions are performed only when certain conditions are true. 

• This is similar to an “if” statement in a programming language. 

• In digital systems, this is often done via a control signal, called a 

control function . control function  is a Boolean variable. 

– If the signal is 1, the action takes place 

• This is represented as: 

    P: R2  R1 

 

 

Subfields 

15 8 7 0 

PC(H) PC(L) 



Register Transfer 

• Which means “if P = 1, then load the contents of register R1 into 

register R2”, i.e., if (P = 1)  then  (R2  R1). 

• Implementation of controlled transfer  

            P:  R2  R1 

               

                   

 

 

                              Fig: Block Diagram 

Clock R2 

R1 

Control Circuit 

 

 

Load P 

n 



Register Transfer 

• The same clock controls the circuits that generate the control function   

and the destination register. 

 

 

 

 

                     

                                    Fig :Timing Diagram 

 

Transfer occurs here 

Clock 

Load 

t t+1 



Register Transfer 

• If two or more operations are to occur simultaneously, they are 

separated with commas 

 

P:  R3  R5,MAR  IR  

 

• Here, if the control function P = 1, load the contents of R5 into R3, 

and at the same time (clock), load the contents of register IR into 

register MAR 

• Basic Symbols Used for Register Transfer is   

   -   Letters and Numerals to denote a registers. Ex:  MAR,IR,R2 . 

   -   Parentheses ( ) to denote a part of a register . Ex:  R2(0-7),R2(L). 

   -   Arrow             to denote transfer of Information. Ex: R2      R1 

   -  Comma  ,    Separates two micro operations . Ex:  R2 R1,R3R4 



• In a digital system with many registers, it is impractical to have data 

and control lines to directly allow each register to be loaded with the 

contents of every possible other registers 

 

• To completely connect n registers  n(n-1) lines 

• O(n2) cost 

– This is not a realistic approach to use in a large digital system 

 

• Instead, take a different approach 

• Have one centralized set of circuits for data transfer – the bus 

• Have control circuits to select which register is the source, and which 

is the destination 

Bus Transfer 



Bus Transfer 

•  Bus is a path(of a group of wires) over which information is 

   transferred, from any of several sources to any of several destinations. 

•  One way to construct a common bus system is by using multiplexers. 

•  The multiplexer select  the source register whose binary information is   

    then placed into the bus. 

•   To transfer data  from   R1C.   i.e  BUSC   ,  R1BUS 

 

 
 

 
 
 
 
 
 
 

Register A Register B Register C Register D 

Bus lines 



Bus Transfer 



Bus Transfer 

S1 S2 Register Selected 

0 0 A 

0 1 B 

1 0 C 

1 1 D 
Function Table For Bus 

Fig : Transfer From Bus to Destination Register 



Three State Bus Buffers 

• A bus system can be implemented with three state gates instead of 

multiplexers. 

• A three state gate is a digital circuit that exhibits three states. 

• Two sates are normal signal states 1 and 0.The third state is a high 

impedance state. 

• High impedance state behaves like an open circuit that means the out 

put is  open . 

 

 

 

 

                               

                            Fig:  Graphic Symbol for Three State buffer 



Three State Bus Buffers 

 

 

 

 

 

 
                   Fig : Bus Line with three state –Buffer 

• To Construct  a Common bus for four registers of n bits each using 

three state-bus buffer, we need n circuits with four buffers. 



Memory Transfer 

• The transfer of information from memory word to the outside 

environment is called Memory read operation. 

• The transfer of new information to be stored into the memory is called 

memory write operation. 

• Memory word is symbolically represented by using letter M. 

            

                   Read : DR M[AR] 

                   Write : M[AR]R1 

  

 



SUMMARY OF R. TRANSFER MICROOPERATIONS 

A  B                 Transfer content of reg. B into reg. A 
AR  DR(AD)       Transfer content of AD portion of reg. DR into reg. AR 
A   constant        Transfer a binary constant into reg. A 
ABUS  R1,          Transfer content of R1 into bus A and, at the same time,  
R2  ABUS           transfer content of bus A into R2                 
AR            Address register 
DR            Data register 
M[R]                       Memory word specified by reg. R 
M                       Equivalent to M[AR] 
DR   M       Memory read operation: transfers content of 
                                      memory word specified by AR into DR 
M   DR      Memory write operation: transfers content of 
                                       DR into memory word specified by AR 



Micro Operations 

• Micro operation is an elementary operation performed with the data 

stored in registers. 

• Computer system micro operations are of four types: 

            1. Register transfer micro operations 

            2. Arithmetic micro operations 

            3. Logic micro operations 

            4. Shift micro operations 

 

• In register transfer micro operations the contents of the register can 
not be altered when transfer the data from the source to destination. 

• The remaining three micro operations alter the data when transfer the 
data from one place to another. 

 

 

 

 



Micro Operations 

Arithmetic Micro Operations 
• The basic arithmetic micro operations are addition , subtraction , 

increment , decrement  and shift operations. 

• R1R2+R3   this micro operation specifies an add operation . 

• It states that the contents of register R2 and R3 are added and result 

stored into register R1. 

• R1R2+R3+1(R2-R3) this micro operation specifies a subtract 

operation . 

• The subtract operation is implemented through complementation and 

addition. 

 



Micro Operations 

Arithmetic Micro Operations 

                      Basic Arithmetic Micro Operations 

 



Micro Operations 

Binary Adder 
• Basic hardware required to implement add operation is registers and 

digital component that perform add operation. 

• The digital circuit that forms the arithmetic sum of two bits and 

previous carry is called a full adder. 

• The digital circuit that generates the arithmetic sum of two binary 

numbers of any length is called a binary adder. 

• The binary adder is constructed with full adder circuits connected in 

cascade , with the out put carry from one full adder connected to the 

input carry of the next full adder. 

• An n bit binary adder requires n full adders. 

• The output carry from each full adder is connected to the input carry 

of the next-higher –order full adder. 



Micro Operations 

Binary Adder 

 

 

 

 

 

 

 

                               Fig:  4-bit binary adder 

 

 



Binary Adder- Sub tractor 

• The Subtraction of A-B can be done by taking the 2‟s Complement of 
B and adding it to A. 

• The addition and subtraction can be implemented by one common 
circuit by including an exclusive –OR gate with each full adder. 

 

 

 

 

 

 

 

 Fig: 4-bit Adder- subtractor 

  



Binary Adder- Sub tractor 

• Here the mode input M controls the operation. 

• When M=0 the circuit works like  an adder and M=1 the circuit works 
like a subtractor . 

• Each exclusive-OR gate receives input M and one of the inputs of B. 

• When M=0 the operation specifies B     0=B. 

• The full-adder receives the value of B ,the input carry is 0 ,and the 
circuit performs A plus B. 

• When M=1 the operation specifies B    1=B‟ and C0=1. 

• The B inputs are all complemented and 1 is added through the input 
carry .  

• Then the circuit performs operation A +2‟s Complement of B. 

• Unsigned Numbers it gives A-B if A>=B or the 2‟s complement of (B-
A)if A<B. 

• Signed Numbers the result is A-B provided that there is no overflow. 

 



Binary Incrementer 

• The increment micro operation adds one to a number in a register. 

• This is implemented by using a binary counter. 

• The binary counter is implemented by using half adders connected in 

cascade. 

 

 

 

 

 

 

 

                          Fig : 4- bit binary Incrementer 
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Binary Incrementer 

 

• One of the inputs to the least significant half adder (HA)is connected 

to logic-1 and the other input is connected to the least significant bit of 

the number to be incremented. 

• The output carry from one half adder is connected to one of the inputs 

of the next-higher-order half adder. 

• The generated out is displayed in s0 through s3. 

• The above circuit can be implemented to an n-bit binary incermenter 

by including n-half adders. 

 

 

 



Arithmetic Circuit 

• The arithmetic operation can be implemented by using single 

composite arithmetic circuit. 

• The basic component of an arithmetic circuit is parallel adder. By 

controlling the input of the parallel adder we obtain the different types 

of arithmetic operations. 

• In a 4-bit Arithmetic circuit it contains 4 full adders and four 

multiplexers to choose different operations. 

• There are two 4-bit inputs A and B and a 4-bit output D. 

• The four Inputs From A directly connected to Adder and the B input is 

given to input of Multiplexers. 

• The multiplexers data also receives the complement of B . 

• The remaining two data inputs are connected to the Logic-0 and 1. 

• The four multiplexers are controlled by two selection inputs , S1 and 

S0. 

 



Arithmetic Circuit  
 
 
 
 
 
 
 
 
                                         
 

 

 

 

 

 

 Fig: 4-bit Arithmetic circuit 

 
 
 
 
 
 
 
 
 
 
 



Arithmetic Circuit 

 

• The input carry Cin goes to the carry input of the FA in the least 
significant position . 

• The other carries a connected from one stage to the next. 

• The output of the Binary Adder is calculated by using Arithmetic sum 

             D= A+Y+Cin 

      here A is 4-bit Binary number at X inputs. 

              Y is 4-bit binary number at Y inputs of the binary adder. 

              Cin is the input carry. 

• In the above equation by controlling the value of Y with two control 
inputs S1 and S0 and making the Cin 1 or 0 the above circuit performs 
all the arithmetic operations. 

              

    



Arithmetic Circuit 
 

 

 

 

 

 

 

 

                  
                     

   Table : Arithmetic Circuit Function table 



Logic Micro operations  

• Logic micro operations specify the operations for strings of bits stored 

in registers. 

• Logic microoperations are bit-wise operations, i.e., they work on the 

individual bits of data. 

• The logic microoperation exclusive-OR with the contents of two 

registers R1 and R2 is symbolized by the statement: 

           P : R1 R1      R2 

 

        Ex:     R1=1010            R2=1100 

                   if P=1  then      

                      1010  =R1 

                      1100  =R2 

                      0110  =R1 after P=1 

 



Logic Micro operations  



Logic Micro operations  



Logic Micro operations  

•     Special Symbols used for logic microoperations OR , 

AND and Complement. 

     OR  =  V  , AND = ^   and Complement =   ___ 

 

•    The main aim of adopting two sets of symbols is to 

differentiate between logic microoperations and control 

(Boolean)functions. 

 

•           P+Q : R1R2+R3 , R4  R5 V R6 

    In the above statement + symbol performs OR operation 

between P and Q .It performs arithmetic addition between 

R2 and R3 . 

 

 



Logic Micro operations  

List Of Logic Microoperations 

• There are 16 different microoperations that can be 

performed with two binary operations. 

• Most of the systems implement four of these ^,V,__ and    .  

 

 

 

 

 

 

   Table :Truth Table for 16 functions of Two Variables 

 

X Y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 



Logic Micro operations  

 

 

 

 

 

 

 

 

                           
Table : 16 Microoperations 



Logic Micro operations 

Hardware Implementation 
• To implement these microoperations it uses Logic gates. 

• Most of the computers implement only four functions like AND , OR, 

NOT and XOR . 

 

 

 

 

 

 

 

 

 



Logic Microoperations 

Applications 
• Logic microoperations can be used to manipulate individual bits or a 

portions of a word in a register 

• Consider the data in a register A. In another register, B, is bit data that 

will be used to modify the contents of A 

 

– Selective-set                       A  A + B 

– Selective-complement              A  A  B  

– Selective-clear               A  A • B‟  

– Mask (Delete)    A  A • B 

– Clear     A  A  B 

– Insert     A  (A • B) + C 

– Compare    A  A  B 

 



Logic Micro operations 

Selective-Set 
• The Selective-Set Operation sets to 1 the bits in register A where there 

are corresponding 1‟s in Register B. 

• It does Not affect bit positions that have 0 in B. 

                    1 1 0 0 A( before) 

   1 0 1 0 B(logic operand) 

   1 1 1 0 A (after)  (A  A + B) 

 

• The OR microoperation can be used to selective set bits of a Register. 

 

 



Logic Micro operations 

Selective-Complement 
• The selective-complement operation complements bits in register A 

where there are corresponding 1‟s in B.  

• It does not affect the bit positions that have 0‟s in B. 

 

                           1 0 1 0 A  (A before) 

   1 1 0 0 B  (Logic Operand) 

   0 1 1 0 A  ( A after)  (A  A  B) 

• The exclusive microoperation can be used to selectively complement 

bits of register. 



Logic Micro operations 

Selective-Clear 

• The Selective-clear operation clears to0 the bits in A 

only where there are corresponding 1‟s in B . 

                  1 1 0 0 A  ( A before) 

   1 0 1 0 B  ( Logical Operand) 

   0 1 0 0 A  (A  A ^B‟) 

 

• The Boolean operation performed on the individual 

bits in AB‟.  



Logic Micro operations 

Mask 
• The Mask operation is similar to the selective-clear operation except 

that the bits of A are cleared only where there are corresponding 0‟s in 

B. 

• The mask operation is similar to an AND microoperation. 

                        1 1 0 0 A  (Before) 

   1 0 1 0 B   (Logical Operand) 

   1 0 0 0 A  (A  A  B) 

 



Logic Microoperations 

Insert  
• An insert operation is used to introduce a specific bit pattern into A register, leaving 

the other bit positions unchanged 

• This is done as 

– A mask operation to clear the desired bit positions, followed by 

– An OR operation to introduce the new bits into the desired positions 

Example 

– Suppose you wanted to introduce 1010 into the low order four bits of A:                         

1101 1000 1011 0001 A (Original)                                     

1101 1000 1011 1010 A (Desired) 

  1101 1000 1011 0001  A (Original) 

 1111 1111 1111 0000  Mask 

 1101 1000 1011 0000  A (Intermediate) 

 0000 0000 0000 1010  Added bits 

 1101 1000 1011 1010  A (Desired) 

 



Logic Microoperations 

Clear 
• The Clear operation compares the words in A and B and produces an 

all 0‟s result if the two numbers are equal. 

• This operation is achieved by exclusive-OR operation. 

 

                        1 1 0 0 A  (Before) 

   1 1 0 0 B   (Logic Operand) 

   0 0 0 0 A  (A  A  B) 

 

 



Shift Microoperations 

• Shift  micro  operations  are  used  for  serial  transfer  of  data. 

They are also used in conjunction with arithmetic, logic, and 

other data-processing operations. 

• The    information    transferred    through    the    serial    input 

determines the type of shift. There are three types of shifts: 

logical, circular, and arithmetic. 

• A logical shift is one that transfers 0 through the serial input. 

We will adopt the symbols SHL and SHR for logical shift-left 

and shift-right micro operations. For example: 

• 

• 

• 

R1 SHL R1 

R2 SHR R2 



Shift Microoperations 



Shift Microoperations 



Shift Microoperations 

• The contents of a register can be shifted to right or left. 

 

 

 

 

 

 

 

 

 

 



Shift Microoperations 

• The information transferred through the serial input determines the 
type of shift. 

• There are three types of shifts 

– Logical shift 

– Circular shift 

– Arithmetic shift 

Logical Shift Microoperations 
• In a logical shift the serial input to the shift is a 0. 

 

 

 

                        

                            Fig   : Right Logical Shift Operation                   

 

 

 

 



Shift Microoperations 

 

                    

                 

                    Fig: Left logical shift Microoperation 

• Notations used to denote logical shift microoperations are: 

        shl  ----> for logical shift left 

        shr ----> For logical shift right 

   Examples : 

                      R2  shl R2 

                      R3  shr R3  



Shift Microoperations 

• In a circular shift the serial input is the bit that is shifted out of the 
other end of the register. 

• A right circular shift operation: 
 
 
 

• A left circular shift operation: 
 

 
 
 

• In a RTL, the following notation is used 

– cil   for a circular shift left 

– cir for a circular shift right  

– Examples: 

• R2  cir R2 

• R3  cil R3 

 



Shift Microoperations 

Arithmetic Shift 

• An arithmetic shift is meant for signed binary numbers (integer) 

• An arithmetic left shift multiplies a signed number by two 

• An arithmetic right shift divides a signed number by two 

• The main distinction of an arithmetic shift is that it must keep the sign 

of the number the same as it performs the multiplication or division 

• A right arithmetic shift operation: 

 

 

 

• A left arithmetic shift operation: 0 

sign 

bit 

sign 

bit 



Shift Microoperations 

• An left arithmetic shift operation must be checked for the overflow 

 

 

 

 

 

 

 

• In a RTL, the following notation is used 

– ashl   for an arithmetic shift left 

– ashr for an arithmetic shift right  

– Examples: 

» R2  ashr R2 

» R3  ashl R3 

 

0 

V 
Before the shift, if the leftmost two 

bits differ, the shift will result in an 

overflow 

sign 

bit 



Hardware Implementation 

4-bit Combinational Shifter 



Hardware Implementation 

 

 

 

 

 

                       

  Table : Function Table 

• When S=1 the input data is shifted to left 

• When s=0 the input data is shifted to right. 

 



Arithmetic Logic Shift Unit 

• All the three operations are implemented with a single circuit. 

 

 

 

 

 

 

 

 

 

 

 

•                               Fig:One stage of ALS Unit 



Arithmetic Logic Shift Unit 
 

 

 

 

 

 

 

 

                   

  Function Table for Arithmetic Logic shift unit 



Control Memory 
 

• Major Components of a digital system are CPU , Memory and I/O 

Devices. 

• The major digital components of CPU are CU ,ALU and Registers. 

• The function of control unit is to initiate sequence of micro 

operations. 

• There are two ways to implement control unit: 

 1. Hardwired Control unit 

 2. Micro programmed Control Unit 

 

 

 



Control Memory 

Hardwired Control unit: 

• When the control signals are generated by hardware using conventional 

logic design techniques then it is called hardwired control unit. 

• Hardwired control implemented with fixed instructions , fixed logic blocks 

of arrays , encoders , decoders etc. 

• The characteristics of Hardwired control logic are high speed operation , 

expensive , relatively  complex  and no flexibility to add new instructions. 

Micro programmed CU: 

• The main principle of microprogramming is an elegant and systematic 

method for controlling the micro operation sequence in a digital 

computer. 

• Micro programmed control unit contains variable number of 

instructions. 

• Easy to implement and add new instructions. 



Control Memory 

• The Control variable at any given time can be represented by a string 

of 1‟s and 0‟s called a Control Word. 

• Microprogram 

   - Program stored in memory that generates all the control signals 

      required  to execute the instruction set correctly. 

    - Consists of microinstructions . 

• Microinstruction 

   - It Specifies one or more micro operations for the system. 

    - Contains a control word and a sequencing word . 

    - Control Word - All the control information required for one clock     
cycle  

    - Sequencing Word - Information needed to decide  the next 
microinstruction address . 

• Control Memory. 

-Storage in the microprogrammed control unit to store the microprogram. 



Control Memory 
• Writeable Control Memory(Writeable Control Storage:WCS) 

   - CS whose contents can be modified 

     - Allows the microprogram can be changed 

     - Instruction set can be changed or modified .   

• Dynamic Microprogramming  

     - Computer system whose control unit is implemented with  a 

        microprogram in WCS . 

     - Microprogram can be changed by a systems programmer or a user  . 

• Sequencer (Microprogram Sequencer) 

 - A Microprogram Control Unit that determines the Microinstruction 
Address to be executed in the next clock cycle . 

 



Control Memory 

- In-line Sequencing 

- Branch 

- Conditional Branch  

- Subroutine 

- Loop 

- Instruction OP-code mapping 

 

 

 

 

 

 

 

                        Fig : Microprogrammed Control  Unit 

 

 

 

 

 

 



Address Sequencing 

• Microinstructions are stored in control memory in groups, 

with each group specifying a routine. 

 

• Each computer instruction has its own micro program routine 

in  control  memory  to  generate  the  micro  operations  that 

execute the instruction. 

 

• The  hardware  that  controls  the  address  sequencing  of  the 

control   memory   must   be   capable   of   sequencing   the 

microinstructions within a routine and be able to branch from 

one routine to another. 



• This address is usually the address of the first microinstruction 

that activates the instruction fetch routine. 

 

• The  fetch  routine  may  be  sequenced  by  incrementing  the control     

address     register     through     the     rest     of     its 

microinstructions. 

 

• At the end of the fetch routine, the

 instruction is in the instruction register of the computer 

Address Sequencing 



The address sequencing capabilities required in a control 

memory are: 

 

• 1. Incrementing of the control address register. 

 

• 2. Unconditional branch or conditional branch, depending on 

status bit conditions. 

 

• 3. A mapping process from the bits of the instruction to an 

address for control memory 

Address Sequencing 



Address Sequencing 



Address Sequencing 



• Subroutines 

• Subroutines are programs that are used by other routines to 

accomplish a particular task. A subroutine can be called from 

any point within the main body of the micro program. 

• Frequently, many micro programs contain identical sections of 

code.    Microinstructions    can    be    saved    by    employing 

subroutines that use common sections of microcode. 

• For  example,  the  sequence  of  microoperations  needed  to 

generate   the   effective   address   of   the   operand   for   an 

instruction is common to all memory reference instructions. 

Address Sequencing 



• This sequence could be a subroutine that is called from within 

many   other   routines   to   execute   the   effective   address 

computation. 

 

• Micro programs that use  subroutines  must  have  a provision 

for  storing  the  return  address  during  a  subroutine  call  and 

restoring the address during a subroutine return. 

Address Sequencing 



Address Sequencing 



Micro program Example 

• A micro program sequencer can be constructed with digital 

     functions to suit a particular application. 

 

• To guarantee a wide range of acceptability, an integrated circuit 

sequencer must provide an internal organization that can be adapted to 

a wide range of applications. 

 

• The control memory is included in the diagram to show the interaction 

between the sequencer and the memory attached to it. 

• The binary values of the two selection variables

 determine the path in the multiplexer. 

 

• For example, with S1, So = 10, multiplexer input number 2 is selected  

and  establishes  a  transfer  path  from  SBR  to  CAR. Note  that  each  

of  the  four  inputs  as  well  as  the  output  of MUX 1 contains a 7-bit 

address. 

 



Micro program Example 



Design of Control Unit 

• The bits of the microinstruction are usually divided into fields, 

with each field defining a distinct, separate function. 

 
• The various fields encountered in instruction formats provide control 

bits to initiate microoperations in the system, special bits  to  specify  

the  way  that  the  next  address  is  to  be evaluated, and an address 

field for branching. 

 
• The number of control bits that initiate microoperations can be  

reduced  by  grouping  mutually  exclusive  variables  into fields  and  

encoding  the  k  bits  in  each  field  to  provide  2' microoperations. 



• Figure 2.18 shows the three decoders and some of the 

      connections that must be made from their outputs. 

 

• Each  of  the  three  fields  of  the  microinstruction  presently 

available in the output of control memory are decoded with a 

3 x 8 decoder to provide eight outputs. 

 

• As shown in Figure 2.18 outputs 5 and 6 of decoder f1 are 

connected to the load input of AR so that when either one of 

these outputs is active, information from the multiplexers is 

transferred to AR. 

Design of Control Unit 



Design of Control Unit 



• The   multiplexers   select   the   information   from   DR   

when output 5 is active and from PC when output 5 is inactive, 

as shown in Figure 2.18. The other outputs of the decoders that 

are associated with an AC operation must also be connected to 

the arithmetic logic shift unit in a similar fashion. 

Design of Control Unit 



Design of Control Unit 



Design of Control Unit 

• A microprogram sequencer can be constructed with

 digital Functions to suit a particular application. 

• However,  just  as  there  are  large  ROM  units  available  in 

 

 

     control units. 

• To  guarantee  a  wide  range  of  acceptability,  an  integrated 

circuit sequencer  must provide an internal organization that 

can be adapted to a wide range of applications. 

• The block diagram of the microprogram sequencer is shown in 

     Fig. 

integrated circuit packages, so are general-purpose 

sequencers suited for the construction of microprogram 



• The control memory is included in the diagram to show the 

interaction between the sequencer and the memory attached to 

it. 

 
• There are two multiplexers in the circuit. The first multiplexer 

selects an address from one of four sources and routes it into a 

control address register CAR . 

Design of Control Unit 



Design of Control Unit 



• The input logic circuit in Fig. has three inputs, l0, l1, and T, 

and three outputs, S0, S1, and L.Variables So and S, select one 

of the source addresses for CAR . 

• Variable L enables the load input in SBR. The binary values of 

the   two   selection   variables   determine   the   path   in   the 

multiplexer. 

• For example, with S1 So = 10, multiplexer input number 2 is 

selected  and  establishes  a  transfer  path  from  SBR  to  

CAR. Note  that  each  of  the  four  inputs  as  well  as  the  

output  of MUX 1 contains a 7-bit address. 

Design of Control Unit 



MODULE-III 

CPU AND COMPUTER ARITHMETIC 



Course Outcomes 

CO 1 Understand the Instruction cycles and data 

representation in  CPU design . 

CO 2 Classify the input-output and interrupt, addressing 

modes. 

CO 3 Describe the data transfer and manipulation and 

program control in CPU design . 

CO 4 Knowledge about Addition and subtraction and  floating 

point arithmetic operations in Computer arithmetic. 

CO 5 Understand the decimal arithmetic unit Computer 

arithmetic. 



Contents 

CPU design:  

• Instruction cycle 

• Data representation 

• Memory reference instructions 

• Input-output and interrupt 

• Addressing modes 

• Data transfer and manipulation 

• Program control.  

Computer arithmetic:  

• Addition and subtraction 

• Floating point arithmetic operations 

• Decimal arithmetic unit. 



Instruction Cycle 
 

• Each program is a sequence of instructions. 

• The basic computer system each instruction is subdivided into  Four 

phases: 

    1. Fetch an Instruction from memory. 

    2. Decode the Instruction. 

    3. Read the effective address from the memory if 

        the instruction has an indirect address. 

    4. Execute the Instruction.  

• The above process continues indefinitely unless a HALT instruction is 

encountered. 



Instruction Cycle 

Fetch and Decode 

• Initially the program counter PC is loaded with the address 

of the first instruction. 

 

 



Instruction Cycle 

 

 

 

 

 

 

 

 

 

                  Fig: Register Transfer for the fetch phase 



Instruction Cycle 

• In the above diagram shows the transfer of first two statements(T0 

and T1). 

• When timing signal T0=1then  

 1.  Place the contents of PC onto the bus by making the bus selection 

inputs S2S1S0 equal to 010. 

 2. Transfer the contents of the bus to AR by enabling the LD input of 

AR. 

• When timing signal T1=1 then 

 1. Enable the read input of memory. 

 2. Place the contents of Memory onto the bus by making S2S1S0=111. 

 3. Transfer the contents of the bus to IR by enabling the LD input of IR. 

 4. Increment PC by enabling the INR input of PC. 



Instruction Cycle 

Determine the Type of Instruction 

• After executing the timing signal T1 the control unit determines the 

type of instruction that is read from memory. 

• If D7=1 and the instruction must be a register-reference or input-out 

type. 

• If D7=0 the operation code must be one of the other seven values 000 

through 110 specifying a memory –reference Instruction. 

• The symbolic representation is : 

 
                           D'7IT3 : AR M[AR] 
                           D'7I'T3 : Nothing 
                           D7I'T3 : Execute a register-reference instr. 
                           D7IT3  :  Execute an input-output instr. 

 

 

 



Instruction Cycle 

 

 

 

 

 

 

 

 

 

      Fig : Flowchart for Instruction Cycle 



Register Reference Instructions 

• If D7=1 and I=0 then the instruction is recognized as register 

reference instruction. 

• Register reference instructions use bits 0 to 11 of the instruction code 

to specify on of the 12 instructions.These bits are available in IR(0-

11). 

 



Memory-Reference Instructions 

 

 

 

 

 

 

             Table : Memory-Reference Instructions 

• The effective address of the instruction is in AR and was placed there 

during timing signal T2 when I = 0, or during timing signal T3 when I 

= 1. 

• The execution of MR instruction starts with T4 

 

 

 

 

 



Memory-Reference Instructions 

• AND to AC 

 D0T4: DR  M[AR]    Read operand 

 D0T5: AC  AC  DR, SC  0  AND with AC 

 

• ADD to AC 

 D1T4: DR  M[AR]    Read operand 

 D1T5: AC  AC + DR, E  Cout, SC  0  Add to AC and store 

                                                                                carry in E 

• LDA: Load to AC 

         D2T4     : DR  M[AR] 

         D2T5     : AC  DR, SC  0 

• STA: Store AC 

          D3T4    : M[AR]  AC, SC  0 

 

 



Memory-Reference Instructions 

• BUN: Branch Unconditionally 

     D4T4: PC  AR, SC  0 

• BSA: Branch and Save Return Address 

  M[AR]  PC, PC  AR + 1 

 

 

 

 

 

 

 

 

                             Fig:  BSA Instruction Execution 

 



Memory-Reference Instructions 

• BSA:  

        D5T4: M[AR]  PC,  AR  AR + 1 

        D5T5: PC  AR, SC  0 

• ISZ: Increment and Skip-if-Zero 

       D6T4: DR  M[AR] 

       D6T5: DR  DR + 1 

       D6T4: M[AR]  DR,  if (DR = 0) then (PC  PC + 1),  SC  0 

 

 

 



Memory-Reference Instructions 
 

 

 

 

 

 

 

 

 
     

 Fig: Flowchart for Memory Reference Instructions 

 



Decimal Number System 

–  The decimal number system in every day use employs the radix     

     10 system. 

–  The 10 symbols are 0,1,2,3,4,5,6,7,8 and 9. 

–  The string of digits 834.5 is interpreted as: 

     8X102 + 3X101 + 4X100+5X10-1    =834.5 

 

Binary Number System 

– Binary number system uses the radix 2. 

– The  two digit symbols used are 0 and 1. 

– The string of symbols 1001 is interpreted as: 

     1 x 23 + 0 x 22 + 0 x 21 + 1 x 20    =8+0+0+1=9 

Data  Representation 



Octal Number System 

– Octal Number System uses radix 8. 

– The Symbols used to represent the octal number system is 

0,1,2,3,4,5,6  and 7. 

– The octal number is converted into decimal number system by 

forming the sum of the weighted digits. 

    Ex: 

       (736.4) 8=  ? 

                     = 7 x 82 + 3 x 81 + 6 x 80 +4 x 8-1 

                                = 7 x 64 + 3 x 8 + 6 x 1 + 4/8 =(478.5)10 
                                

 

 

 

Data  Representation 



Hexadecimal Number System 

– The hexadecimal number system uses radix 16. 

– The symbols used to represent the hexadecimal number  system is 

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F. 

– The hexadecimal number is converted into decimal number system 

by forming the sum of the weighted digits. 

    Ex: 

       (F3)16   =    ? 

                   = F x 161 + 3 x160  

                   = 15 x 16 + 3=(243)10 

 

 

 

Data  Representation 



Decimal to Other Number Systems 

 

• Conversion from decimal to its equivalent representation in the radix  

r system is carried our by separating the number into its integer part 

and fraction part and converting each part separately. 

 

• The conversion of a decimal integer into a base r representation is 

done by successive divisions by r and accumulation of the reminders. 

 

• The conversion of a decimal fraction to radix r representation is 

accomplished by successive multiplication by r and accumulation of 

the integer digits obtained. 
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Decimal to Binary  Conversion: 

   Ex:        (41.6875) 10  =(101001.1011)2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

                                                                     

 

Integer = 41 

41 

20   1 

10   0 

  5   0 

  2   1 

  1   0 

  0   1 

Fraction = 0.6875 

0.6875 

x       2 

1.3750 

x       2 

0.7500 

x       2 

1.5000 

 x      2 

1.0000 
(41)10    = (101001)2                                   (0.6875)10    = (0.1011)2 

Data  Representation 



Binary to Octal and Hexadecimal Conversion 

 
• Each octal digit corresponds to three binary numbers i.e 8=23. 

• Each hexadecimal digit corresponds to four binary numbers i.e 16=24. 

 

 

 

 

 

BCD: 

– BCD is used to represent the decimal numbers system to binary 

number system 

      

Binary, octal, and hexadecimal conversion 

1  0  1  0  1  1  1  1  0  1  1  0  0  0  1  1 

1      2          7          5          4          3 

A              F               6                  3 

Octal 

Binary 

Hexa 



Complement  Of  Numbers 

Two types of complements for base R number system:   

                1) (R-1)'s complement 

                2) R's complement 

 

1) The (R-1)'s Complement   

      -  Number N in base r having n digits (r-1)‟s complement is    defined  
as (rn -1) – N.    

      -   Subtract each digit of a number from (R-1) 

Example   

      - 9's complement of 83510 is 16410  

  - 1's complement of 10102 is 01012(bit by bit complement   operation) 

 

 

 

 

 

 

 



 

2) The R's Complement  

     - The r‟s complement of an n-digit number N in base r is defined as 
rn-N for N is not 0. 

     - Add 1 to the low-order digit of its (R-1)'s complement 

 

Example 

      - 10's complement of 83510 is 16410 + 1 = 16510 

      - 2's complement of 10102 is 01012 + 1 = 01102 

 

Complement  Of  Numbers 



Input-Output and Interrupt 
 

• A Terminal with a keyboard and a Printer. 

 

 

 

 

 

 

 

             

                               

 

  Fig: Input-Output Configuration 

 

 

 



Input-Output and Interrupt 
 

• The terminal sends and receives serial information. 

 

• The serial info. from the keyboard is shifted into INPR . 

 

• The serial info. for the printer is stored in the OUTR. 

 

• INPR and OUTR communicate with the terminal serially 
and with the AC in parallel. 

 

• The flags are needed to synchronize the timing difference 
between  I/O device and the computer. 

 



Input-Output and Interrupt 
 

 

 

 

 

 

 

 

 

                         

 Fig: Input-Output Instruction 



• The way that the interrupt is handled by the computer can be 

explained by means of the flowchart of Fig. An interrupt flip-flop R is 

included in the computer. When R = 0, the computer goes through an 

instruction cycle. During the execute phase of the instruction cycle 

IEN is checked by the control. If it is 0, it indicates that the 

programmer does not want to use the interrupt, so control continues 

with the next instruction cycle.  

• If IEN is 1, control checks the flag bits. If both flags are 0, it indicates 

that neither the input nor the output registers are ready for transfer of 

information. In this case, control continues with the next instruction 

cycle. If either flag is set to 1 while IEN = 1, flip-flop R is set to 1. At 

the end of the execute phase, control checks the value of R, and if it is 

equal to 1, it goes to an interrupt cycle instead of an instruction cycle. 

 

Program Interrupt  



Program Interrupt 

 

 

 

 

 

 

 

 

 

                       

 Fig: Flow chart for Interrupt Cycle 



• An example that shows what happens during the interrupt cycle is 

shown in Fig. Suppose that an interrupt occurs and R is set to 1 while 

the control is executing the instruction at address 255. At this time, 

the return address 256 is in PC. The programmer has previously 

placed an input-output service program in memory starting from 

address 1120 and a BUN 1120 instruction at address 1. This is shown 

in Fig(a). 

• When control reaches timing signal T0 and finds that R = 1, it 

proceeds with the interrupt cycle. The content of PC (256) is stored in 

memory location 0, PC is set to 1, and R is cleared to 0. At the 

beginning of the next instruction cycle, the instruction that is read 

from memory is in address 1 since this is the content of PC. The 

branch instruction at address 1 causes the program to transfer to the 

input-output service program at address 1120.  

Program Interrupt  



 

 

 

• Figure: Demonstration of the interrupt cycle 

This program checks the flags, determines which flag is set, and then 

transfers the required input or output information. One this is done, the 

instruction ION is executed to set IEN to 1 (to enable further interrupts), and 

the program returns to the location where it was interrupted. This is shown 

in Fig. (b). 

 

Program Interrupt  



Addressing Modes 

• The way the operands are chosen during program execution  is  
dependent on the addressing mode of the instruction .                  

 

• Specifies a rule for interpreting or modifying the address field of the  

      instruction (before the operand  is actually referenced). 

  

Need for different  addressing modes  
 

 1. To give programming flexibility to the user i.e pointers to  memory,  

     Counters for loop control,indexing of data,program                    

     relocation.  

 2. To use the bits in the address field of the  instruction efficiently  i.e  

      reduce the number of bits. 



1.Implied Mode 

• Address of the operands are specified implicitly  in the definition of 

the instruction. 

•  No need to specify address in the instruction. 

•  EA = AC, or EA = Stack[SP]. 

•  Examples     CLA, CME, INP 

 

2. Immediate Mode 

• Instead of specifying the address of the operand,operand itself is 

specified. 

• No need to specify address in the instruction 

• Operand itself needs to be specified 

• Fast to acquire an operand 

 

Addressing Modes 



3.Register Mode 

–  Address specified in the instruction is the register address 

–  Designated operand need to be in a register 

–  Shorter address than the memory address 

–  Saving address field in the instruction 

–  Faster to acquire an operand than the memory addressing 

–  EA = IR(R)  (IR(R): Register field of IR) 

4.Register Indirect Mode 

– Instruction specifies a register which contains the memory address of the 

operand . 

– Saving instruction bits since register address is shorter than the memory 

address. 

– Slower to acquire an operand than both the register addressing or 

memory addressing. 

– EA = [IR(R)] ([x]: Content of x). 

Addressing Modes 



4.Autoincrement or Auto decrement Mode 

• When the address in the register is used to access memory, the value 

in the register is incremented or decremented by 1  automatically . 

 

5.Relative Addressing Modes 

• The Address fields of an instruction specifies the part of the address 

(abbreviated address) which can be used along with a designated 

register to calculate the address of the operand. 

• Address field of the instruction is short. 

• Large physical memory can be accessed with a small number of 

address bits. 

• EA = f(IR(address), R) 

 

Addressing Modes 



 

• 3 Different Relative Addressing Modes depending on R; 

      1. PC Relative Addressing Mode (R = PC) 

               Ex:  EA = PC + IR(address) 

      2. Indexed Addressing Mode (R = IX, where IX: Index Register) 

               Ex: EA = IX + IR(address) 

      3. Base Register Addressing Mode 

  (R = BAR, where BAR: Base Address Register) 

                Ex: EA = BAR + IR(address) 

 

Addressing Modes 



6. Direct Address Mode 

– Instruction specifies the memory address which can be used directly to 

access the memory. 

– Faster than the other memory addressing modes. 

– Too many bits are needed to specify the address for a large physical 

memory space. 

–  EA = IR(addr) (IR(addr): address field of IR) 

7. Indirect Addressing Mode 

– The address field of an instruction specifies the address of a memory 

location that contains the address of the operand. 

– When the abbreviated address is used large physical memory can be 

addressed with a relatively small number of bits. 

– Slow to acquire an operand because of an additional memory access 

–  EA = M[IR(address)] 

 

Addressing Modes 



Example : 

Addressing Modes 



Data Transfer and Manipulation Instructions 

• Computer instructions can be classified into three categories. 

  1. Data Transfer Instructions 

  2. Data Manipulation Instructions 

  3. Program Control Instructions 

• Data Transfer Instructions transfer the data from one location to 

another location. 

• Data manipulation instructions performs arithmetic ,logic and shift 

operations on the data. 

• Program control instructions provide decision making and change the 

path taken by the program when executed in the computer. 

 



Data Transfer Instructions 

• Data Transfer instructions move the data between           

     Memory                   ----   Processor register 

     Processor register    ----   Input/output 

     Processor registers   ----  Processor registers 

 

 

 

 

 

 

 

 

                       Table : Typical data Transfer Instructions 

 

 

 

 

 

 

 

 

 

 

 

     



Data Transfer Instructions 
 

 

 

 

 

 

 

                 
                 Table : Addressing modes for load instruction  



Data Manipulation Instructions 

• Data Manipulation Instructions are of three basic types. 

 1. Arithmetic Instructions 

 2. Logical and Bit Manipulation Instructions 

 3. Shift Instructions 

1. Arithmetic Instructions 

 

 

 

 

 

                     Table: Typical Arithmetic Instructions 

 

 



Data Manipulation Instructions 

2. Logical and Bit manipulation Instructions 

 

 

 

 

 

 

 

                   Table : Logical and Bit Manipulation Instructions 



Data Manipulation Instructions 

Shift Instructions 



Program Control 

• When the program control instruction is executed it change the 

address value in the program counter and cause the flow of control to 

be altered. 

 

 

 

 

 

 

 

                      Table:  Program Control Instructions 

• Branch and Jump instructions are conditional and Unconditional 

Instructions. 

• CMP and Test set some of the bits in PSW(Processor status Word). 

 

 



Program Control 

• In Basic Computer, the processor had several (status) flags – 1 bit value that 

indicated various information about the processor‟s state – E, FGI, FGO, I, IEN, R. 

• In some processors, flags like these are often combined into a register – the 

processor status register (PSR); sometimes called a processor status word (PSW). 

• Common flags in PSW are 

– C (Carry): Set to 1 if the carry out of the ALU is 1 

– S (Sign): The MSB bit of the ALU‟s output 

– Z (Zero): Set to 1 if the ALU‟s output is all 0‟s 

– V (Overflow): Set to 1 if there is an overflow 

Status Flag Circuit 



• Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the 

carry is 0. 

• Bit S (sign) is set to 1 if the highest-order bit F, is 1. It is set to 0 if the bit 

is 0. 

• Bit Z (zero) is set to 1 ifthe output ofthe ALU contains all O's. it is cleared 

to 0 otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the 

output is not zero. 

•Subroutine Call and Return 

A  subroutine  is  a  self-contained  sequence  of  instructions that performs a 

given computational task. 

During  the  execution  of  a  program,  a  subroutine  may  be called to 

perform its function many times at various points in the main program. 

Each time  a  subroutine  is  called,  a  branch  is  executed to the  beginning  

of  the  subroutine  to  start  executing  its  set  of instructions. After the 

subroutine has been executed, a branch is made back to the main program. 

Program Control 



 

 

 

 

 

 

 

 

 

             

 Table: conditional branch instructions 

Program Control 



• Types of Interrupts 

    There are three major types of interrupts that cause a break in 

the normal execution of a program. They can be classified as: 

 

1. External interrupts 

2. Internal interrupts 

3. Software interrupts 

 • Internal  interrupts  are  synchronous  with  the  program  while 

external interrupts are asynchronous. 

• If the program is rerun, the internal interrupts will occur in the same 

place each time. 

• External interrupts depend on external conditions that are independent 

of the program being executed at the time. 

• External and internal interrupts are initiated from signals that occur in 

the hardware of the CPU. 

Program Control 



• A software interrupt is initiated by executing an instruction. 

• Software interrupt is a special call instruction that behave like an 

interrupt rather than a subroutine call. 

• It can be used by the programmer to initiate an interrupt procedure at 

any desired point in the program. 

Program Control 



Addition And Subtraction 

Addition (subtraction) algorithm: when the signs of A and B are 

identical (different), add the two magnitudes and attach the sign of A to 

the result. When the signs of A and B are different (identical), compare 

the magnitudes and subtract the smaller number from the larger. Choose 

the sign of the result to be the same as A if A > B or the complement of 

the sign of A if A < B. If the two magnitudes are equal, subtract B from 

A and make the sign of the result positive. 

TABLE: Addition and Subtraction of Signed Magnitude Numbers 



Addition And Subtraction 

Hardware Implementation: 

• Let A and B be two registers that hold the magnitudes of the numbers, 

and As and Bs be two flip-flops that hold the corresponding signs. The 

result of the operation may be transferred to a third register: the result is 

transferred into A and As . Thus A and As  together form an accumulator 

register. 

• Consider now the hardware implementation of the algorithms above. 

First, a parallel-adder is needed to perform the micro operation A + B . 

Second, a comparator circuit is needed to establish if A > B, A = B, or A 

< B. Third, two parallel-subtractor circuits are needed to perform the 

micro operations A - B and B - A. The sign relationship can be 

determined from an exclusive OR gate with A, and B, as inputs. 

• This procedure requires a magnitude comparator, an adder, and two 

subtractors. First, we know that subtraction can be accomplished by 

means of complement and add. Second, the result of a comparison can 

be determined from the end carry after the subtraction.  



• Figure shows a block diagram of the hardware for implementing the 

addition and subtraction operations. It consists of registers A and B 

and sign flip-flops A, and B, . Subtraction is done by adding A to the 

2' s complement of B. The output carry is transferred to flip-flop E, 

where it can be checked to determine the relative magnitudes of the 

two numbers. The add-overflow flip-flop AVF holds the overflow bit 

when A and B are added.  

• The addition of A plus B is done through the parallel adder. The S 

(sum) output of the adder is applied to the input of the A register. The 

complementer provides an output of B or the complement of B 

depending on the state of the mode control M.  

• The complementer consists of exclusive-OR gates and the parallel 

adder consists of full-adder circuits as shown in Fig. The M signal is 

also applied to the input carry of the adder. When M = 0, the output 

of B is transferred to the adder, the input carry is 0, and the output of 

the adder is equal to the sum A + B.  

Addition And Subtraction 



• When M=1, the 1's complement of B is applied to the adder, the input 

carry is 1, and output S = A + B̀ + 1. This is equal to A plus the 2's 

complement of B, which is equivalent to the subtraction A - B. 

Figure: Hardware for signed magnitude addition and subtraction. 

Addition And Subtraction 



• The two signs A, and B are compared by an exclusive-OR gate. If the 

output of the gate Is 0, the signs are identical if it is 1, the signs are 

different For an add operation, identical signs dictate that the magnitudes 

be added. For a subtract operation, different signs  dictate that the 

magnitudes be added. The magnitudes are added with a micro operation 

EA <-A + B. where EA is a register that combines E and A. The carry in 

E after the addition constitutes an overflow if it is equal to 1.  

• The value of E is transferred into the add-overflow flip-flop AVF. The 

two magnitudes are subtracted if the signs are different for an add 

operation or identical for a subtract operation. The magnitudes are 

subtracted by adding A to the 2's complement of B. No overflow can 

occur if the numbers are subtracted so AVF is cleared to 0.  

• A 1 in E indicates that A >=B and the number in A is the correct result. If 

this number is zero, the sign A, must be made positive to avoid a 

negative zero. A 0 in E indicates that A < B. For this case it is necessary 

to take the 2's complement of the value in A. This operation can be done  

with one mlcrooperation  A <-A+ 1 . 

Addition And Subtraction 



• However, we assume that the A register has circuits for micro operations 

complement and increment, so the 2' s complement is obtained from these two 

micro operations. In other paths of the flowchart, the sign of the result is the 

same as the sign of A, so no change in A, is required. However, when A < B, 

the sign of the result is the complement of the original sign of As.  

Figure: Flowchart for add and subtract operations. 

Addition And Subtraction 



Addition and Subtraction with Signed-2'sComplement Data 

• The leftmost bit of a binary number represents the sign bit: 0 for 

positive and 1 for negative. If the sign bit is 1, the entire number is 

represented in 2' s complement form. 

• The algorithm for adding and subtracting two binary numbers in 

signed- 2' s complement representation is shown in the flowchart of 

Fig. The sum is obtained by adding the contents of AC and BR 

(including their sign bits). The overflow bit V is set to 1 if the 

exclusive-OR of the last two carries is 1, and it is cleared to 0 

otherwise.  

• The subtraction operation is accomplished by adding the content of 

AC to the 2's complement of BR . Taking the 2's complement of BR 

has the effect of changing a positive number to negative, and vice 

versa. An overflow must be checked during this operation because 

the two numbers added could have the same sign.  

Addition And Subtraction 



Figure: Hardware for signed2's complement addition and subtraction. 

Figure :Algorithm for adding and subtracting numbers in signed 2's complement representation. 

Addition And Subtraction 



Multiplication Algorithms 

• The process consists of looking at successive bits of the multiplier, 

least significant bit first. If the multiplier bit is a 1, the 

multiplicand is copied down; otherwise, zeros are copied down. 

The numbers copied down in successive lines are shifted one 

position to the left from the previous number. Finally, the numbers 

are added and their sum forms the product. 



Hardware Implementation for Signed-Magnitude Data 

• The hardware for multiplication consists of the equipment shown in 

Fig. plus two more registers. These registers together with registers A 

and B are shown in Fig. The multiplier is stored in the Q register and 

its sign in Qs . The sequence counter SC is initially set to a number 

equal to the number of bits in the multiplier. The counter is 

decremented by 1 after forming each partial product. When the 

content of the counter reaches zero, the product is formed and the 

process stops. 

• The multiplicand is in register B and the multiplier in Q. The sum of 

A and B forms a partial product which is transferred to the EA 

register. Both partial product and multiplier are shifted to the right. 

This shift will be denoted by the statement shr EAQ to designate the 

right shift depicted in Fig.  

Multiplication Algorithms 



Figure : Hardware for multiply operation. 

• The least significant bit of A is shifted into the most significant 

position of Q, the bit from E is shifted into the most significant 

position of A, and 0 is shifted into E. After the shift, one bit of the 

partial product is shifted into Q, pushing the multiplier bits one 

position to the right. In this manner, the rightmost flip-flop in 

register Q, designated by Qn, will hold the bit of the multiplier, 

which must be inspected next. 

Multiplication Algorithms 



Hardware Algorithm 

Figure : Flowchart for multiply operation. 

Multiplication Algorithms 



• flowchart of the hardware multiply algorithm. Initially, the 

multiplicand is in B and the multiplier in Q. Their corresponding 

signs are in Bs, and Qs, respectively. The signs are compared, and 

both A and Q are set to correspond to the sign of the product since a 

double-length product will be stored in registers A and Q. Registers 

A and E are cleared and the sequence counter SC is set to a number 

equal to the number of bits of the multiplier.  

• After the initialization, the low-order bit of the multiplier in Q, is 

tested. If it is a 1, the multiplicand in B is added to the present partial 

product in A . I fit is a 0 , nothing is done.  

• Register EAQ is then shifted once to the right to form the new partial 

product The sequence counter is decremented by 1 and its new value 

checked. If it is not equal to zero, the process is repeated and a new 

partial product is formed. The process stops when SC = 0.The final 

product is available in both A and Q, with A holding the most 

significant bits and Q holding the least significant bits. 

Multiplication Algorithms 



TABLE : Numerical Example for Binary Multiplier 

Multiplication Algorithms 



Booth Multiplication Algorithm 

• For example, the binary number 001 110 ( + 14) has a string of 1's from 2³ 

to 21 (k = 3, m = 1). The number can be represented as 2k+ l - 2m = 24 - 

21 = 16 -2 = 14. Therefore, the  multi plication M x 14, where M is the 

multiplicand and 14 the multiplier, can be done as  

• Thus the product can be obtained by shifting the binary multiplicand M 

four times to the left and subtracting M shifted left once. 

• For example, a multiplier equal to - 1 4 is represented in 2's complement 

as 1 10010 and is treated as - 24 + 22 - 21 = - 14. 

 

Figure: Hardware for Booth algorithm. 

Multiplication Algorithms 



• The hardware implementation of Booth algorithm requires the 

register configuration shown in Fig. This is similar to Fig. except 

that the sign bits are not separated from the rest of the registers.  

• To show this difference, we rename registers A, B, and Q, as AC, 

BR, and QR, respectively. Q, designates the least significant bit of 

the multiplier in register QR .  

• An extra flip-flop Qn+1 is appended to QR to facilitate a double bit 

inspection of the multiplier. The flowchart for Booth algorithm is 

shown in fig.  

• AC and the appended bit Qn+1 are initially cleared to 0 and the 

sequence counter SC is set to a number n equal to the number of 

bits in the multiplier. The two bits of the multiplier in Qn and Qn+1 

are inspected.  

Multiplication Algorithms 



Figure : Booth algorithm for multiplication o f signed 2's complement numbers. 

Multiplication Algorithms 



• If the two bits are equal to 10, it means that the first 1 in a string of 1' 

s has been encountered. This requires a subtraction of the 

multiplicand from the partial product in AC . If the two bits are equal 

to 01, it means that the first 0 in a string of 0' s has been encountered. 

This requires the addition of the multiplicand to the partial product in 

AC .  

• When the two bits are equal, the partial product does not change. An 

overflow cannot occur because the addition and subtraction of the 

multiplicand follow each other. As a consequence, the two numbers 

that are added always have opposite signs, a condition that excludes 

an overflow.  

• The next step is to shift right the partial product and the multiplier 

(including bit Qn+1). This is an arithmetic shift right (ashr) operation 

which shifts AC and QR to the right and leaves the sign bit in AC 

unchanged. The sequence counter is decremented and the 

computational loop is repeated n times. 

Multiplication Algorithms 



• A numerical example of Booth algorithm is shown in Table 10-3 for n = 5. 

It shows the step-by-step multiplication of ( - 9) x ( - 13) = + 117. Note that 

the multiplier in QR is negative and that the multiplicand in BR is also 

negative. The 10-bit product appears in AC and QR and is positive. The 

final value of Qn+1 is the original sign bit of the multiplier and should not 

be taken as part of the product. 

TABLE: Example of Multiplication with Booth Algorithm 

Multiplication Algorithms 



Figure : 2-bit by  2-bit array multiplier. 

Array Multiplier 



• The multiplicand bits are b1 and b0, the multiplier bits are a1 and a0, 

and the product is c3 c2 c1 c0• The first partial product is formed by 

multiplying a0 by b1 b0• The multiplication of two bits such as a0 

and b0 produces a 1 if both bits are 1; otherwise, it produces a 0.  

• This is identical to an AND operation and can be implemented with 

an AND gate. As shown in the diagram, the first partial product is 

formed by means of two AND gates. The second partial product is 

formed by multiplying a1 by b1 b0 and is shifted one position to the 

left.  

• The two partial products are added with two half-adder (HA) 

circuits. Usually, there are more bits in the partial products and it will 

be necessary to use full-adders to produce the sum. Note that the 

least significant bit of the product does not have to go through an 

adder since it is formed by the output of the first AND gate. 

Array Multiplier 



Figure : 4-bit by  3-bit array multiplier. 

Array Multiplier 



Division Algorithms 

Figure : Example of binary division. 



Figure: Example of binary division with digital hardware. 
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• The hardware divide algorithm is shown in the flowchart of below Fig 

The dividend is in A and Q and the divisor in B . The sign of the result 

is transferred into Q, to be part of the quotient. A constant is set into 

the sequence counter SC to specify the number of bits in the quotient.  

• As in multiplication, we assume that operands are transferred to 

registers from a memory unit that has words o f n bits. Since a n 

operand must b e stored with its sign, one bit o f the word will be 

occupied by the sign and the magnitude will consist of n - 1 bits. 

• A divide-overflow condition is tested by subtracting the divisor in B 

from half of the bits of the dividend stored in A .  

• If A>=B, the divide-overflow flip-flop DVF is set and the operation is 

terminated prematurely. If A < B, no divide overflow occurs so the 

value of the dividend is restored by adding B to A . 

Division Algorithms 



Figure : Flowchart for divide operation. 
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Floating-Point Arithmetic Operations 

• The register organization for floating-point operations is shown in 

Fig. There are three registers, BR, AC , and QR . Each register is 

subdivided into two parts. The mantissa part has the same uppercase 

letter symbols as in fixed-point representation. The exponent part 

uses the corresponding lowercase letter symbol. 

• It is assumed that each floating-point number has a mantissa in 

signed magnitude representation and a biased exponent. Thus the AC 

has a mantissa. 

• whose sign is in A, and a magnitude that is in A. The exponent is in 

the part of the register denoted by the lowercase letter symbol a. The 

diagram shows explicitly the most significant bit of A, labeled by 

A1• The bit in this position must be a 1 for the number to be 

normalized.  

• Note that the symbol AC represents the entire register, that is, the 

concatenation of As, A, and a . Similarly, register BR is subdivided 

into Bs, B, and b, and Q R into Qs, Q ,and q. 



• A parallel-adder adds the two mantissas and transfers the sum into 

A and the carry into E . A separate parallel-adder is used for the 

exponents. Since the exponents are biased, they do not have a 

distinct sign bit but are represented as a biased positive quantity 

Figure : Registers for floating-point arithmetic operations. 
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Addition and Subtraction 

• During addition or subtraction, the two floating-point operands are 

in AC and BR . The sum or difference is formed in the AC . The 

algorithm can be divided into four consecutive parts: 

1. Check for zeros. 

2. Align the mantissas. 

3. Add or subtract the mantissas. 

4. Normalize the result 

• The flowchart for adding or subtracting two floating-point binary 

numbers is shown in Fig. If BR is equal to zero, the operation is 

terminated, with the value in the AC being the result.  

• If AC is equal to zero, we transfer the content of BR into AC and 

also complement its sign if the numbers are to be subtracted. If 

neither number is equal to zero, we proceed to align the mantissas. 

Floating-Point Arithmetic Operations 



Figure : Addition and subtraction of floating-point numbers. 
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• The magnitude comparator attached to exponents a and b provides 

three outputs that indicate their relative magnitude. If the two 

exponents are equal, we go to perform the arithmetic operation. If 

the exponents are not equal, the mantissa having the smaller 

exponent is shifted to the right and its exponent incremented. This 

process is repeated until the two exponents are equal. 

• The addition and subtraction of the two mantissas is identical to the 

     fixed-point addition and subtraction algorithm presented in Fig.     

     The magnitude part is added or subtracted depending on the 

     operation and the signs of the two mantissas.  

• If an overflow occurs when the magnitudes are added, it is 

transferred into flip-flop E. If E is equal to 1, the bit is transferred 

into A1 and all other bits of A are shifted right. The exponent must 

be incremented to maintain the correct number. 
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Multiplication 

• The multiplication of two floating-point numbers requires that we 

multiply the mantissas and add the exponents. 

The multiplication algorithm can be subdivided into four parts: 

1. Check for zeros. 

2. Add the exponents. 

3. Multiply the mantissas. 

4. Normalize the product 

• Steps 2 and 3 can b e done simultaneously if separate adders are 

available for the mantissas and exponents. 

• The flowchart for floating-point multiplication is shown in Fig. The 

two operands are checked to determine if they contain a zero.  

• If either operand is equal to zero, the product in the AC is set to zero 

and the operation is terminated. If neither of the operands is equal to 

zero, the process continues with the exponent addition. 

Floating-Point Arithmetic Operations 



Figure : Multiplication of floating-point numbers. 
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Division 

Floating-Point Arithmetic Operations 

The division algorithm can be subdivided into five parts: 

1. Check for zeros. 

2. Initialize registers and evaluate the sign. 

3. Align the dividend. 

4. Subtract the exponents. 

5. Divide the mantissas. 

• The flowchart for floating-point division is shown in Fig. The two 

operands are checked for zero. If the divisor is zero, it indicates an 

attempt to divide by zero, which is an illegal operation. The operation 

is terminated with an error message.  

• An alternative procedure would be to set the quotient in QR to the 

most positive number possible (if the dividend is positive) or to the 

most negative possible (if the dividend is negative). If the dividend in 

AC is zero, the quotient in QR is made zero and the operation 

terminates. 



Figure : Division of floating-point numbers. 
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BCD Adder 

• Consider the arithmetic addition of two decimal digits in BCD, 

together with a possible carry from a previous stage. Since each input 

digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 

1 = 19, the 1 in the sum being an input-carry. Suppose that we apply 

two BCD digits to a 4-bit binary adder. 

• The adder will form the sum in binary and produce a result that may 

range from 0 to 19. These binary numbers are listed in Table 10-4 and 

are labeled by symbols K, Z8, Z4, Z2, and Z1• K is the carry and the 

subscripts under the letter Z represent the weights 8, 4, 2, and 1 that 

can be assigned to the four bits in the BCD code.  

• The first column in the table lists the binary sums as they appear in the 

outputs of a 4-bit binary adder. The output sum of two decimal 

numbers must be represented in BCD and should appear in the form 

listed in the second column of the table. 
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• When the binary sum is greater than 1001, we obtain a non valid BCD 

representation. The addition of binary 6 (0110) to the binary sum 

converts it to the correct BCD representation and also produces an 

output-carry as required. 
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• The logic circuit that detects the necessary correction can be derived 

from the table entries. It is obvious that a correction is needed when 

the binary sum has an output carry K = 1. The other six combinations 

from 1010 to 1 1 1 1 that need a correction have a 1 in position Z8• 

•  To distinguish them from binary 1000 and 1001 which also have a 1 

in position Z8 we specify further that either Z4 or z, must have a 1. 

The condition for a correction and an output-carry can be expressed 

by the Boolean function C = K + Z8 Z4 + Z8 Z2. When C = 1, it is 

necessary to add 0110 to the binary sum and provide an output-carry 

for the next stage. 

• A BCD adder is a circuit that adds two BCD digits in parallel and 

produces a sum digit also in BCD. A BCD adder must include the 

correction logic in its internal construction. To add 0110 to the binary 

sum, we use a second 4-bit binary adder as shown in Fig. The two 

decimal digits, together with the input-carry, are first added in the top 

4-bit binary adder to produce the binary sum. 
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• When the output-carry is equal to 0, nothing is added to the binary 

sum. When it is equal to 1, binary 0110 is added to the binary sum 

through the bottom 4-bit binary adder. The output-carry generated 

from the bottom binary adder may be ignored, since it supplies 

information already available in the output-carry terminal2 

Figure : Block diagram of BCD adder. 
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Decimal Arithmetic Operations 

• The algorithms for arithmetic operations with decimal data are similar 

to the algorithms for the corresponding operations with binary data. 

• The algorithm for addition and subtraction of binary signed-magnitude 

numbers applies also to decimal signed-magnitude numbers provided 

that we interpret the micro operation symbols in the proper manner. 

Similarly, the algorithm for binary signed-2's complement numbers 

applies to decimal signed-10's complement numbers. The binary data 

must employ a binary adder and a complementer. The decimal data 

must employ a decimal arithmetic unit capable of adding two BCD 

numbers. 

Figure : One stage of a decimal arithmetic unit. 

Addition and Subtraction 



• Decimal data can be added in three different ways, as shown in The 

parallel method uses a decimal arithmetic unit composed of as many 

BCD adders as there are digits in the number. The sum is formed in 

parallel and requires only one rnicrooperation.  

• In the digit-serial bit-parallel method, the digits are applied to a single 

BCD adder serially, while the bits of each coded digit are transferred 

in parallel.  

• The sum is formed by shifting the decimal numbers through the BCD 

adder one at a time. For k decimal digits, this configuration requires k 

microoperations, one for each decimal shift. In the all serial adder, the 

bits are shifted one at a time through a full-adder.  

• The binary sum formed after four shifts must be corrected into a valid 

BCD digit. If it is greater than or equal to 1010, the binary sum is 

corrected by adding to it 0110 and generating a carry for the next pair 

of digits. 
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Figure: Three ways of adding decimal numbers. 
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Multiplication 

• The registers organization for the decimal multiplication is shown in  

Fig. We are assuming here four-digit numbers, with each digit 

occupying four bits, for a total of 16 bits for each number. There are 

three registers, A, B, and Q, each having a corresponding sign flip-

flop AS, BS, and QS, . 

• Registers A and B have four more bits designated by A, and B, that 

provide an extension of one more digit to the registers. The BCD 

arithmetic unit adds the five digits in parallel and places the sum in 

the five-digit A register. The end-carry goes to flip-flop E. 

•  The purpose of digit A, is to accommodate an overflow while 

adding the multiplicand to the partial product during multiplication. 

The purpose of digit B, is to form the 9's complement of the divisor 

when subtracted from the partial remainder during the division 

operation. The least significant digit in register Q is denoted by QL . 

This digit can be incremented or decremented. 
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Figure : Registers for decimal arithmetic multiplication and division. 

• The decimal multiplication algorithm is shown in Fig. Initially, the 

entire A register and B, are cleared and the sequence counter SC is set 

to a number k equal to the number of digits in the multiplier.  

• The low-order digit of the multiplier in Q, is checked. If it is not 

equal to 0, the multiplicand in B is added to the partial product in A 

once and QL is decremented. 
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Figure : Flowchart for decimal multiplication. 
• QL is checked again and the process is repeated until it is equal to 

0. In this way, the multiplicand in B is added to the partial product a 

number of times equal to the multiplier digit. Any temporary 

overflow digit will reside in A, and can range in value from 0 to 9. 
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Division 

• The decimal division algorithm is shown in Fig. It is similar to the 

algorithm with binary data except for the way the quotient bits are 

formed. The dividend (or partial remainder) is shifted to the left, with 

its most significant digit placed in A. 

•  The divisor is then subtracted by adding its 10' s complement value. 

Since Be is initially cleared, its complement value is 9 as required. 

The carry in E determines the relative magnitude of A and B. If E = 0, 

it signifies. 

• That A < B. In this case the divisor is added to restore the partial 

remainder and QL stays at 0 (inserted there during the shift). If E = 1, 

it signifies that A >= B. The quotient digit in QL is incremented once 

and the divisor subtracted again. This process is repeated until the 

subtraction results in a negative difference which is recognized by E 

being 0. 
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Figure : Flowchart for decimal division. 
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MODULE –IV 

 

 INPUT-OUTPUT ORGANIZATION AND 

MEMORY ORGANIZATION 



Contents 

Memory organization:  

• Memory hierarchy 

• Main memory 

• Auxiliary memory 

• Associative memory 

• Cache memory 

• Virtual memory 

Input or output organization:  

• Input or output Interface 

• Asynchronous data transfer 

• Modes of transfer 

• Priority interrupt 

• Direct memory access. 



Course Outcomes 

CO 1 Describe Memory hierarchy, main memory and auxiliary 

memory. 

CO 2 Classify the associative memory, cache memory and 

virtual memory. 

CO 3 Describe the Input or output Interface and asynchronous 

data transfer. 

CO 4 Classify the different modes of transfer in Memory 

organization. 

CO 5 Explore the different priority interrupts and direct 

memory access. 



Memory Hierarchy 

• At the bottom of the hierarchy are the relatively slow magnetic tapes 

used to store removable files. Next are the magnetic disks used as 

backup storage. The main memory occupies a central position by 

being able to communicate directly with the CPU and with auxiliary 

memory devices through an I/O processor.  

• When programs not residing in main memory are needed by the 

CPU, they are brought in from auxiliary memory. Programs not 

currently needed in main memory are transferred into auxiliary 

memory to provide space for currently used programs and data. 

• A special very-high speed memory called a cache sometimes used to 

increase the speed of processing by making current programs and 

data available to the CPU at a rapid rate. 



• The cache memory is employed in computer systems to compensate 

for the speed differential between main memory access time and 

processor logic. CPU logic is usually faster than main memory 

access time, with the result that processing speed is limited primarily 

by the speed of main memory.  

      

 

 

 

 

 

 

 

Figure :Memory hierarchy in a computer system. 
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• The main memory is the central storage unit in a computer system. It is a 

relatively large and fast memory used to store programs and data during 

the computer operation. The principal technology used for the main 

memory is based on semiconductor integrated circuits. Integrated circuit 

RAM chips are available in two possible operating modes, static and 

dynamic.  

• The static RAM consists essentially of internal flip-flops that store the 

binary information. The stored information remains valid as long as 

power is applied to the unit. The dynamic RAM stores the binary 

information in the form of electric charges that are applied to capacitors.  

• The bootstrap loader is a program whose function is to start the computer 

software operating when power is turned on. Since RAM is volatile, its 

contents are destroyed when power is turned off. The contents of ROM 

remain unchanged after power is turned off and on again. The startup of a 

computer consists of turning the power on and starting the execution of 

an initial program. 

Main Memory 



RAM and ROM Chips: 

• A RAM chip is better suited for communication with the CPU if it 

has one or more control inputs that select the chip only when needed. 

Another common feature is a bidirectional data bus that allows the 

transfer of data either from memory to CPU during a read operation, 

or from CPU to memory during a write operation. A bidirectional bus 

can be constructed with three-state buffers. 

 

Main Memory 

Figure: Typical RAM chip. 



• The block diagram of a RAM chip is shown in Fig.The capacity of the 

memory is 128 words of eight bits (one byte) per word. This requires a 7-

bit address and an 8-bit bidirectional data bus. The read and write inputs 

specify the memory operation and the two chips select (CS) control inputs 

are for enabling the chip only when it is selected by the microprocessor.  

• The read and write inputs are sometimes combined into one line labeled 

R/W. When the chip is selected, the two binary states in this line specify 

the two operations or read or write. 

• The function table listed in Fig.(b) specifies the operation of the RAM 

chip. The unit is in operation only when CSI = 1 and CS2 = 0. The bar on 

top of the second select variable indicates that this input in enabled when it 

is equal to 0. If the chip select inputs are not enabled, or if they are enabled 

but the read but the read or write inputs are not enabled, the memory is 

inhibited and its data bus is in a high-impedance state. When SC1 = 1 and 

CS2 = 0, the memory can be placed in a write or read mode. When the WR 

input is enabled, the memory stores a byte from the data bus into a location 

specified by the address input lines.  

Main Memory 



• When the RD input is enabled, the content of the selected byte is 

placed into the data bus. The RD and WR signals control the 

memory operation as well as the bus buffers associated with the 

bidirectional data bus. 

Memory Address Map: 

• a ROM can only read, the data bus can only be in an output mode. 

The block diagram of a ROM chip is shown in Fig. For the same-size 

chip, it is possible to have more bits of ROM occupy less space than 

in RAM. For this reason, the diagram specifies a 512-byte ROM, 

while the RAM has only 128 bytes. 

• The nine address lines in the ROM chip specify any one of the 512 

bytes stored in it. The two chip select inputs must be CS1 = 1 and 

CS2 = 0 for the unit to operate. Otherwise, the data bus is in a high-

impedance state. There is no need for a read or write control because 

the unit can only read. 

Main Memory 



 

 
 

Figure: Typical ROM chip. 

• To demonstrate with a particular example, assume that a computer 

system needs 512 

• bytes of RAM and 512 bytes of ROM. The RAM and ROM chips 
 

TABLE: Memory Address Map for Microprocomputer 
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Memory Connection to CPU 

• RAM and ROM chips are connected to a CPU through the data and 

address buses. The low-order lines in the address bus select the byte 

within the chips and other lines in the address bus select a particular chip 

through its chip select inputs. The connection of memory chips to the 

CPU is shown in Fig. 

• This configuration gives a memory capacity of 512 bytes of RAM and 

512 bytes of ROM. It implements the memory map of Table 12-1. Each 

RAM receives the seven low-order bits of the address bus to select one 

of 128 possible bytes. The particular RAM chip selected is determined 

from lines 8 and 9 in the address bus .  

• This is done through a 2 x 4 decoder whose outputs go to the CS1 inputs 

in each RAM chip. Thus, when address lines 8 and 9 are equal to 00, the 

first RAM chip is selected. When 01, the second RAM chip is selected, 

and so on. The RD and WR outputs from the microprocessor are applied 

to the inputs of each RAM chip. 
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• The selection between RAM and ROM is achieved through bus line 

10.The RAMs are selected when the bit in this line is 0, and the 

ROM when the bit is 1 . The other chip select input in the ROM is 

connected to the RD control line for the ROM chip to be enabled 

only during a read operation.  

• Address bus lines 1 to 9 are applied to the input address of ROM 

without going through the decoder. This assigns addresses 0 to 511 to 

RAM and 512 to 1023 to ROM. The data bus of the ROM has only 

an output capability, whereas the data bus connected to the RAMs 

can transfer information in both directions . 

Main Memory 



Figure: Memory connection to the CPU. 
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• The most common auxiliary memory devices used in computer 

systems are magnetic disks and tapes. 

Magnetic Disks: 

• A magnetic disk is a circular plate constructed of metal or plastic 

coated with magnetized material. Often both sides of the disk are 

used and several disks may be stacked on one spindle with read/write 

heads available on each surface.  

• Bits are stored in the magnetized surface in spots along concentric 

circles called tracks. The tracks are commonly divided into sections 

called sectors.  

 

Figure: Magnetic disk. 
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Magnetic Tape: 

Auxiliary Memory 

• A magnetic tape transport consists of the electrical, mechanical, and 

electronic components to provide the parts and control mechanism 

for a magnetic-tape unit. The tape itself is a strip of plastic coated 

with a magnetic recording medium. Bits are recorded as magnetic 

spots on the tape along several tracks. 

• Usually, seven or nine bits are recorded simultaneously to form a 

character together with a parity bit. Read/write heads are mounted 

one in each track so that data can be recorded and read as a sequence 

of characters. 



• A memory unit accessed by content is called an associative memory 
or content addressable memory (CAM). An associative memory is 
more expensive than a random access memory because each cell 
must have storage capability as well as logic circuits for matching its 
content with an external argument. For this reason, associative 
memories are used in applications where the search time is very 
critical and must be very short. 

• Hardware Organization: 

• It consists of a memory array and logic for m words with n bits per 
word. The argument register A and key register K each have n bits, 
one for each bit of a word. The match register M has m bits, one for 
each memory word. Each word in memory is compared in parallel 
with the content of the argument register. The words that match the 
bits of the argument register set a corresponding bit in the match 
register. After the matching process, those bits in the match register 
that have been set indicate the fact that their corresponding words 
have been matched. 

Associative Memory 



 

 

 

 

 
 

 

Figure: Block diagram of associative memory. 

• The key register provides a mask for choosing a particular field or 

key in the argument word. The entire argument is compared with 

each memory word if the key register contains all l' s. Otherwise, 

only those bits in the argument that have l's in their corresponding 

position of the key register are compared. 
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• a numerical example, suppose that the argument register A and the 
key register K have the bit configuration shown below. Only the 
three leftmost bits of A are compared with memory words because 
K has 1's in these positions. 

 

 

 

 

• Word 2 matches the unmasked argument field because the three 
leftmost bits of the argument and the word are equal. 

• The relation between the memory array and external registers in 
an associative memory is shown in Fig. 

• The cells in the array are marked by the letter C with two 
subscripts. The first subscript gives the word number and the 
second specifies the bit position in the word. 
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• Thus cell Cij is the cell for bit j in word i. A bit Ai in the argument 

register is compared with all the bits in column j of the array 

provided that Ki = 1. This is done for all columns j = 1, 2, . . . , n.  

• If a match occurs between all the unmasked bits of the argument and 

the bits in word i, the corresponding bit M1 in the match register is 

set to 1. If one or more unmasked bits of the argument and the word 

do not match, M1 is cleared to 0. 

Figure: Associative memory of m word, n cells per word. 
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• The internal organization of a typical cell Cij is shown in Fig. It 

consists of a flip-flop storage element Fi and the circuits for reading, 

writing, and matching the cell. The input bit is transferred into the 

storage cell during a write operation.  

• The bit stored is read out during a read operation. The match logic 

compares the content of the storage cell with the corresponding 

unmasked bit of the argument and provides an output for the decision 

logic that sets the bit in Mi. 

Match Logic 

Figure: One cell of associative memory. 
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• The match logic for each word can be derived from the comparison 
algorithm for two binary numbers. First, we neglect the key bits and 
compare the argument in A with the bits stored in the cells of the 
words. Word i is equal to the argument in A if Aj = Fij for j = 1, 2, . . 
. , n . Two bits are equal if they are both 1 or both 0. The equality of 
two bits can be expressed logically by the Boolean function. 

 

• where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 
0. For a word i to be equal to the argument in A we must have all xi 
variables equal to 1. This is the condition for setting the 
corresponding match bit M, to 1. The Boolean function for this 
condition is 

 

• and constitutes the AND operation of all pairs of matched bits in a 
word. 
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• The active portions of the program and data are placed in a fast small 

memory, the average memory access time can be reduced, thus reducing 

the total execution time of the program. Such a fast small memory is 

referred to as a cache memory. It is placed between the CPU and main 

memory as illustrated in Fig.  

• The cache memory access time is less than the access time of main 

memory by a factor of 5 to 10. The cache is the fastest component in the 

memory hierarchy and approaches the speed of CPU components. 

• The fundamental idea of cache organization is that by keeping the most 

frequently accessed instructions and data in the fast cache memory, the 

average memory access time will approach the access time of the cache. 

 

 

 

 

Figure: Example of cache memory. 
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• The basic operation of the cache is as follows. When the CPU needs to 

access memory, the cache is examined. If the word is found in the cache, it 

is read from the fast memory. If the word addressed by the CPU is not 

found in the cache, the main memory is accessed to read the word. A block 

of words containing the one just accessed is then transferred from main 

memory to cache memory.  

• The performance of cache memory is frequently measured in terms of a 

     quantity called hit ratio . When the CPU refers to memory and finds the               

      word in cache, it is said to produce a hit . If the word is not found in  

      cache, it is in main memory and it counts as a miss .  

• The ratio of the number of hits divided by the total CPU references to 

memory (hits plus misses) is the hit ratio.  

• For example, a computer with cache access time of 100 ns, a main 

memory access time of 1000 ns, and a hit ratio of 0.9 produces an average 

access time of 200 ns. This is a considerable improvement over a similar 

computer without a cache memory, whose access time is 1000 ns. 
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• The transformation of data from main memory to cache memory is referred 

to as a mapping process. Three types of mapping procedures are of 

practical interest when considering the organization of cache memory: 

1. Associative mapping 

2. Direct mapping 

3. Set-associative mapping 

Associative Mapping 

• The fastest and most flexible cache organization uses an associative 

memory. The associative memory stores both the address and content 

(data) of the memory word. This permits any location in cache to store any 

word from main memory. The diagram shows three words presently stored 

in the cache.  

• The address value of 15 bits is shown as a five-digit octal number and its 

corresponding 12 -bit word is shown as a four-digit octal number. A CPU 

address of 15 bits is placed in the argument register and the associative 

memory is searched for a matching address. 
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Figure: Associative mapping cache (all numbers in octal). 

• If the address is found, the corresponding 12-bit data is read and sent 

to the CPU. If no match occurs, the main memory is accessed for the 

word. The address-data pair is then transferred to the associative 

cache memory.  

• If the cache is full, an address--data pair must be displaced to make 

room for a pair that is needed and not presently in the cache. 

Cache Memory 



Direct Mapping: 

•  Associative memories are expensive compared to random-access 

memories because of the added logic associated with each cell. The 

CPU address of 15 bits is divided into two fields. The nine least 

significant bits constitute the index field and the remaining six bits 

form the tag field.  

• The figure shows that main memory needs an address that includes 

both the tag and the index bits. The number of bits in the index field 

is equal to the number of address bits required to access the cache 

memory. 

 

Figure: Addressing 

relationships between 

main and cache 

memories. 
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• In the general case, there are 2k words in cache memory and 2n 

words in main memory. The n-bit memory address is divided into 

two fields: k bits for the index field and n - k bits for the tag field. 

The direct mapping cache organization uses the n-bit address to 

access the main memory and the k-bit index to access the cache.  

• Each word in cache consists of the data word and its associated tag. 

When a new word is first brought into the cache, the tag bits are 

stored alongside the data bits. When the CPU generates a memory 

request, the index field is used for the address to access the cache.  

Figure: Direct mapping cache organization. 
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• The tag field of the CPU address is compared with the tag in the word read 

from the cache. If the two tags match, there is a hit and the desired data 

word is in cache. If there is no match, there is a miss and the required word 

is read from main memory. It is then stored in the cache together with the 

new tag, replacing the previous value. The disadvantage of direct mapping 

is that the hit ratio can drop considerably if two or more words whose 

addresses have the same index but different tags are accessed repeatedly. 

• To see how the direct-mapping organization operates, consider the 

numerical example shown in Fig. The word at address zero is presently 

stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the 

CPU now wants to access the word at address 02000. The index address is 

000, so it is used to access the cache. The two tags are then compared.  

• The cache tag is 00 but the address tag is 02, which does not produce a 

match. Therefore, the main memory is accessed and the data word 5670 is 

transferred to the CPU. The cache word at index address 000 is then 

replaced with a tag of 02 and data of 5670. 

Cache Memory 



• The index field is now divided into two parts: the block field and the 

word field. In a 512-word cache there are 64 blocks of 8 words each, 

since 64 x 8 = 512. The block number is specified with a 6-bit field and 

the word within the block is specified with a 3-bit field.  

• The tag field stored within the cache is common to all eight words of 

the same block. Every time a miss occurs, an entire block of eight 

words must be transferred from main memory to cache memory. 

Cache Memory 

Figure: Direct mapping cache 

with block size of 8 words. 



Set-Associative Mapping: 

• It was mentioned previously that the disadvantage of direct mapping is 

that two words with the same index in their address but with different 

tag values cannot reside in cache memory at the same time.  

• A third type of cache organization, called set-associative mapping, is an 

improvement over the direct mapping organization in that each word of 

cache can store two or more words of memory under the same index 

address. Each data word is stored together with its tag and the number 

of tag-data items in one word of cache is said to form a set.  

Figure: Two-way set 

associative mapping cache. 
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• The octal numbers listed in Fig. are with reference to the main 

memory contents illustrated in Fig.(a). The words stored at addresses 

01000 and 02000 of main memory are stored in cache memory at 

index address 000. Similarly, the words at addresses 02777 and 

00777 are stored in cache at index address 777.  

• When the CPU generates a memory request, the index value of the 

address is used to access the cache. The tag field of the CPU address 

is then compared with both tags in the cache to determine if a match 

occurs.  

• thus the name "set-associative." The hit ratio will improve as the set 

size increases because more words with the same index but different 

tags can reside in cache. 
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write-through: 

• The simplest and most commonly used procedure is to update main 

     memory with every memory write operation, with cache memory     

     being updated in parallel if it contains the word at the specified  

     address. This is called the write-through method. This method has       

     the advantage that main memory always contains the same data as         

     the cache. 

write-back: 

• The second procedure is called the write-back method. In this 

method only the cache location is updated during a write operation. 

The location is then marked by a flag so that later when the word is 

removed from the cache it is copied into main memory. 
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Virtual Memory 

• Virtual memory is a concept used in some large computer systems 

that permit the user to construct programs as though a large memory 

space were available, equal to the totality of auxiliary memory. Each 

address that is referenced by the CPU goes through an address 

mapping from the so-called virtual address to a physical address in 

main memory. 

• Virtual memory is used to give programmers the illusion that they 

have a very large memory at their disposal, even though the 

computer actually has a relatively small main memory. A virtual 

memory system provides a mechanism for translating program-

generated addresses into correct main memory locations. 



Address Space And Memory Space 

• An address used by a programmer will be called a virtual address, and 

the set of such addresses the address space. An address in main 

memory is called a location or physical address. The set of such 

locations is called the memory space.  

• Thus the address space is the set of addresses generated by programs 

as they reference instructions and data; the memory space consists of 

the actual main memory locations directly addressable for processing. 

• As an illustration, consider a computer with a main-memory capacity 

of 32K words (K = 1024). Fifteen bits are needed to specify a physical 

address in memory since 32K = 215.  

• Suppose that the computer has available auxiliary memory for storing 

220 = 1024K words. Denoting the address space by N and the memory 

space by M, we then have for this example N = 1024K and M = 32K. 
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Virtual Memory 

Figure : Relation between address and memory space in a virtual memory system. 

• In a virtual memory system, programmers are told that they have the 

total address space at their disposal. Moreover, the address field of the 

instruction code has a sufficient number of bits to specify all virtual 

addresses.  

• In our example, the address field of an instruction code will consist of 

20 bits but physical memory addresses must be specified with only 15 

bits. Thus CPU will reference instructions and data with a 20-bit 

address. 



• To map a virtual address of 20 bits to a physical address of 15 bits. 

The mapping is a dynamic operation, which means that every 

address is translated immediately as a word is referenced by CPU. 

The mapping table may be stored in a separate memory as shown in 

Fig.in main memory.  

 

Figure: Memory table for mapping a virtual address. 
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Address Mapping Using Pages 

• Consider a computer with an address space of 8K and a memory space 

of 4K. If we split each into groups of 1K words we obtain eight pages 

and four blocks as shown in Fig. At any given time, up to four pages of 

address space may reside in main memory in any one of the four blocks. 

• The mapping from address space to memory space is facilitated if each 

virtual address is considered to be represented by two numbers: a page 

number address and a line within the page. In a computer with 2p words 

per page, p bits are used to specify a line address and the remaining 

high-order bits of the virtual address specify the page number.  

• In the example of Fig. a virtual address has 13 bits. Since each page 

consists of 210 = 1024 words, the high-order three bits of a virtual 

address will specify one of the eight pages and the low-order 10 bits 

give the line address within the page. Note that the line address in 

address space and memory space is the same; the only mapping 

required is from a page number to a block number. 

Virtual Memory 
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Figure: Address space and memory space split into groups of 1K words. 

• The organization of the memory mapping table in a paged system is shown in 

Fig. The memory-page table consists of eight words, one for each page. The 

address in the page table denotes the page number and the content of the word 

gives the block number where that page is stored in main memory. The table 

shows that pages 1, 2, 5 and 6 are now available in main memory in blocks 3, 0, 

1, and 2, respectively.  

• A presence bit in each location indicates whether the page has been transferred 

from auxiliary memory into main memory. A 0 in the presence bit indicates that 

this page is not available in main memory. The CPU references a word in 

memory with a virtual address of 13 bits. The three high-order bits of the virtual 

address specify a page number and also an address for the memory-page table. 



• page table at the page number address is read out into the memory table 

buffer register. If the presence bit is a 1, the block number thus read is 

transferred to the two high-order bits of the main memory address register. 

The line number from the virtual address is transferred into the 10 low 

order bits of the memory address register.  

• A read signal to main memory transfers the content of the word to the main 

memory buffer register ready to be used by the CPU. If the presence bit in 

the word read from the page table is 0, it signifies that the content of the 

word referenced by the virtual address does not reside in main memory. 

Figure: Memory table in a paged system. 
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Associative Memory Page Table 

Virtual Memory 

The page field in each word is compared with the page number in the virtual address. 

If a match occurs, the word is read from memory and its corresponding block number 

is extracted.  

Consider again the case of eight pages and four blocks as in the example of Fig. We 

replace the random access memory-page table with an associative memory of four 

words as shown in Fig. Each entry in the associative memory array consists of two 

fields. The first three bits specify a field fro storing the page number. The last two bits 

constitute a field for storing the block number. The virtual address is placed in the 

argument register. The page number bits in the argument are compared with all page 

numbers in the page field of the associative memory. If the page number is found, the 

5-bit word is read out from memory. The corresponding block number, being in the 

same word, is transferred to the main memory address register. If no match occurs, a 

call to the operating system is generated to bring the required page from auxiliary 

memory. 

Figure: An associative memory 

page table. 



• Input-output interface provides a method for transferring information 

between internal storage and external I/O devices. Peripherals connected to 

a computer need special communication links for interfacing them with the 

central processing unit. The purpose of the communication link is to 

resolve the differences that exist between the central computer and each 

peripheral. 

1. Peripherals are electromechanical and electromagnetic devices and their     

manner of operation is different from the operation of the CPU and memory, 

which are electronic devices. Therefore, a conversion of signal values may be 

required. 

2. The data transfer rate of peripherals is usually slower than the transfer rate 

of the CPU, and consequently, a synchronization mechanism may be need. 

3. Data codes and formats in peripherals differ form the word format in the 

CPU and memory. 

4. The operating modes of peripherals are different from each other and each 

must be controlled so as not to disturb the operation of other peripherals 

connected to the CPU. 

Input-output Interface 



I/O Bus And Interface Modules 

• A typical communication link between the processor and several 

peripherals is shown in Fig. The I/O bus consists of data lines, 

address lines, and control lines.  

• The magnetic disk, printer, and terminal are employed in practically 

any general-purpose computer. The magnetic tape is used in some 

computers for backup storage. Each peripheral device has associated 

with it an interface unit.  

• Each interface decodes the address and control received from the I/O 

bus, interprets them for the peripheral, and provides signals for the 

peripheral controller.  

• It also synchronizes the data flow and supervises the transfer 

between peripheral and processor. Each peripheral has its own 

controller that operates the particular electromechanical device. 

Input-output Interface 



• The I/O bus from the processor is attached to all peripheral interfaces. 

To communicate with a particular device, the processor places a 

device address on the address lines.  

• Each interface attached to the I/O bus contains an address decoder 

that monitors the address lines. When the interface detects its own 

address, it activates the path between the bus lines and the device that 

it controls.  

Input-output Interface 

Figure: Connection of I/O bus to input devices. 



I/O Versus Memory Bus 

 • In addition to communicating with I/O, the processor must 

communicate with the memory unit. Like the I/O bus, the memory 

bus contains data, address, and read/write control lines.  

• There are three ways that computer buses can be used to 

communicate with memory and I/O: 

1. Use two separate buses, one for memory and the other for I/O. 

2. Use one common bus for both memory and I/O but have separate 

    control lines for each. 

3. Use one common bus for memory and I/O with common control 

    lines. 

• In the first method, the computer has independent sets of data, 

address, and control buses, one for accessing memory and the other 

for I/O. This is done in computers that provide a separate I/O 

processor (IOP) in addition to the central processing unit (CPU).  

Input-output Interface 



• The memory communicates with both the CPU and the IOP 

through a memory bus. The IOP communicates also with the input 

and output devices through a separate I/O bus with its own 

address, data and control lines. 

• The purpose of the IOP is to provide an independent pathway for 

the transfer of information between external devices and internal 

memory. 
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Isolated Versus Memory-mapped I/O 

• In the isolated I/O configuration, the CPU has distinct input and output 

instructions, and each of these instructions is associated with the address of 

an interface register. When the CPU fetches and decodes the operation 

code of an input or output instruction, it places the address associated with 

the instruction into the common address lines. At the same time, it enables 

the I/O read (for input) or I/O write (for output) control line.  

• This informs the external components that are attached to the common bus 

that the address in the address lines is for an interface register and not for a 

memory word. On the other hand, when the CPU is fetching an instruction 

or an operand from memory, it places the memory address on the address 

lines and enables the memory read or memory write control line. This 

informs the external components that the address is for a memory word and 

not for an I/O interface. 

• The isolated I/O method isolates memory word and not for an I/O 

addresses. The other alternative is to use the same address space for both 

memory and I/O. 
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• In a memory-mapped I/O organization there are no specific input 

or output instructions. The CPU can manipulate I/O data residing in 

interface registers with the same instructions that are used to 

manipulate memory words.  

• Each interface is organized as a set of registers that respond to read 

and write requests in the normal address space. Typically, a segment 

of the total address space is reserved for interface registers, but in 

general, they can be located at any address as long as there is not 

also a memory word that responds to the same address. 

• Computers with memory-mapped I/O can use memory-type 

instructions to access I/O data. It allows the computer to use the 

same instructions for either input-output transfers or for memory 

transfers. The advantage is that the load and store instructions used 

for reading and writing from memory can be used to input and 

output data from I/O registers. 
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Example Of I/O Interface 

• An example of an I/O interface unit is shown in block diagram form in Fig. It 

consists of two data registers called ports, a control register, a status register, bus 

buffers, and timing and control circuits. The interface communicates with the 

CPU through the data bus. The chip select and register select inputs determine 

the address assigned to the interface. The I/O read and write are two control 

lines that specify an input or output, respectively. The four registers 

communicate directly with the I/O device attached to the interface. 

• The I/O data to and from the device can be transferred into either port A or Port 

B. The interface may operate with an output device or with an input device, or 

with a device that requires both input and output. 

• If the interface is connected to a printer, it will only output data, and if it services 

a character reader, it will only input data. A magnetic disk unit transfers data in 

both directions but not at the same time, so the interface can use bidirectional 

lines. 

• Thus the transfer of data, control, and status information is always via the 

common data bus. The distinction between data, control, or status information is 

determined from the particular register with which the CPU communicates. 

Input-output Interface 



 

 

 

 

 

 

 

 
 

 

 

 

Figure: Example of I/O interface unit. 
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• The internal operations in a digital system are synchronized by 

means of clock pulses supplied by a common pulse generator.  

• Clock pulses are applied to all registers within a unit and all data 

transfers among internal registers occur simultaneously during the 

occurrence of a clock pulse.  

• Two units, such as a CPU and an I/O interface, are designed 

independently of each other. 

• Asynchronous data transfer between two independent units requires 

that control signals be transmitted between the communicating units 

to indicate the time at which data is being transmitted.  

• One way of achieving this is by means of a strobe pulse supplied by 

one of the units to indicate to the other unit when the transfer has to 

occur. 

Asynchronous Data Transfer 



Strobe Control 

• The strobe control method of asynchronous data transfer employs a 

single control line to time each transfer. The strobe may be activated 

by either the source or the destination unit. Figure (a) shows a 

source-initiated transfer. 

• The data bus carries the binary information from source unit to the 

destination unit. Typically, the bus has multiple lines to transfer an 

entire byte or word. The strobe is a single line that informs the 

destination unit when a valid data word is available in the bus. 

Asynchronous Data Transfer 

Figure: Source-initiated strobe for data transfer. 



• As shown in the timing diagram of Fig.(b), the source unit first 

places the data on the data bus. After a brief delay to ensure that the 

data settle to a steady value, the source activates the strobe pulse.  

• The information on the data bus and the strobe signal remain in the 

active state for a sufficient time period to allow the destination unit 

to receive the data. Often, the destination unit uses the falling edge of 

the strobe pulse to transfer the contents of the data bus into one of its 

internal registers.  

• The source removes the data from the bus a brief period after it 

disables its strobe pulse. Actually, the source does not have to change 

the information in the data bus. The fact that the strobe signal is 

disabled indicates that the data bus does not contain valued data. 

New valid data will be available only after the strobe is enabled 

again. 
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• Below Figure shows a data transfer initiated by the destination unit. In 

this case the destination unit activates the strobe pulse, informing the 

source to provide the data. The source unit responds by placing the 

requested binary information on the data bus. The data must be valid 

and remain in the bus long enough for the destination unit to accept it.  

• The falling edge of the strobe pulse can be used again to trigger a 

destination register. The destination unit then disables the strobe. The 

source removes the data from the bus. Similarly, the strobe of fig.could 

be a memory-read control signal from the CPU to a memory unit. The 

destination, the CPU, initiates the read operation to inform the memory, 

which is the source, to place a selected word into the data bus. 

Asynchronous Data Transfer 

Figure: Destination-initiated strobe for data transfer. 



Handshaking 

• The disadvantage of the strobe method is that the source unit that 
initiates the transfer has no way of knowing whether the 
destination unit has actually received the data item that was 
placed in the bus. 

• Similarly, a destination unit that initiates the transfer has no way 
of knowing whether the source unit has actually placed the data 
on the bus,. The handshake method solves this problem by 
introducing a second control signal that provides a reply to the 
unit that initiates the transfer. 

• Figure shows the data transfer procedure when initiated by the 
source. The two handshaking lines are data valid, which is generated 
by the source unit, and data accepted, generated by the destination 
unit. The timing diagram shows the exchange of signals between the 
two units. The sequence of events listed in part (c) shows the four 
possible states that the system can be at any given time. 
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Asynchronous Data Transfer 

Figure: source initiated transfer using handshaking. 



• The source unit initiates the transfer by placing the data on the bus 

and enabling its data valid signal. The data accepted signal is 

activated by the destination unit after it accepts the data from the bus.  

• The source unit then disables its data valid signal, which invalidates 

the data on the bus. The destination unit then disables its data 

accepted signal and the system goes into its initial state. The source 

does not send the next data item until after the destination unit shows 

its readiness to accept new data by disabling its data accepted signal. 

Asynchronous Data Transfer 



Figure: Destination initiated transfer using handshaking. 

Asynchronous Data Transfer 



• The destination-initiated transfer using handshaking lines is 

shown in Fig. Note that the name of the signal generated by the 

destination unit has been changed to ready for data to reflect its 

new meaning.  

• The source unit in this case does not place data on the bus until 

after it receives the ready for data signal from the destination unit. 

From there on, the handshaking procedure follows the same 

pattern as in the source-initiated case.  

• Note that the sequence of events in both cases would be identical 

if we consider the ready for data signal as the complement of data 

accepted. In fact, the only difference between the source-initiated 

and the destination-initiated transfer is in their choice of initial 

state. 
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• Data transfer to and from peripherals may be handled in one of three possible 

modes: 

1. Programmed I/O 

2. Interrupt-initiated I/O 

3. Direct memory access (DMA) 

• Programmed I/O operations are the result of I/O instructions written in the 

computer program. Each data item transfer is initiated by an instruction in the 

program. Usually, the transfer is to and from a CPU register and peripheral.  

• Other instructions are needed to transfer the data to and from CPU and 

memory. Transferring data under program control requires constant 

monitoring of the peripheral by the CPU. Once a data transfer is initiated, the 

CPU is required to monitor the interface to see when a transfer can again be 

made.  

• It is up to the programmed instructions executed in the CPU to keep close tabs 

on everything that is taking place in the interface unit and the I/O device. 
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• Transfer of data under programmed I/O is between CPU and 

peripheral. In direct memory access (DMA), the interface transfers 

data into and out of the memory unit through the memory bus.  

• The CPU initiates the transfer by supplying the interface with the 

starting address and the number of words needed to be transferred 

and then proceeds to execute other tasks. When the transfer is made, 

the DMA requests memory cycles through the memory bus.  

• When the request is granted by the memory controller, the DMA 

transfers the data directly into memory. The CPU merely delays its 

memory access operation to allow the direct memory I/O transfer. 

•  Since peripheral speed is usually slower than processor speed, I/O-

memory transfers are infrequent compared to processor access to 

memory. 

Modes Of Transfer 



• An example of data transfer from an I/O device through an interface into the 

CPU is shown in Fig. The device transfers bytes of data one at a time as they 

are available. When a byte of data is available, the device places it in the I/O 

bus and enables its data valid line.  

• The interface accepts the byte into its data register and enables the data 

accepted line. The interface sets a it in the status register that we will refer to as 

an F or “flag” bit. The device can now disable the data valid line, but it will not 

transfer another byte until the data accepted line is disabled by the interface. 

• A program is written for the computer to check the flag in the status register to 

determine if a byte has been placed in the data register by the I/O device. This is 

done by reading the status register into a CPU register and checking the value 

of the flag bit.  

• If the flag is equal to 1, the CPU reads the data from the data register. The flag 

bit is then cleared to 0 by either the CPU or the interface, depending on how the 

interface circuits are designed.  

Example Of Programmed I/O 
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• Once the flag is cleared, the interface disables the data accepted line 

and the device can then transfer the next data byte. 

• A flowchart of the program that must be written for the CPU is shown 

in Fig. It is assumed that the device is sending a sequence of bytes that 

must be stored in memory. The transfer of each byte requires three 

instructions: 

1. Read the status register. 

2. Check the status of the flag bit and branch to step 1 if not set or to step      

    if set. 

3. Read the data register. 

• Each byte is read into a CPU register and then transferred to memory 

with a store instruction. A common I/O programming task is to 

transfer a block of words form an I/O device and store them in a 

memory buffer. 
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Figure: Data transfer form I/O device to CPU 

Figure: Flowchart for CPU program to input data. 
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Interrupt-initiated I/O 

• An alternative to the CPU constantly monitoring the flag is to let the 

interface inform the computer when it is ready to transfer data. This 

mode of transfer uses the interrupt facility.  

• While  the CPU is running a program, it does not check the flag. 

However, when the flag is set, the computer is momentarily interrupted 

from proceeding with the current program and is informed of the fact 

that the flag has been set.  

• The CPU deviates from what it is doing to take care of the input or 

output transfer. After the transfer is completed, the computer returns to 

the previous program to continue what it was doing before the 

interrupt.  

• The CPU responds to the interrupt signal by storing the return address 

from the program counter into a memory stack and then control 

branches to a service routine that processes the required I/O transfer. 
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• The way that the processor chooses the branch address of the 

service routine varies from tone unit to another. In principle, there 

are two methods for accomplishing this.  

• One is called vectored interrupt and the other, no vectored 

interrupt. In a non vectored interrupt, the branch address is 

assigned to a fixed location in memory.  

• In a vectored interrupt, the source that interrupts supplies the 

branch information to the computer. This information is called the 

interrupt vector. 
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Daisy-chaining Priority 

• The daisy-chaining method of establishing priority consists of a 

serial connection of all devices that request an interrupt. The device 

with the highest priority is placed in the first position, followed by 

lower-priority devices up to the device with the lowest priority, 

which is placed last in the chain.  

• This signal is received by device 1 at its PI (priority in) input. The 

acknowledge signal passes on to the next device through the PO 

(priority out) output only if device 1 is not requesting an interrupt.  

• If device 1 has a pending interrupt, it blocks the acknowledge signal 

from the next device by placing a 0 in the PO output. It then 

proceeds to insert its own interrupt vector address (VAD) into the 

data bus for the CPU to use during the interrupt cycle. 

Priority Interrupt 



• A device with a 0 in its PI input generates a 0 in its PO output to 

inform the next-lower priority device that the acknowledge signal 

has been blocked.  

• A device that is requesting an interrupt and has a 1 in its PI input will 

intercept the acknowledge signal by placing a 0 in its PO output. If 

the device does not have pending interrupts, it transmits the 

acknowledge signal to  the next device 

Figure: Daisy chain priority interrupt. 
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• by placing a 1 in its PO output. Thus the device with PI = 1 and PO 

= 0 is the one with the highest priority that is requesting an interrupt, 

and this device places its VAD on the data bus.  

• The daisy chain arrangement gives the highest priority to the device 

that receives the interrupt acknowledge signal from the CPU. The 

farther the device is from the first position, the lower is its priority. 

Priority Interrupt 



Parallel Priority Interrupt 

• The parallel priority interrupt method uses a register whose bits are 
set separately by the interrupt signal from each device. Priority is 
established according to the position of the bits in the register. In 
addition to the interrupt register the circuit may include a mask 
register whose purpose is to control the status of each interrupt 
request. The mask register can be programmed to disable. 

• The device sets its RF flip-flop when it wants to interrupt the CPU. 
The output of the RF flip-flop goes through an open-collector 
inverter, a circuit that provides the wired logic for the common 
interrupt line. If PI = 0, both PO and the enable line to VAD are 
equal to 0, irrespective of the value of RF.  

• If PI = 1 and RF = 0, then PO = 1 and the vector address is disabled. 
This condition passes the acknowledge signal to the next device 
through PO. The device is active when PI = 1 and RF = 1. This 
condition places a 0 in PO and enables the vector address for the data 
bus. It is assumed that each device has its own distinct vector 
address. The RF flip-flop is reset after a sufficient delay to ensure 
that the CPU has received the vector address. 

Priority Interrupt 



 

 

 

 

 
 

 

 

Figure: One stage of the daisy chain priority arrangement. 

• lower-priority interrupts while a higher-priority device is being 
serviced. It can also provide a facility that allows a high-priority 
device to interrupt the CPU while a lower-priority device is being 
serviced. 
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priority logic 

• The priority logic for a system of four interrupt sources is shown in 

Fig. It consists of an interrupt register whose individual bits are set 

by external conditions and cleared by program instructions.  

• The magnetic disk, being a high-speed device, is given the highest 

priority. The printer has the next priority, followed by a character 

reader and a keyboard. The mask register has the same number of 

bits as the interrupt register.  

• By means of program instructions, it is possible to set or reset any 

bit in the mask register. Each interrupt bit and its corresponding 

mask bit are applied to an AND gate to produce the four inputs to a 

priority encoder.  

• In this way an interrupt is recognized only if its corresponding 

mask bit is set to 1 by the program. The priority encoder generates 

two bits of the vector address, which is transferred to the CPU. 
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Priority Interrupt 

Figure: Priority interrupt hardware. 



• Another output from the encoder sets an interrupt status flip-flop 

IST when an interrupt that is not masked occurs. The interrupt 

enable flip-flop IEN can be set or cleared by the program to provide 

an overall control over the interrupt system.  

• The outputs of IST ANDed with IEN provide a common interrupt 

signal for the CPU. The interrupt acknowledge INTACK signal from 

the CPU enables the bus buffers in the output register and a vector 

address VAD is placed into the data bus. 
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Direct Memory Access (DMA) 

• The transfer of data between a fast storage device such as magnetic disk and 

memory is often limited by the speed of the CPU. Removing the CPU from 

the path and letting the peripheral device manage the memory buses directly 

would improve the speed of transfer.  

• This transfer technique is called direct memory access (DMA). During DMA 

transfer, the CPU is idle and has no control of the memory buses. A DMA 

controller takes over the buses to manage the transfer directly between the I/O 

device and memory.  

• The CPU may be placed in an idle state in a variety of ways. One common 

method extensively used in microprocessors is to disable the buses through 

special control signals. Figure  shows two control signals in the CPU that 

facilitate the DMA transfer.  

Direct Memory Access (DMA) 

Figure : CPU bus signals for DMA transfer. 



• The bus request (BR) input is used by the DMA controller to 

request the CPU to relinquish control of the buses. When this input 

is active, the CPU terminates the execution of the current 

instruction and places the address bus, the data bus, and the read 

and write lines into a high-impedance state behaves like an open 

circuit, which means that the output is disconnected and dies not 

have a logic significance.  

• The CPU activates the Bus grant (BG) output to inform the external 

DMA that the buses are in the high-impedance state. The DMA that 

originated the bus request can now take control of the buses to 

conduct memory transfers without processor intervention.  

• When the DMA terminates the transfer, it disables the bus request 

line. The CPU disables the bus grant, takes control of the buses, and 

returns to its normal operation. 
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• The DMA controller needs the usual circuits of an interface to 

communicate with the CPU and I/O device. In addition, it needs an 

address register, a word count register, and a set of address lines. The 

address register are used for direct communication with the memory. 

•  The word count register specifies the number of words that must be 

transferred. The data transfer may be done directly between the device 

and memory under control of the DMA. Figure shows the block 

diagram of a typical DMA controller.  

• The unit communicates with the CPU via the data bus and control 

lines. The registers in the DMA are selected by the CPU through the 

address bus by enabling the DS (DMA select) and RS (register select) 

inputs. The RD (read) and WR (write) inputs are bidirectional.  

• When the BG (bus grant) input is 0, the CPU can communicate with 

the DMA registers through the data bus to read from or write to the 

DMA registers.  
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• When BG = 1, the CPU has relinquished the buses and the DMA can 

communicate directly with the memory by specifying an address in the 

address bus and activating the RD or WR control. the DMA communicates 

with the external peripheral through the request and acknowledge lines by 

using a prescribed handshaking procedure.  

• The DMA controller has three registers: an address register, a word count 

register, and a control register. The address register contains an address to 

specify the desired location in memory. The address bits go through bus 

buffers into the address bus. The address register is incremented after each 

word that is transferred to memory.  

• The word count register is incremented after each word that is transferred to 

memory. The word count register holds the number of words to be 

transferred. This register is decremented by one after each word transfer and 

internally tested for zero.  

• The control register specifies the mode of transfer. All registers in the DMA 

appear to the CPU as I/O interface registers. Thus the CPU can read from or 

write into the DMA registers under program control via the data bus. 
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• The DMA is first initialized by the CPU. After that, the DMA starts 
and continues to transfer data between memory and peripheral unit 
until an entire block is transferred. The initialization process is 
essentially a program consisting of I/O instructions that include the 
address for selecting particular DMA registers. The CPU initializes 
the DMA by sending the following information through the data bus: 

1.The starting address of the memory block where data are    

   available (for read) or where data are to be stored (for write) 

2.The word count, which is the number of words in the memory 

    block 

3. Control to specify the mode of transfer such as read or write 

4. A control to start the DMA transfer 

• The starting address is stored in the address register. The word count 
is stored in the word count register, and the control information in 
the control register. Once the DMA is initialized, the CPU stops 
communicating with the DMA unless it receives an interrupt signal 
or if it wants to check how many words have been transferred. 
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• The CPU communicates with the DMA through the address and data 

buses as with any interface unit. The DMA has its own address, 

which activates the DS and RS lines. The CPU initializes the DMA 

through the data bus. Once the DMA receives the start control 

command, it can start the transfer between the peripheral device. 

• When the peripheral device sends a DMA request, the DMA 

controller activates the BR line, informing the CPU to relinquish the 

buses. The CPU responds with its BG line, informing the DMA that 

its buses are disabled. The DMA then puts the current value of its 

address register into the address bus, initiates the RD or WR signal, 

and sends a DMA acknowledge to the peripheral device.  

• Note that the RD and WR lines in the DMA controller are 

bidirectional. The and the memory. direction of transfer depends on 

the status of the BG line. When BG line. When BG = 0, the RD and 

WR are input lines allowing the CPU to communicate with the 

internal DMA registers.  
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• When BG = 1, the RD and WR and output lines from the DMA 

controller to the random-access memory to specify the read or write 

operation for the data. 

• When the peripheral device receives a DMA acknowledge, it puts a 

word in the data us (for write) or receives a word from the data bus 

(for read). Thus the DMA controls the read or write operations and 

supplies the address for the memory. The peripheral unit can then 

communicate with memory through the data bus for direct transfer 

between the two units while the CPU is momentarily disabled. 

DMA Transfer 



Figure: DMA transfer in a computer system. 

DMA Transfer 



• For each word that is transferred, the DMA increments its address 

register and decrements its word count register. If the word count does 

not reach zero, the DMA checks the request line coming from the 

peripheral. For a high-speed device, the line will be active as soon as 

the previous transfer is completed.  

• A second transfer is then initiated, and the process continues until the 

entire block is transferred. If the peripheral speed is slower, the DMA 

request line may come somewhat later. In this case the DMA disables 

the bus request line so that the CPU can continue to execute its 

program. When the peripheral requests a transfer, the DMA requests the 

buses again. 

• It the word count register reaches zero, the DMA stops any further 

transfer and removes its bus request. It also informs the CPU of the 

termination by means of an interrupt. When the CPU responds to the 

interrupt, it reads the content of the word count register.  

DMA Transfer 



MODULE-V 

 

 

PIPELINE: PARALLEL PROCESSING 



Course Outcomes 

CO 1 Understand the Pipelining and Parallel processing units. 

CO 2 Classify the pipelining, arithmetic pipeline and 

instruction pipeline. 

CO 3 Describe the Characteristics of multiprocessors and inter 

connection structures.  

CO 4 Classify the different inter processor arbitration, inter 

processor communications and synchronization. 



Contents 

Pipeline:  

• Parallel processing 

• Pipelining-arithmetic pipeline 

• Instruction pipeline 

Multiprocessors:  

• Characteristics of multiprocessors 

• Inter connection structures 

• Inter processor arbitration 

• Inter processor communication and 

synchronization. 



• Pipelining is a technique of decomposing a sequential process 

into sub operations, 

• with each sub process being executed in a special dedicated 

segment that operates concurrently with all other segments. 

• Throughput: The amount of processing that can be 

accomplished during a given interval of time . 

 

Pipelining 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       Fig: Processor with Multiple Functional Units 

 

Parallel Processing 



Parallel Processing 

• M.J.Flynn  Classify the parallel processing based on the number of 

instructions and data items that are manipulated simultaneously . 

• Instruction Stream 

    -  Sequence of Instructions read from memory . 

• Data Stream 

    -  Operations performed on the data in the processor . 

• Flynn‟s Classification divides computers into four major groups: 

    

 



Parallel Processing 

• Characteristics 

     - Standard von Neumann machine 

     - Instructions and data are stored in memory 

     - One operation at a time 
     - Parallel processing is achieved by means of multiple functional units or by  
       pipeline. 
 
• Limitations 

        -   Von Neumann bottleneck 

        -   Maximum speed of the system is limited by the Memory Bandwidth 

        -   Limitation on Memory Bandwidth  

        -   Memory is shared by CPU and I/O 

 

SISD  Computer  Systems 



Parallel Processing 

Characteristics 
 
     - There is no computer at present that can be classified as MISD . 

MISD Computer System 



Parallel Processing 

SIMD Computer System 

Characteristics 
     - Only one copy of the program exists 
     - A single controller executes one instruction at a time 



Parallel Processing 

Characteristics 
 
     - Multiple processing units 
     - Execution of  multiple instructions on multiple data. 
     - Multiprocessors and multi computers are MIMD computers. 

MIMD Computer System 



• The parallel processing Is achieved by  

1)Pipeline Processing 

2) Vector Processing 

3) Array processors 

Pipelining : 
• A technique of decomposing a sequential process into sub operations,  
     with each sub process being executed in a special  dedicated segment  
     that operates concurrently with all other segments. 
 
   Example  
      Ai * Bi + Ci    for i = 1, 2, 3, ... , 7 
 

          R1  Ai,  R2  Bi                Load Ai and Bi 

          R3  R1 * R2,  R4  Ci      Multiply and load Ci 

          R5  R3 + R4                          Add  
 

Parallel Processing 



Parallel Processing 

Fig: Pipe Line Processing 

Pipelining  
 



Parallel Processing 

Table: Content of register in pipeline 



Parallel Processing 

Fig : Four-Segment Pipeline 

General  Pipeline 



Parallel Processing 

General  Pipeline 

Fig: Space-Time Diagram for pipeline 



n:   Number of tasks to be performed 

K:   number of segments 

Conventional Machine (Non-Pipelined) 

tn:    Clock cycle  

t1:    Time required to complete the n tasks 

t1 = n * tn 

 

Pipelined Machine (k stages) 

tp:   Clock cycle (time to complete each suboperation) 

tk:   Time required to complete the n tasks 

tk = (k + n - 1) * tp 

 

Speedup 

Sk:   Speedup 

 

         Sk = n*tn / (k + n - 1)*tp 

 
 

 

Parallel Processing 
Pipeline  Speedup 



 

Example 

     - 4-stage pipeline 

     - sub opertion in each stage;  tp = 20nS 

     - 100 tasks to be executed 

     - 1 task in non-pipelined system;  20*4 = 80nS 

       Pipelined System 

                     (k + n - 1)*tp = (4 + 99) * 20 = 2060nS 

 

        Non-Pipelined System 

                n*k*tp = 100 * 80 = 8000nS 

        Speedup 

                Sk = 8000 / 2060 = 3.88  

        4-Stage Pipeline is basically identical to the system 

        with 4 identical function units  

 

Pipeline  Speedup 

Parallel Processing 



General  Pipeline 

Fig: Multiple Functional Units 

There are two are as of computer design where the pipeline 

organization is use full. 

 1. Arithmetic Pipeline 

 2. Instruction Pipeline 

Parallel Processing 



Arithmetic Pipeline 

• The Arithmetic pipeline divides an arithmetic operation into sub 

operations for execution in the pipeline segments. 

• The inputs for the floating point adder pipeline : 

                         X = A x 2a 

                         Y = B x 2b 

• Here A and B are the Fractions that represents the mantissa and a 

and b are the exponents. 

• The floating point addition and subtraction divided into four 

segments: 

 1.Compare the exponents 

 2.Align the mantissa 

 3.Add or subtract the mantissa 

 4.Normalize the result 



• The following numerical example may clarify the sub operations 

performed in each segment. For simplicity, we use decimal numbers, 

although Fig.  refers to binary numbers. Consider the two normalized 

floating-point numbers: 

X = 0. 9504 X 10' 

Y = 0.8200 X 1<J1 

• The two exponents are subtracted in the first segment to obtain 3 - 2 = 1. 

The larger exponent 3 is chosen as the exponent of the result. The next 

segment shifts the mantissa of Y to the right to obtain 

X = 0.9504 X 103 

Y = 0. 0820 X 103 

• This aligns the two mantissas under the same exponent. The addition of the 

two mantissas in segment 3 produces the sum 

Z = 1 . 0324 X 10„ 

• The sum is adjusted by normalizing the result so that it has a fraction with a 

nonzero first digit. This is done by shifting the mantissa once to the right 

and incrementing the exponent by one to obtain the normalized sum. 

Z = 0.10324 X 10' 

Arithmetic Pipeline 



Arithmetic Pipeline 

Fig  : Pipeline for Floating point addition and Subtraction 



• The comparator, shifter, adder-sub tractor, incrementer, and 

decrementer in the floating-point pipeline are implemented with 

combinational circuits. Suppose that the time delays of the four 

segments are t, = 60 ns, t2 = 70 ns, t3 = 100 ns, t4 = 80 ns, and 

the interface registers have a delay of t, = 10 ns.  

• The clock cycle is chosen to be t, = t3 + t, = 110 ns. An 

equivalent non pipeline floating point adder-sub tractor will 

have a delay time t, = t, + t2 + t, + t4 + t, = 320 ns. In this case 

the pipelined adder has a speedup of 32011 10 = 2. 9 over the 

Non pipelined adder 

Arithmetic Pipeline 



Instruction Pipeline 

• Pipeline processing can occur not only in the data stream but in the 

instruction stream as well. 

• An instruction pipeline reads consecutive instructions from memory 

while previous instructions are being executed in other segments. 

• This causes the instruction fetch and execute phases to overlap and 

perform simultaneous operations . 

• One disadvantage with this scheme is that an instruction may cause 

a branch out of sequence. In this case the pipeline must be empted 

and all instructions read from memory after branch. 

• A computer with an instruction fetch unit and an instruction 

execution unit designed to provide a two segment pipeline. 

 



• In general any computer system needs six steps  to process 

any instruction . 

1 . Fetch an instruction from memory 

2 . Decode the instruction 

3 . Calculate the effective address of the operand 

4 . Fetch the operands from memory 

5 . Execute the operation 

6 . Store the result in the proper place 

• Some instructions skip some phases 

  - Effective address calculation can be done in the part of the decoding 

phase . 

  -  Storage of the operation result into a register is done automatically in 

the execution phase . 

 

Instruction Pipeline 



Instruction Pipeline 

Fig: Four-segment CPU pipeline 



• Reduces the instruction pipeline into four segments. Figure shows 

how the instruction cycle in the CPU can be processed with a four-

segment pipeline. While an instruction is being executed in segment 

4, the next instruction in sequence is busy fetching an operand from 

memory in segment 3.  

• The effective address may be calculated in a separate arithmetic 

circuit for the third instruction, and whenever the memory is 

available, the fourth and all subsequent instructions can be fetched 

and placed in an instruction FIFO.  

• Thus up to four sub operations in the instruction cycle can overlap 

and up to four different instructions can be in progress of being 

processed at the same time. 

• Figure shows the operation of the instruction pipeline. The time in 

the horizontal axis is divided into steps of equal duration. The four 

segments are represented in the diagram with an abbreviated symbol. 

Instruction Pipeline 



1. FI is the segment that fetches an instruction. 

2. DA is the segment that decodes the instruction and calculates the    

    effective address. 

3. FO is the segment that fetches the operand. 

4. EX is the segment that executes the instruction. 

• It is assumed that the processor has separate instruction and data memories so 

that the operation in FI and FO can proceed at the same time. In the absence 

of a branch instruction, each segment operates on different instructions. Thus, 

in step 4, instruction 1 is being executed in segment EX; the operand for 

instruction 2 is being fetched in segment FO; instruction 3 is being decoded 

in segment DA; and instruction 4 is being fetched from memory in segment 

FI. 

• Assume now that instruction 3 is a branch instruction. As soon as this 

instruction is decoded in segment DA in step 4, the transfer from FI to DA of the 

other instructions is halted until the branch instruction is executed in step 6. If 

the branch is taken, a new instruction is fetched in step 7. If the branch is not 

taken, the instruction fetched previously in step 4 can be used. The pipeline then 

continues until a new branch instruction is encountered. 

Instruction Pipeline 



pipeline conflicts: 

In general, there are three major difficulties that cause the instruction 

pipeline to deviate from its normal operation. 

1. Resource conflicts caused by access to memory by two segments at the 

same time. Most of these conflicts can be resolved by using separate 

instruction and data memories. 

2. Data dependency conflicts arise when an instruction depends on the 

result of a previous instruction, but this result is not yet available. 

3. Branch difficulties arise from branch and other instructions that 

change the value of PC . 

Figure: Timing of instruction pipeline. 

Instruction Pipeline 



Parallel Computing  

•    Simultaneous use of multiple processors, all components of a single  

architecture, to solve a task.  

•   Typically processors identical, single user . 

 

Distributed Computing  

•    Use of a network of processors, each capable of being  viewed as a  

computer in its own right, to solve a problem.  

•    Processors  may be heterogeneous, multiuser, usually individual 

task is assigned   to a single processors . 

 

Concurrent Computing 

•    All of the above 

 

Characteristics of Multiprocessors 
  



Supercomputing 

• Use of fastest, biggest machines to solve big, computationally  

 intensive problems.  

• Historically machines were vector computers,   but parallel/vector or 

parallel becoming the norm. 

Pipelining  

• Breaking a task into steps performed by different units, and 

multiple  inputs stream through the units, with next input starting in 

a unit when previous input done with the unit but not necessarily 

done with the task. 

Vector Computing  

• Use of vector processors, where operation such as multiply  broken 

into several steps, and is applied to a stream of operands (“vectors”). 

Most common special case of pipelining. 

 

Characteristics of Multiprocessors 
  



Multiprocessor computer 

– Execute a number of different application tasks in parallel 

– Execute subtasks of a single large task in parallel 

– All processors have access to all of the memory – shared-

memory multiprocessor 

– Cost – processors, memory units, complex interconnection 

networks 

     - Reliable, Single OS 

Multicomputers 

– Each computer only have access to its own memory 

– Exchange message via a communication network – message-

passing multicomputers 

     - Reliable ,Different OS 

Characteristics of Multiprocessors 
  



• To achieve benefit of multiprocessing the computations can be  

 processed in two ways 

     1) multiple independent jobs can be made. 

     2) A single job can be partitioned into multiple parallel tasks. 

• Multiprocessors are classified into two types based on their memory 
organization. 

 1)  Tightly Coupled System 

     - Tasks and/or processors communicate in a highly 
synchronized fashion 

     - Communicates through a common shared memory 

     - Each processor may have cache memory.  

     - Shared memory system 

     - Efficient when higher degree of interaction between tasks. 

 

Multiprocessors and Multicomputers 

Characteristics of Multiprocessors 
  



2 ) Loosely Coupled System 

     - Tasks or processors do not communicate in a  synchronized 

fashion 

     - Each processor has its own private local memory. 

     - Information is shared among processor through message 

passing scheme. 

     -  A packet consists of an address, the data content and some 

error detection code. 

     - Distributed memory system 

     -  Efficient when the interaction between the tasks are 

minimal. 

 

Multiprocessors and Multicomputers 

Characteristics of Multiprocessors 
  



MEMORY 

– Shared (Global) Memory 

  - A Global Memory Space accessible by all processors 
     - Processors may also have some local memory 

– Distributed (Local, Message-Passing) Memory 

     - All memory units are associated with processors  
     - To retrieve information from another processor's  
       memory a message must be sent there    

– Uniform Memory   

     - All processors take the same time to reach all memory locations 

– Nonuniform (NUMA) Memory 

     - Memory access is not uniform  

 

Network 

Processors 

Memory 
SHARED MEMORY 

Network 

Processors/Memory 

DISTRIBUTED MEMORY 

Characteristics of Multiprocessors 
  



 

 

 

 
 

Characteristics 

•    All processors have equally direct access to one  

•    large memory address space 

Example systems 

    - Bus and cache-based systems: Sequent Balance, Encore Multimax 

    - Multistage IN-based systems: Ultracomputer, Butterfly, RP3, HEP 

    - Crossbar switch-based systems: C.mmp, Alliant FX/8 

Limitations 

•       Memory access latency; Hot spot problem 

Shared  Memory  Multiprocessors 

Characteristics of Multiprocessors 
  



 

 

 
 

Characteristics 

   - Interconnected computers 

   - Each processor has its own memory, and communicate via message-
passing 

Example systems 

- Tree structure: Teradata, DADO 

- Mesh-connected: Rediflow, Series 2010, J-Machine 

-   Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III 

Limitations 

-   Communication overhead;  Hard to programming 

Message-Passing  Multiprocessors 



 

1) Time-Shared Common Bus 

2) Multiport Memory 

3) Crossbar Switch 

4) Multistage Switching Network 

5) Hypercube System  

 

Interconnection  Structures 



Time-Shared Common Bus 

Figure: Time-shared common bus organization. 

• A common-bus multiprocessor system consists of a number of 

processors connected through a common path to a memory unit. A 

time-shared common bus for five processors is shown in Fig. Only 

one processor can communicate with the memory or another 

processor at any given time. 



Interconnection  Structures 

Time-Shared Common Bus 

• Transfer operations are conducted by the processor that is in control 

of the bus at the time. Any other processor wishing to initiate a 

transfer must first determine the availability status of the bus, and 

only after the bus becomes available can the processor address the 

destination unit to initiate the transfer. 

• A command is issued to inform the destination unit what operation is 

to be performed . The receiving unit recognizes its address in the bus 

and responds to the control signals from the sender, after which the 

transfer is initiated. 

• A single common-bus system is restricted to one transfer at a time 



Interconnection  Structures 

Fig  : system  bus  structure  for  multiprocessors  



• Here we have a number of local buses each connected to its own 

local memory and to one or more processors. Each local bus may be 

connected to a CPU, an IOP, or any combination of processors. A 

system bus controller links each local bus to a common system bus . 

The IO devices connected to the local IOP, as well as the local 

memory, are available to the local processor. 

• The memory connected to the common system bus is shared by all 

processors. If an IOP is connected directly to the system bus, the VO 

devices attached to it may be made available to all processors. Only 

one processor can communicate with the shared memory and other 

common resources through the system bus at any given time. 

• The other processors are kept busy communicating with their local 

memory and IO devices. Part of the local memory may be designed 

as a cache memory attached to the CPU in this way, the average 

access time of the local memory can be made to approach the cycle 

time of the CPU to which it is attached. 

Interconnection  Structures 



Interconnection  Structures 

Multiport Memory 

• A multiport memory system employs separate buses between each 
memory module and each CPU. 

• for four CPUs and four memory modules (MMs). Each processor bus 
is connected to each memory module. A processor bus consists of the 
address, data, and control lines required to communicate with 
memory. The memory module is said to have four ports and each port 
accommodates one of the buses. 

• Thus CPU 1 will have priority over CPU 2, CPU 2 will have priority 
over CPU 3, and CPU 4 will have the lowest priority. 

• The advantage of the multi port memory organization is the higher 

     rate that can be achieved because of the multiple paths between    

    processors and memory. The disadvantage is that it requires  

    expensive memory control logic and a large number of cables and 

    connectors. 

 

 

 

 

 

 



Interconnection  Structures 

Fig: Multiport   Memory 



Crossbar Switch 

• The cross bar switch consists of a number of cross points that are 

placed at intersection between processor bus and memory module 

paths. 

• The small square in each cross point is a switch that determines  the 

path from a processor to memory module. 

• Each switch contains control logic to set up the transfer  path 

between a processor and memory. 

• It determines the address and it resolves the multiple requests for 

access to the same memory module on a predetermined priority 

basis. 

• A cross bar switch organization support simultaneous transfers from 

all memory modules. 

Interconnection  Structures 



Interconnection  Structures 

Fig : Crossbar Switch 



Interconnection  Structures 

Fig: Block Diagram of Crossbar Switch 



Interconnection  Structures 

Multistage Switching Network 

• The basic component of a multistage network is a two input  , two 

output inter change switch. 

• The 2 X 2 Switch has two inputs and A and B and Two outputs 0 

and 1. 

 

 

 

 

 

 

 

                                Fig : operation of 2 X 2 Switch 



Interconnection  Structures 

Fig : Binary tree with 2 X 2 switch 

connectors. 



Interconnection  Structures 

Fig : 8 X 8 Omega Switching Network 



Hypercube Interconnection 

• The hypercube or binary n-cube multiprocessor structure is a loosely 

coupled system composed of N=2n processors interconnected in an n 

dimensional binary cube. 

• each processor forms a node of the cube. 

• In each node it contains processor ,memory and I/O Interface. 

• Each processor has direct communication paths to n other neighbor 

processors. 

• There are 2n  distinct n-bit binary address that can be assigned to the 

processors. 

• Each processor address differs from that of each of its n neighbors 

by exactly one bit position. 

• The routing procedure developed by using XOR operation. 

Interconnection  Structures 



Interconnection  Structures 

Fig: Hypercube Structure for n=1,2,3 



• There are two arbitrations 
  1. Serial (daisy-chain) arbitration. 

  2. Parallel Arbitration 

Serial (daisy-chain) arbitration. 

 

 

 

 

                         

  Fig : Serial Arbitration  

Inter Processor Arbitration 



Inter Processor Arbitration 

• The processors connected to the system bus are assigned priority 

according to their position along the priority control line. 

• The device closest to the priority line is assigned the highest 

priority. 

• When multiple devices concurrently request the use of the bus , the 

device with the highest priority is granted access to it. 

• In the above figure shows the daisy chain connection of four 

arbiters. Each processor contains its own arbiter logic with priority 

in and priority out . 

• The Priority out of each processor (PO) is connected to the priority 

in (PI) of the next level priority arbiter. 

• The PI of the highest-priority unit is maintained at a logic 1 value. 

 



Inter Processor Arbitration 

• The PO output for a particular arbiter is equal to 1 if its PI input is 

equal to 1 and the processor associated with the arbiter logic is not 

requesting control of the bus. 

• If the processor requests control of the bus and the corresponding 

arbiter finds its PI input equal to 1 , it sets its PO output to 0. 

• Lower-priority arbiters receive a 0 in PI and generates  a 0 in PO. 

• The processor whose arbiter has a PI=1 and PO =0 is the one that 

is given the control of the system bus. 

• A processor may be in the middle of a bus operation when a higher 

priority processor request the bus. The lower-priority processor 

must complete its bus operation before it release control of the bus. 

 



Inter Processor Arbitration 

Parallel Arbitration Logic 

Fig:  Parallel Arbitration 



• The parallel bus arbitration technique uses an external priority 

encoder and a decoder. 

• Each bus arbiter in the parallel scheme has a bus request output 

line and a bus acknowledge input line. 

• Each arbiter enables the request line when its processor is 

requesting access to the system bus. 

• The processor takes control of the bus if its acknowledge input 

line is enabled. 

 

Inter Processor Arbitration 



 

 

 

 

 

 

 

 

                   Fig: Shared Memory Communication 

Inter processor communication and synchronization 



Fig:  Shared Memory Communication with Interrupt 

Inter processor communication and synchronization 



Interprocessor Synchronization 

In multiprocessor system communication refers to the exchange of 

data between different processes. 

Synchronization is the process of where the data used to 

communicate between processor is control information. 

Synchronization is needed to enforce the correct sequence of 

processes and to ensure mutually exclusive access to shared writable 

data. 

Mutual Exclusion with a Semaphore 
Mutual Exclusion 
One processor to exclude or lock out access to shared resource by    
other processors when it is in a Critical Section . 
Critical Section  
is a program sequence that once begun, must  Complete execution 
before another processor accesses the same shared resource. 
  

 

Inter processor communication and synchronization 



Semaphore 
A binary variable 
     - 1:  A processor is executing a critical section, that not available 
to other processors . 
     - 0:  Available to any requesting processor 
Software controlled Flag that is stored in memory that all processors 
can be access . 

Testing and Setting the Semaphore 
Avoid two or more processors test or set the same semaphore 
 May cause two or more processors enter the same critical section at 
the same time . 
 Must be implemented with an indivisible operation 
                R <- M[SEM]             / Test semaphore / 
                M[SEM] <- 1              / Set semaphore / 

 

Inter processor communication and synchronization 



 

• These are being done while locked, so that other processors cannot 
test  and set while current processor is being executing these 
instructions. 

 

• If R=1, another processor is executing the critical section, the 
processor executed this instruction does not access the                             
shared memory  . 

 

•  If R=0, available for access, set the semaphore to 1 and access       
The last instruction in the program must clear the semaphore . 

Inter processor communication and synchronization 



Inter processor communication and synchronization 
 
• Communication of control information between processors 

to enforce the correct sequence of processes 

• To ensure mutually exclusive access to shared writable data 

• Hardware Implementation 

• Mutual Exclusion with a Semaphore 



• Mutual Exclusion 

 
• One processor to exclude or lock out access to shared resource by 

other processors when it is in a Critical Section 

 
• Critical Section is a program sequence that, once begun, must 

complete  execution  before  another  processor  accesses  the same 

shared resource 

Inter processor communication and synchronization 
 



Semaphore 

 

•binary variable 

 

1: A processor is executing a critical section, that not available 
to other processors 
INTER CONNECTION 

0: Available to anyTrequestingEprocessor software controlled Flag 

that is stored in memory that all processors can be access 

Inter processor communication and synchronization 



• Testing and Setting the Semaphore 

• Avoid two or more processors test or set the same 

semaphore 

• May cause two or more processors enter the 

• same critical section at the same time 

• Must be implemented with an indivisible operation 

       Inter processor communication  



• Shared data leads to another problem in a multiprocessor machine in the 

presence of multiple caches means that copies of shared data may reside in 

several caches. 

• When any processor writes to a shared variable in its own cache, all other 

caches that contain a copy of that variable will then have the old, incorrect 

value. 

• They must be informed of the change so that they can either update their 

copy to the new value or invalidate it. 

• Cache coherence is defined as the situation in which all cached copies of 

shared data have the same value at all times.                       

1)Write Through:  

        1)Broad casting of the new value to all caches. 

        2)Invalidation of copies. 

2)Write Back : 

    - Master slave mechanism  

   - Invalidate all other caches including memory. 

 

Cache coherence 



Cache coherence 



Cache coherence 


