
DATABASE MANAGEMENT SYSTEMS
Course code:ACSB08

B.Tech IV semester
Regulation: IARE R-18

BY
Mr. U. Sivaji

Assistant Professors
Mr. N PoornaChandra Rao, Mr. N Bhaswanth, Ms. B Ramya sree, Ms. K Mayuri,

Ms. B Vijaya Durga

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043 1

CO’s Course outcomes

CO1 Describe purpose of database systems, languages, users,
architecture and models such as ER model, relational model.

CO2 Determine relational algebra, relational calculus and
expressive power of algebra and calculus.

CO3 Understand sql – data definition commands, manipulation
commands, relational database design and normal forms.

CO4 Explore the concept of Transaction States, Concurrency

Control, Deadlock Handling and Recovery mechanisms.

CO5 Knowledge about the Physical Storage Media, Indexing and

Hashing, and Query Processing.

2

MODULE– I
CONCEPTUAL MODELING INTRODUCTION LAPLACE

3

CLOs Course Learning Outcome

CLO1 Describe the Purpose of Database Systems, Data

Models, and View of Data.

CLO2 Summarize the concept of Database Languages,

Database Users.

CLO3 Identify the Various Components of overall DBS

architecture.

CLO4 Use the concept of ER Model.

CLO5 Describe Basics of Relational Model.

4

INTRODUCTION TO DATA BASES

5

• DBMS contains information about a particular enterprise

• Collection of interrelated data

• Set of programs to access the data

• An environment that is both convenient and efficient to use

• Database Applications:

• Banking: all transactions

• Airlines: reservations, schedules

• Universities: registration, grades

• Sales: customers, products, purchases

• Online retailers: order tracking, customized
recommendations

• Manufacturing: production, inventory, orders, supply chain

• Human resources: employee records, salaries, tax
deductions

PURPOSE OF DATABASE SYSTEMS

6

• In the early days, database applications were built directly on
top of file systems

• Drawbacks of using file systems to store data:
• Data redundancy and inconsistency
• Difficulty in accessing data
• Data isolation — multiple files and formats
• Integrity problems
• Atomicity of updates

• Example: Transfer of funds from one account to
another should either complete or not happen at all

• Concurrent access by multiple users
• Example: Two people reading a balance and

updating it at the same time
• Security problems

PURPOSE OF DATABASE SYSTEMS

7

DISADVANTAGES OF FILE

SYSTEMS

ADVANTAGES OF

DBMS

1 Data v/s program problem:

Different programs access different

files

One set of programs

access all data

2 Data inconsistency problem

As same data resides in many different

files across the programs data

inconsistency increases

Related data resides in

same storage location

minimizing data

inconsistency

3 Data isolation problem

As data is scattered in various files and

in different formats it is difficult to write

new programs to retrieve appropriate

data

As data resides in same

storage location it is

easy to write new

programs to retrieve

appropriate data

4 Security problem:Every user can

acces all data

Every user can access

only needed data

PURPOSE OF DATABASE SYSTEMS

8

5 Integrity problem:Develop new consistent

range in exixting systems appropriate code

must be added in various application

program

Integrity

Solution:appropriate code

must be added in one

application program that

access all data at one time

6 Problem in accessing data:new appropriate

program has to be written each time

DBMS consists of one or

more programs to extract

needed information

7 Atomicity problem:If system fails it must

ensure data are restored to consistent

state

It ensures atomicity

8 Data Redundancy:same information is

dupliacated in several files ,so higher

storage and access cost

One copy of data resides so

minimium storage and

access cost

9 Concurrency problem:Due to redundant

data if many users access same copy

leads to concurrency problem

Avoids concurrency problem

since data last changed

remains permanent

VIEW OF DATA

9

• Physical level: describes how a record (e.g., customer) is stored.
• Logical level: describes data stored in database, and the

relationships among the data.
type customer = record

customer_id:string;
customer_name:string;
customer_street:string;
customer_city : string;

end;
• View level: application programs hide details of data types.

Views can also hide information (such as an employee’s salary)
for security purposes.

VIEW OF DATA

10

An architecture for a database system

DATA MODELS

11

Underlying the structure of database is data model.
It is a collection of tools for describing

• Data ,Data relationships, Data semantics & consistency
constraints

• Data model types

Relational model
• Entity-Relationship data model (mainly for database design)
• Object-based data models (Object-oriented and Object-

relational)
• Semi structured data model (XML)
• Other older models:
• Network model
• Hierarchical model

DATA MODELS

12

 Example of tabular data in the relational model
Attributes

DATA MODELS

13

 A Sample Relational Database

DATA MODELS

14

• An entity is a thing or object in the real world that is
distinguishable from other objects.
 Rectangles represent entities
 Diamonds represent relationship among entities.
 Ellipse represent attributes
 Lines represent link of attributes to entities to relationships.

Example of schema in the entity-relationship model

DATA MODELS

15

Object based data models
• It is based on object oriented programming language

paradigm.
• Inheritance, object identity and encapsulations
• It can be seen as extending the E-R model with opps

concepts.
• Semi structured data models
• Semi structured data models permit the specification of data

where individual data items of same type may have different
set of attributes.

• XML language is widely used to represent semi structured
data

DATABASE LANGUAGES

16

• Data definition language- to define the data in the database
• Data Manipulation language- to manipulate the data in the

database
• DDL:Specification notation for defining the database schema
• DDL is used to create the database, alter database and delete

database.
Example: create table account (

account_number char(10),
branch_name char(10),

balance integer)
• DDL compiler generates a set of tables stored in a data dictionary
• Data dictionary contains metadata (i.e., data about data)

• DDL is used by conceptual schema
• The internal DDL or also known as Data storage and definition

language specifies the storage structure and access methods
used DDl commands are Create, Alter and Drop only.

DATABASE LANGUAGES

17

DML:
• Language for accessing and manipulating the data organized by
the appropriate data model
• DML also known as query language
• DML is used to retrieve data from database, insertions of new
data into database ,deletion or modification of existing data.

• Two classes of languages
• Procedural – user specifies what data is required and how to

get those data
• Declarative (nonprocedural) – user specifies what data is

required without specifying how to get those data
• SQL is the most widely used query language

DATABASE USERS

18

Users are differentiated by the way they expect to interact with
the system
• Application programmers –are computer professionals who

write appn prgms. They use RAD tools to construct forms and
reports with minimum programming effect.

• Sophisticated users – interact with the system without writing
programs, instead they form their requests in a database query
language

• Specialized users – write specialized database applications that
do not fit into the traditional data processing framework

• Ex: Computer aided design systems, knowledgebase expert
systems.

• Naïve users – invoke one of the permanent application
programs that have been written previously Examples, people
accessing database over the web, bank tellers, clerical staff

DATABASE USERS

19

• Database Administrator
• Has central control of both data and programs to access

that data.
• Coordinates all the activities of the database system

• has a good understanding of the enterprise’s

information resources and needs.
• Database administrator's duties include:

• Storage structure and access method definition

• Schema and physical organization modification

• Granting users authority to access the database

• Backing up data

• Monitoring performance and responding to changes

• Periodically backing up the database, either on tapes or

onto remote servers.

VARIOUS COMPONENTS OF OVERALL DBS ARCHITECTURE

20

VARIOUS COMPONENTS OF OVERALL DBS ARCHITECTURE

21

• Database access from application programs

• To access db, DML stmts need to be executed from host lang.

• 2 ways-
• by providing appn prgm interface that can b used to send
• DML and DDL stmts to database and retrieve results.
• Ex:ODBC & JDBC

• By extending host language syntax to embed DML calls
• within the host lang prgm.
• Data storage and Querying
• Storage management
• Query processing
• Transaction processing

VARIOUS COMPONENTS OF OVERALL DBS ARCHITECTURE

22

• Storage manager is a program module that provides the
interface between the low-level data stored in the database
and the application programs and queries submitted to the
system.

• The storage manager is responsible to the following tasks:
Interaction with the file manager
Efficient storing, retrieving and updating of data

• Storage manager implements several data structures such as
Data files, Data dictionary, Indices.

VARIOUS COMPONENTS OF OVERALL DBS ARCHITECTURE

23

• Authorization and integrity manager tests for satisfaction
of integrity constraints and checks the authority of users to
access the data

• Transaction manager ensures database remains in
consistent state despite system failures and concurrent
transaction executions proceed without conflicting

• File manager manages allocation of space on disk storage
and the data structures used to represent data on disk

• Buffer manager which is responsible for fetching data from
disk storage into main memory and deciding what data to
cache in main memory

VARIOUS CONCEPTS OF ER MODEL

24

• Entity: Real-world object distinguishable from other objects.
• An entity is described (in DB) using a set of attributes.
• Entity Set: A collection of similar entities.
• E.g., all employees.

• All entities in an entity set have the same set of attributes.
• Each entity set has a key.(minimal set of attributes whose
values uniquely identify entity in set)

• Each attribute has a domain.
• An entity is represented by a set of attributes, that is
descriptive properties possessed by all members of an entity
set.

Example:

customer = (customer_id, customer_name,
customer_street, customer_city)
loan = (loan_number, amount)

VARIOUS CONCEPTS OF ER MODEL

25

• Domain – the set of permitted values for each attribute
• Attribute types:

• Simple and composite attributes.
• Single-valued and multi-valued attributes

•Example: multivalued attribute: phone_numbers
• Derived attributes

•Example: age, given date_of_birth

VARIOUS CONCEPTS OF ER MODEL

26

• Relationship: Association among two or more entities.
• E.g., Attishoo works in Pharmacy department.
• Relationship Set: Collection of similar relationships.
• syntax {(e1,…e2)|e1ЄE1, e2ЄE2….. enЄEn}
• A relationship is an association among several entities

Example:
Hayes depositor A-102
customer entity relationshipset account

• A relationship set is a mathematical relation among n  2
entities, each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}
where (e1, e2, …, en) is a relationship

• Example: (Hayes, A-102)  depositor

VARIOUS CONCEPTS OF ER MODEL

27

Relationship Set borrower

VARIOUS CONCEPTS OF ER MODEL

28

• An attribute can also be property of a relationship set.
• For instance, the depositor relationship set between entity sets

customer and account may have the attribute access-date

VARIOUS CONCEPTS OF ER MODEL

29

Degree of a Relationship Set

• Refers to number of entity sets that participate in a relationship
set.

• Relationship sets that involve two entity sets are binary
(or degree two).

• Relationship sets may involve more than two entity sets.
Mapping Cardinalities

VARIOUS CONCEPTS OF ER MODEL

30

One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

One to one

VARIOUS CONCEPTS OF ER MODEL

31

Many to one

One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

One to one

Many to many

VARIOUS CONCEPTS OF ER MODEL

32

RELATIONAL MODEL

33

• The relational model uses a collection of tables to represent
both data and the relationships among those data. Each table has
multiple columns, and each column has a unique name.
Tables are also known as relations.

• The relational model is an example of a record-based model.
• In the relational model the term
• Relation: A relation is a table with columns and rows.
• Tuple: Each row in the relation is known as tuple.
• attribute :Each column in a table.
• Relation Instance: The set of tuples of a relation at a particular

instance of time is called as relation instance.
• Relation Schema: A relation schema represents name of the

relation with its attributes. e.g.; STUDENT (ROLL_NO, NAME,
ADDRESS, PHONE and AGE) is relation schema for STUDENT.

RELATIONAL MODEL

34

• Degree: The number of attributes in the relation is known as
degree of the relation.

• Cardinality: The number of tuples in a relation is known as
cardinality.

• Column: Column represents the set of values for a particular
attribute

RELATIONAL MODEL

35

• Constraints
• Every relation has some conditions that must hold for it to be a valid

relation. These conditions are called Relational Integrity
Constraints. There are three main integrity constraints −

• Key constraints(Entity Constraints.)
• Domain constraints
• Referential integrity constraints
Key constraints
An attribute that can uniquely identify a tuple in a relation is called the
key of the table. The value of the attribute for different tuples in the
relation has to be unique.

RELATIONAL MODEL

36

RELATIONAL MODEL

37

Domain Constraints:
•These are attribute level constraints. An attribute can only take
values which lie inside the domain range.
• e.g,; (1)If a constrains AGE>0 is applied on STUDENT relation,
inserting negative value of AGE will result in failure.
(2)telephone numbers cannot contain a digit outside 0-9.

Referential Integrity:
• When one attribute of a relation can only take values from other

attribute of same relation or any other relation, it is called
referential integrity.

• Referential integrity constraints work on the concept of Foreign
Keys.
• A foreign key is a key attribute of a relation that can be referred in
other relation.

RELATIONAL MODEL

38

• Let us suppose we have 2 relations In the above example,
we have 2 relations, Customer and Billing.Tuple for CustomerID =1
is referenced twice in the relationBilling.
So we know CustomerName=Google has billing amount $300

RELATIONAL MODEL

39

• Entity-Set and Keys
• Key is an attribute or collection of attributes that uniquely
identifies an entity among entity set.

For example, the roll_number of a student makes him/her
identifiable among students.
• Super Key − A set of attributes (one or more) taken collectively,
allow us to identify uniquely a tuple in the relation.
• Candidate Key − A minimal super key is called a candidate key. An
entity set may have more than one candidate key.
• Primary Key − A primary key is one of the candidate keys chosen
by the database designer to uniquely identify the entity set.
• Composite key − If there is a combination of two or more
attributes which is being used as the primary key then we call it as
a composite key.

RELATIONAL MODEL

40

Operations in Relational Model
Four basic update operations performed on relational database
model are
• Insert, update, delete and select.
• Insert is used to insert data into the relation
• Delete is used to delete tuples from the table.
• Modify allows you to change the values of some attributes in
existing tuples.
• Select allows you to choose a specific range of data.

RELATIONAL MODEL

41

RELATIONAL MODEL

42

Advantages of using Relational model
• Simplicity: A relational data model is simpler than the hierarchical

and network model.
• Structural Independence: The relational database is only

concerned with data and not with a structure. This can improve
the performance of the model.

• Easy to use: The relational model is easy as tables consisting of
rows and columns is quite natural and simple to understand

• Query capability: It makes possible for a high-level query language
like SQL to avoid complex database navigation.

• Data independence: The structure of a database can be changed
without having to change any application.

• Scalable: Regarding a number of records, or rows, and the number
of fields, a database should be enlarged to enhance its usability.

RELATIONAL MODEL

43

Disadvantages of using Relational model
• Few relational databases have limits on field lengths which can't

be exceeded.
• Relational databases can sometimes become complex as the

amount of data grows, and the relations between pieces of data
become more complicated.

• Complex relational database systems may lead to isolated
databases where the information cannot be shared from one
system to another.

MODULE II
RELATIONAL APPROACH

44

45

CLOs Course Learning Outcome

CLO 6 Determine Relational algebra, The Self variable.

CLO7
Understand selection and projection, set operations.

CLO 8 Determine renaming, joins, division.

CLO 9 Use examples of algebra queries.

CLO 10 Illustrate Tuple relational calculus, Domain relational

calculus, and also expressive power of algebra and

calculus

RELATIONAL ALGEBRA AND CALCULUS

46

 Two mathematical Query Languages form the basis for “real”
languages (e.g. SQL), and for implementation:

 Relational Algebra: More operational, very useful for
representing execution plans.

 Relational Calculus: Lets users describe what they want,
rather than how to compute it. (Non-operational,
declarative.)

RELATIONAL ALGEBRA AND CALCULUS

47

• Basic operations:
• Selection () Selects a subset of rows from relation.
• Projection () Deletes unwanted columns from relation.
• Cross-product () Allows us to combine two relations.
• Set-difference (-) Tuples in reln. 1, but not in reln. 2.
• Union (U) Tuples in reln. 1 and in reln. 2.

• Additional operations:
• Intersection, join, division, renaming







PROJECTION

48

 Schema of result contains exactly the fields in the projection
list, with the same names that they had in the (only) input
relation.

 Projection operator has to eliminate duplicates! (Why??)

 Note: real systems typically don’t do duplicate elimination
unless the user explicitly asks for it.

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10

age

35.0
55.5


sname rating

S
,

()2
age S()2

SELECTION

49

• Selects rows that satisfy selection condition.
• No duplicates in result! (Why?)
• Schema of result identical to schema of (only) input

relation.
• Result relation can be the input for another relational

algebra operation! (Operator composition.)

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0


rating

S
8

2()

sname rating

yuppy 9

rusty 10

 
sname rating rating

S
,

(())
8

2

SET OPERATIONS

50

• All of these operations take two input relations, which must
be union-compatible: Same number of fields. `Corresponding’
fields have the same type. What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

22 dustin 7 45.0

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

S S1 2

S S1 2

SET OPERATIONS

51

 Each row of S1 is paired with each row of R1.
 Result schema has one field per field of S1 and R1, with field

names `inherited’ if possible.

Conflict: Both S1 and R1 have a field called sid.

S1 X R1

Cross product

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

SET OPERATIONS

52

 Each row of S1 is paired with each row of R1.
 Result schema has one field per field of S1 and R1, with field

names `inherited’ if possible.

Conflict: Both S1 and R1 have a field called sid.

S1 X R1

Cross product

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

RENAMING

53

• Renaming operator(ρ):

ρ (old name -> new name) or
ρ (position -> new name)

 ((,),)C sid sid S R1 1 5 2 1 1  

JOINS

54

 Condition Join:

• Result schema same as that of cross-product.

• Fewer tuples than cross-product, might be able to
compute more efficiently

• Sometimes called a theta-join.

R c S c R S   ()

S R
S sid R sid

1 1
1 1


. .

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

JOINS

55

Equi-Join: A special case of condition join where the
condition c contains only equalities.

S R
sid

1 1

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

• Result schema similar to cross-product, but only one copy
of fields for which equality is specified.
• Natural Join: Equijoin on all common fields.
• If two relations have no attributes in common, natural join
is simply cross product.

DIVISION

56

• Not supported as a primitive operator, but useful for expressing
queries like:

Find sailors who have reserved all boats.

• Let A have 2 fields, x and y; B have only field y:

• A/B =

• i.e., A/B contains all x tuples (sailors) such that for every y tuple
(boat) in B, there is an xy tuple in A.

• Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.

• In general, x and y can be any lists of fields; y is the list of fields in B,
and x y is the list of fields of A.

DIVISION

57

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

A

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

B1 B2 B3

A/B1 A/B2 A/B3

RELATIONAL CALUCLUS

58

• Comes in two flavors: Tuple relational calculus (TRC) and Domain
relational calculus (DRC).

• Calculus has variables, constants, comparison ops, logical
connectives and quantifiers.

• TRC: Variables range over (i.e., get bound to) tuples.

• DRC: Variables range over domain elements (= field values).

• Both TRC and DRC are simple subsets of first-order logic.

• Expressions in the calculus are called formulas. An answer tuple is
essentially an assignment of constants to variables that make the
formula evaluate to true.

TUPLE RELATIONAL CALUCLUS

59

• A tuple rc query has the form {T|P(T)} where T is a tuple variable
and P(T) denotes a formula that describes T.

• Find all sailors with rating above 7
• {S|S € Sailors Л s.rating>7}

• Let Rel be a relation name, R & S be tuple variables,’a’ be an
attribute of R and ‘b’ be attribute of S. Let op denote operator.

• An atomic formula is one of the following
• R € Rel, R.a € S.b, R.a op constant or constant op R.a

TUPLE RELATIONAL CALUCLUS

60

• A formula is recursively defined to be one of the following
any atomic formula

• ┐P,PЛQ,P V Q or P=>Q
• эR(P(R)) where R is tuple variable
• forall R(P(R)) where R is tuple variable
• A variable is said to be free in formula if it does not contain an

occurence of quantifiers that bind it.

• Find the names and ages of sailors with rating above 7
{P| эS є Sailors(S.Rating >7 Л P.name=S.Sname Л P.age=S.age)

DOMAIN RELATIONAL CALUCLUS

61

1. In the tuple relational calculus, you have use variables that have
series of tuples in a relation.

2. In the domain relational calculus, you will also use variables, but in
this case, the variables take their values from domains of
attributes rather than tuples of relations.

3. A domain relational calculus expression has the following general
format:
{d1, d2, . . . , dn | F(d1, d2, . . . , dm)} m ≥ n
where d1, d2, . . . , dn, . . . , dm stand for domain variables and
F(d1, d2, . . . , dm) stands for a formula composed of atoms.

DOMAIN RELATIONAL CALUCLUS

62

• Example:
select TCHR_ID and TCHR_NAME of teachers who work for
department 8, (where suppose - dept. 8 is Computer Application
Department)

• {<tchr_id, tchr_name=""> | <tchr_id, tchr_name=""> ? TEACHER Λ
DEPT_ID = 10}

• Get the name of the department name where Karlos works:
{DEPT_NAME |< DEPT_NAME > ? DEPT Λ ? DEPT_ID (? TEACHER Λ
TCHR_NAME = Karlos)}

• It is to be noted that these queries are safe. The use domain
relational calculus is restricted to safe expressions; moreover, it is
equivalent to the tuple relational calculus which in turn is similar
to the relational algebra.

EXPRESSIVE POWER OF ALGEBRA AND CALCULUS

63

• Regarding expressiveness, we can show that every query that
can be expressed using a safe relational calculus query can also
be expressed as a relational algebra query.

• The expressive power of relational algebra is often used as a
metric of how powerful a relational database query language is.

• If a query language can express all the queries that we can
express in relational algebra, it is said to be relationally
complete.

• A practical query language is expected to be relationally
complete; in addition, commercial query languages typically
support features that allow us to express some queries that
cannot be expressed in relational algebra.

MODULE III
SQL QUERY - BASICS , RDBMS - NORMALIZATION

64

65

CLOs Course Learning Outcome

CLO 11 Understand SQL – Data Definition commands,

Queries with various options.

CLO 12 Analyze the concept of Mata manipulation

commands, Views, Joins, views.

CLO 13 Illustrate Calling a function, Returning multiple

values from a function.

CLO 14 Contrast the Usage of Relational database design,

Functional dependencies, Armstrong Axioms

CLO 15 Define Normalization, 2nd and 3rd Normalization,

Basic definitions of MVDs and JDs, 4th and 5th

normal forms

SQL – DATA DEFINITION COMMANDS

66

 An SQL relation is defined using the create table command:

• create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,(integrity-constraintk))

◦ r is the name of the relation
◦ each Ai is an attribute name in the schema of relation r
◦ Di is the data type of attribute Ai

Example:

create table branch
(branch_name char(15),
branch_city char(30),
assets integer)

SQL – DATA DEFINITION COMMANDS

67

 char(n). Fixed length character string, with user-specified length
n.

 varchar(n). Variable length character strings, with user-specified
maximum length n.

 int. Integer (a finite subset of the integers that is machine-
dependent).

 smallint. Small integer (a machine-dependent subset of the
integer domain type).

 numeric(p,d). Fixed point number, with user-specified precision
of p digits, with n digits to the right of decimal point.

 float(n). Floating point number, with user-specified precision of
at least n digits.

SQL – DATA DEFINITION COMMANDS

68

 The drop table command deletes all information about the
dropped relation from the database.

 The alter table command is used to add attributes to an existing
relation:

alter table r add A D

where A is the name of the attribute to be added to relation r
and D is the domain of A.

◦ All tuples in the relation are assigned null as the value for the
new attribute.

 The alter table command can also be used to drop attributes of

a relation:

alter table r drop A

where A is the name of an attribute of relation r

◦ Dropping of attributes not supported by many databases

SQL – DATA DEFINITION COMMANDS

69

• A typical SQL query has the form:
select A1, A2, ..., An

from r1, r2, ..., rm

where

• Ai represents an attribute

• Ri represents a relation

• P is a predicate.

• This query is equivalent to the relational algebra
expression.

• The result of an SQL query is a relation.

))((
21,,, 21 mPAAA

rrr
n

  

SQL – DATA DEFINITION COMMANDS

70

 The select clause list the attributes desired in the result of a
query

 corresponds to the projection operation of the relational
algebra

 Example: find the names of all branches in the loan relation:

select branch_name

from loan

 In the relational algebra, the query would be:

branch_name (loan)

 NOTE: SQL names are case insensitive (i.e., you may use upper-
or lower-case letters.)

 E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

 Some people use upper case wherever we use bold font.

SQL – DATA DEFINITION COMMANDS

71

• SQL allows duplicates in relations as well as in query
results.

• To force the elimination of duplicates, insert the keyword
distinct after select.

• Find the names of all branches in the loan relations, and
remove duplicates
• select distinct branch_name from loan
• The keyword all specifies that duplicates not be removed.

select all branch_name from loan

SQL – DATA DEFINITION COMMANDS

72

 The where clause specifies conditions that the result must satisfy

◦Corresponds to the selection predicate of the relational
algebra.

 To find all loan number for loans made at the Perryridge branch
with loan amounts greater than $1200.

select loan_number
from loan
where branch_name = 'Perryridge'
and amount > 1200

 Comparison results can be combined using the logical
connectives and, or, and not.

QUERIES WITH VARIOUS OPTIONS

73

• The SQL CREATE TABLE Statement
• The CREATE TABLE statement is used to create a new

table in a database.
Syntax

CREATE TABLE table_name (
column1 datatype,
column2 datatype,
column3 datatype,);

QUERIES WITH VARIOUS OPTIONS

74

• Example
CREATE TABLE Persons (
PersonID int NOT NULL,
LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255));

• The PersonID column is of type int and will hold an integer.
• The LastName, FirstName, Address, and City columns are

of type varchar and will hold characters, and the maximum
length for these fields is 255 chars

QUERIES WITH VARIOUS OPTIONS

75

• SQL DEFAULT Constraint
• The DEFAULT constraint is used to provide a default value

for a column.
• The default value will be added to all new records IF no

other value is specified
• CREATE TABLE Persons (

ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255),
Age int,
City varchar(255) DEFAULT 'Sandnes’);

QUERIES WITH VARIOUS OPTIONS

76

• SQL NOT NULL Constraint
• By default, a column can hold NULL values.
• The NOT NULL constraint enforces a column to NOT

accept NULL values.

Example
• CREATE TABLE Persons (

ID int NOT NULL,
LastName varchar(255) NOT NULL,
FirstName varchar(255) NOT NULL,Age int);

QUERIES WITH VARIOUS OPTIONS

77

• ALTER: It is used to alter the structure of the database
• To add a new column in the table
• Sql>ALTER TABLE table_name ADD column_name

COLUMN-definition;
• To modify existing column in the table:
• ALTER TABLE MODIFY(COLUMN DEFINITION....);
EXAMPLE
Sql>ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHAR2(20));
Sql>ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20));

QUERIES WITH VARIOUS OPTIONS

78

• TRUNCATE: It is used to delete all the rows from the table
and free the space containing the table.

Syntax:
• TRUNCATE TABLE table_name;
Example:
• TRUNCATE TABLE EMPLOYEE;
• The DROP statement destroys the objects like an existing

database, table, index, or view
•DROP TABLE table_name;
•DROP TABLE STU_DETAILS

DATA MANIPULATION COMMANDS

79

• INSERT: The INSERT statement is a SQL query. It is used to
insert data into the row of a table.

Syntax:
INSERT INTO TABLE_NAME
VALUES (value1, value2, value3, valueN);
example:
INSERT INTO student VALUES ("Sdname", "DBMS");

• UPDATE: This command is used to update or modify the
value of a column in the table.

Syntax:
UPDATE table_name SET [column_name1= value1,...
column_nameN = valueN] [WHERE CONDITION]
example:
UPDATE students SET User_Name = 'Sdname’ WHERE Stud
ent_Id = '3'

DATA MANIPULATION COMMANDS

80

• DELETE: It is used to remove one or more row from a table.
Syntax:
DELETE FROM table_name [WHERE condition];
For example:
DELETE FROM student WHERE sname=“abc";

• SELECT: It is used to select the attribute based on the
condition described by WHERE clause.

Syntax:
SELECT expressions FROM TABLES
WHERE conditions;
For example:
SELECT emp_name FROM employee
WHERE age > 20;
SELECT * FROM emp

VIEWS

81

• A view is nothing more than a SQL statement that is stored in the
database with an associated name.

• A view is actually a composition of a table in the form of a
predefined SQL query.

• A view can contain all rows of a table or select rows from a table.
• A view can be created from one or many tables which depends on

the written SQL query to create a view.
Views, which are a type of virtual tables allow users to do the
following −

• Structure data in a way that users or classes of users find
natural or intuitive.

• Restrict access to the data in such a way that a user can see and
(sometimes) modify exactly what they need and no more.

• Summarize data from various tables which can be used to
generate reports.

VIEWS

82

• To create a view, a user must have the appropriate system privilege
according to the specific implementation.

• The basic CREATE VIEW syntax is as follows −
CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE [condition];

• You can include multiple tables in your SELECT statement in a
similar way as you use them in a normal SQL SELECT query.

VIEWS

83

• Following is an example to create a view from the CUSTOMERS
table. This view would be used to have customer name and age
from the CUSTOMERS table.

SQL > CREATE VIEW CUSTOMERS_VIEW AS
SELECT name, age
FROM CUSTOMERS;

• Now, you can query CUSTOMERS_VIEW in a similar way as you
query an actual table. Following is an example for the same.

SQL > SELECT * FROM CUSTOMERS_VIEW;

VIEWS

84

• Updating a View
• A view can be updated under certain conditions which are given

below −
 The SELECT clause may not contain the keyword DISTINCT.
 The SELECT clause may not contain summary functions.
 The SELECT clause may not contain set functions.
 The SELECT clause may not contain set operators.
 The SELECT clause may not contain an ORDER BY clause.
 The FROM clause may not contain multiple tables.
 The WHERE clause may not contain subqueries.
 The query may not contain GROUP BY or HAVING.
 Calculated columns may not be updated.
 All NOT NULL columns from the base table must be included in

the view in order for the INSERT query to function.

VIEWS

85

• Inserting Rows into a View
• Rows of data can be inserted into a view.
• The same rules that apply to the UPDATE command also apply

to the INSERT command.
• Here, we cannot insert rows in the CUSTOMERS_VIEW because

we have not included all the NOT NULL columns in this view,
otherwise you can insert rows in a view in a similar way as you
insert them in a table.

• Deleting Rows into a View
Rows of data can be deleted from a view. The same rules that
apply to the UPDATE and INSERT commands apply to the DELETE
command.

• Following is an example to delete a record having AGE = 22.
SQL > DELETE FROM CUSTOMERS_VIEW
WHERE age = 22;

VIEWS

86

• Dropping Views
Obviously, where you have a view, you need a way to drop
the view if it is no longer needed.

• The syntax isDROP VIEW view_name;
• Following is an example to drop the CUSTOMERS_VIEW from the

CUSTOMERS table.
DROP VIEW CUSTOMERS_VIEW;

JOINS

87

 Join operations take two relations and return as a result
another relation.

 These additional operations are typically used as
subquery expressions in the from clause

 Join condition – defines which tuples in the two relations
match, and what attributes are present in the result of
the join.

 Join type – defines how tuples in each relation that do
not match any tuple in the other relation (based on the
join condition) are treated.

JOINS

88

 Relation loan

 Select S.sid, R.bid from Sailors S natural left
outer join Reserves R

Sid Bid

22 101

31 Null

58 103

 Relation borrower

 loan inner join borrower on
loan.loan_number =
borrower.loan_number

INTEGRITY

89

• Data integrity in the database is the correctness, consistency and
completeness of data.

• Data integrity is enforced using the following three integrity
constraints:
• Entity Integrity - This is related to the concept of primary keys.

All tables should have their own primary keys which should
uniquely identify a row and not be NULL.

• Referential Integrity - This is related to the concept of foreign
keys. A foreign key is a key of a relation that is referred in another
relation.
• Domain Integrity - This means that there should be a defined
domain for all the columns in a database.DB2 database and
functions can be managed by two different modes of security
controls: Authentication, Authorization

INTEGRITY

90

Authentication
• Authentication is the process of confirming that a user logs in only

in accordance with the rights to perform the activities he is
authorized to perform.

• User authentication can be performed at operating system level or
database level itself.

• By using authentication tools for biometrics such as retina and
figure prints are in use to keep the database from hackers or
malicious users.

Authorization
• You can access the DB2 Database and its functionality within the

DB2 database system, which is managed by the DB2 Database
manager.

• The manager obtains information about the current authenticated
user, that indicates which database operation the user can perform
or access.

SECURITY

91

• DB2 tables and configuration files are used to record the
permissions associated with authorization names. When a user tries
to access the data, the recorded permissions verify the following
permissions:

• Authorization name of the user
• Which group belongs to the user
• Which roles are granted directly to the user or indirectly to a

group
• Permissions acquired through a trusted context.

SECURITY

92

• While working with the SQL statements, the DB2 authorization
model considers the combination of the following permissions:
• Permissions granted to the primary authorization ID

associated with the SQL statements.
• Secondary authorization IDs associated with the SQL

statements.
• Granted to PUBLIC
• Granted to the trusted context role.
• Instance level authorities

PITFALLS OF RDBD

93

• Obviously, we can have good and bad designs.

• Among the undesirable design items are:

 Repetition of information

 Inability to represent certain information

• The relation lending with the schema is an example of a bad

design:

Lending-Schema=(branch-name, branch-city, assets, customer-
name, loan-number, amount)

PITFALLS OF RDBD

94

• Decomposition
• The obvious solution is that we should decompose this relation.
• As an alternative design, we can use the Decomposition rule:

If A implies BC then A implies B and A implies C.This gives us the
schemas:

• branch-customer-schema = (branch-name, branch-city,
assets, customer-name)

• customer-loan-schema = (customer-name, loan-number,
amount)

LOSSLESS JOIN DECOMPOSITION

95

◦ Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F
if, for every instance r that satisfies F:

◦ (r) (r) = r

 It is always true that r (r) (r)

◦ In general, the other direction does not hold! If it does, the
decomposition is lossless-join.

 Definition extended to decomposition into 3 or more relations in a
straightforward way.

 It is essential that all decompositions used to deal with redundancy
be lossless!

 Consider Hourly emps relation.It has attributes SNLRWH and FD R-
>W causes a violation of 3NF.We dealt this violation by decomposing
into SNLRH and RW.

 Since R is common to both decomposed relation and

R->W holds,this decomposition is lossles-join

LOSSLESS JOIN DECOMPOSITION

96

 The decomposition of R into X and Y is lossless-join wrt F if and
only if the closure of F contains:

◦X Y X, or

◦X Y Y
 In particular,if an fd X->Y holds over relation R and X∩ Y is empty,

the decomposition of R into R-Y and XY is lossless.
 Imp observation is repeated decompositions




A B C

1 2 3

4 5 6

7 2 8

A B

1 2

4 5

7 2

B C

2 3

5 6

2 8

A B C

1 2 3

4 5 6

7 2 8

1 2 8

7 2 3

FUNCTIONAL DEPENDENCIES

97

• Functional dependency in DBMS, as the name suggests is a
relationship between attributes of a table dependent on each other.

• Introduced by E. F. Codd, it helps in preventing data redundancy and
gets to know about bad designs.

• To understand the concept thoroughly, let us consider P is a relation
with attributes A and B. Functional Dependency is represented by ->
(arrow sign)Then the following will represent the functional

dependency between attributes with an arrow sign:

A -> B

FUNCTIONAL DEPENDENCIES

98

Types of Functional Dependency
Functional Dependency has three forms:

• Trivial Functional Dependency
• Non-Trivial Functional Dependency
• Completely Non-Trivial Functional Dependency

ARMSTRONG AXIOMS

99

• Armstrong’s Axioms Property of Functional Dependency
• Armstrong’s Axioms property was developed by William Armstrong

in 1974 to reason about functional dependencies.
• The property suggests rules that hold true if the following are

satisfied:
• Transitivity

If A->B and B->C, then A->C i.e. a transitive relation.
• Reflexivity

A-> B, if B is a subset of A.
• Augmentation

The last rule suggests: AC->BC, if A->B

ARMSTRONG AXIOMS

100

• If F is a set of functional dependencies then the closure of F, denoted
as F+, is the set of all functional dependencies logically implied by F.

• Armstrong's Axioms are a set of rules, that when applied repeatedly,
generates a closure of functional dependencies.
• Reflexive rule − If alpha is a set of attributes and beta

is_subset_of alpha, then alpha holds beta.
• Augmentation rule − If a → b holds and y is attribute set, then

ay → by also holds. That is adding attributes in dependencies,
does not change the basic dependencies.

• Transitivity rule − Same as transitive rule in algebra, if a → b
holds and b → c holds, then a → c also holds. a → b is called
as a functionally that determines b.

NORMALIZATION

101

• Returning to the issue of schema refinement, the first question to ask
is whether any refinement is needed!

• If a relation is in a certain normal form (BCNF, 3NF etc.), it is known
that certain kinds of problems are avoided/minimized.

• This can be used to help us decide whether decomposing the
relation will help.

• Role of FDs in detecting redundancy:
• Consider a relation R with 3 attributes, ABC.

• No FDs hold: There is no redundancy here.
• Given A B: Several tuples could have the same A value,
and if so, they’ll all have the same B value

1NF

102

1NF (First Normal Form)
• a relation R is in 1NF if and only if it has only single-valued

attributes (atomic values)
• EMP_PROJ (SSN, PNO, HOURS, ENAME, PNAME, PLOCATION)

PLOCATION is not in 1NF (multi-valued attrib.)
• solution: decompose the relation

EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)
LOC (PNO, PLOCATION)

2NF

103

 2NF (Second Normal Form)
• a relation R in 2NF if and only if it is in 1NF and every nonkey
column depends on a key not a subset of a key

• all nonprime attributes of R must be fully functionally dependent
on a whole key(s) of the relation, not a part of the key

• no violation: single-attribute key or no nonprime attribute
 2NF (Second Normal Form)

• violation: part of a key  nonkey
EMP_PROJ2 (SSN, PNO, HOURS, ENAME, PNAME)
SSN  ENAME
PNO  PNAME

• solution: decompose the relation
EMP_PROJ3 (SSN, PNO, HOURS)
EMP (SSN, ENAME)
PROJ (PNO, PNAME)

3NF

104

• a relation R in 3NF if and only if it is in 2NF and every nonkey
column does not depend on another nonkey column

• all nonprime attributes of R must be non-transitively functionally
dependent on a key of the relation

 violation: nonkey  nonkey

• SUPPLIER (SNAME, STREET, CITY, STATE, TAX)

SNAME  STREET, CITY, STATE

STATE  TAX (nonkey  nonkey)

SNAME  STATE  TAX (transitive FD)

• solution: decompose the relation

SUPPLIER2 (SNAME, STREET, CITY, STATE)

TAXINFO (STATE, TAX)

MVDs

105

• Suppose that we have a relation with attributes course, teacher, and
book, which we denote as CTB.

• The meaning of a tuple is that teacher T can teach course C, and
book B is a recommended text for the course.

• There are no FDs; the key is CTB. However, the recommended texts
for a course are independent of the instructor

MVDs

106

There are three points to note here:
 The relation schema CTB is in BCNF; thus we would not consider

decomposing it further if we looked only at the FDs that hold over
CTB.

 There is redundancy. The fact that Green can teach Physics101 is
recorded once per recommended text for the course. Similarly, the
fact that Optics is a text for Physics101 is recorded once per
potential teacher.

 The redundancy can be eliminated by decomposing CTB into CT and
CB.

 Let R be a relation schema and let X and Y be subsets of the
attributes of R. Intuitively,

 the multivalued dependency X !! Y is said to hold over R if, in every
legal

MVDs

107

• The redundancy in this example is due to the constraint that the
texts for a course are independent of the instructors, which cannot
be expressed in terms of FDs.

• This constraint is an example of a multivalued dependency, or MVD
• Ideally, we should model this situation using two binary relationship

sets, Instructors with attributes CT and Text with attributes CB.
• Because these are two essentially independent relationships,

modeling them with a single ternary relationship set with attributes
CTB is inappropriate.

MVDs

108

• Three of the additional rules involve only MVDs:
• MVD Complementation: If X →→Y, then X →→ R − XY
• MVD Augmentation: If X →→ Y and W > Z, then

WX →→ YZ.
• MVD Transitivity: If X →→ Y and Y →→ Z, then

X →→ (Z − Y).
• Fourth Normal Form
• R is said to be in fourth normal form (4NF) if for every MVD X →→Y

that holds over R, one of the following statements is true:
• Y subset of X or XY = R, or
• X is a superkey.

JDs

109

• A join dependency is a further generalization of MVDs.
• A join dependency (JD) ∞{ R1,….. Rn } is said to hold over a relation R

if R1,…. Rn is a lossless-join decomposition of R.
• An MVD X ->-> Y over a relation R can be expressed as the join

dependency ∞ { XY,X(R−Y)}
• As an example, in the CTB relation, the MVD C ->->T can be

expressed as the join dependency ∞{ CT, CB}
• Unlike FDs and MVDs, there is no set of sound and complete

inference rules for JDs.

4NF

110

• Fourth normal form,
• It should meet all the requirement of 3NF
• Attribute of one or more rows in the table should not result in more

than one rows of the same table leading to multi-valued
dependencies

• For a table to satisfy the Fourth Normal Form, it should satisfy the
following two conditions:
• It should be in the Boyce-Codd Normal Form.
• And, the table should not have any Multi-valued Dependency.

5NF

111

• A relation schema R is said to be in fifth normal form (5NF) if for
every JD ∞{ R1,…. Rn } that holds over R, one of the following
statements is true:

• Ri = R for some i, or
• The JD is implied by the set of those FDs over R in which the

left side is a key for R.

• A relation is in 5NF if it is in 4NF and not contains any join
dependency and joining should be lossless.

• 5NF is satisfied when all the tables are broken into as many tables as
possible in order to avoid redundancy.

• 5NF is also known as Project-join normal form (PJ/NF).
• If a relation schema is in 3NF and each of its keys consists of a single

attribute,it is also in 5NF.

MODULE IV
TRANSACTION MANAGEMENT

112

113

CLOs Course Learning Outcome

CLO 16 Discuss the concept of transaction, transaction state.

CLO 17 Understand atomicity and durability, concurrent

executions.
CLO 18

Summarize the concept of serializability, recoverability.

CLO 19
Discuss the concurrency control and various protocols.

CLO20
Understand the concept of multi version schemes,

deadlock handling and recovery.

TRANSACTION CONCEPT

114

• A Transaction is a unit of program execution that accesses and
possibly updates various data items.

• Example transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

• Two main issues to deal with:
• Failures of various kinds, such as hardware failures and system

crashes Concurrent execution of multiple transactions

TRANSACTION CONCEPT

115

• Durability requirement —
• once the user has been notified that the transaction has completed

(i.e., the transfer of the $50 has taken place),
• the updates to the database by the transaction must persist even if

there are software or hardware failures.
• Example of Fund Transfer Transaction to transfer $50 from account

A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

TRANSACTION CONCEPT

116

• Example of Fund Transfer Isolation requirement — if between steps
3 and 6,

• another transaction T2 is allowed to access the partially updated
database, it will see an inconsistent database .

• T1 T2
1. read(A)
2. A := A – 50
3. write(A)

read(A), read(B), print(A+B)
4. read(B)
5. B := B + 50
6. write(B)

• Isolation can be ensured trivially by running transactions serially
that is, one after the other. However, executing multiple
transactions concurrently has significant benefits.

TRANSACTION STATE

117

• Active – the initial state; the transaction stays in this state while it is
executing

• Partially committed – after the final statement has been executed.
• Failed -- after the discovery that normal execution can no longer

proceed.
• Aborted – after the transaction has been rolled back and the

database restored to its State prior to the start of the transaction.
Two options after it has been aborted: restart the transaction can be
done only if no internal logical error kill the transaction

• Committed – after successful completion.

TRANSACTION STATE

118

IMPLEMENTATION OF ATOMICITY AND DURABILITY

119

• The recovery-management component of a database system
implements the support for atomicity and durability.

• Example of the shadow-database scheme:all updates are made
on a shadow copy of the database .

• db_pointer is made to point to the updated shadow copy after
the transaction reaches partial commit and all updated pages
have been flushed to disk.

• db_pointer always points to the current consistent copy of the
database.In case transaction fails, old consistent copy pointed to
by db_pointer can be used, and the shadow copy can be
deleted.

IMPLEMENTATION OF ATOMICITY AND DURABILITY

120

CONCURRENT EXECUTIONS

121

• Multiple transactions are allowed to run concurrently in the
system. Advantages are: increased processor and disk utilization,
leading to better transaction throughput.

• Example one transaction can be using the CPU while another is
reading from or writing to the disk reduced average response time
for transactions:

• short transactions need not wait behind long ones Concurrency
control schemes – mechanisms to achieve isolation that is, to
control the interaction among the concurrent transactions in order
to prevent them from destroying the consistency of the database.

• Schedule – a sequences of instructions that specify the
chronological order in which instructions of concurrent
transactions are executed a schedule for a set of transactions must
consist of all instructions of those transactions must preserve the
order in which the instructions appear in each individual
transaction.

CONCURRENT EXECUTIONS

122

• A transaction that successfully completes its execution will have
commit instructions as the last statement by default transaction
assumed to execute commit instruction as its last step

• A transaction that fails to successfully complete its execution will
have an abort instruction as the last statement.

• Schedule 1
• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance

from A to B.
• A serial schedule in which T1 is followed by T2 :

SERIALIZABILITY

123

• Basic Assumption – Each transaction preserves database
consistency.

• Thus serial execution of a set of transactions preserves database
consistency.A (possibly concurrent) schedule is serializable if it is
equivalent to a serial schedule. Different forms of schedule
equivalence give rise to the notions of:

1. conflict serializability

SERIALIZABILITY

124

• A schedule S is view serializable if it is view equivalent to a serial
schedule. Every conflict serializable schedule is also view
serializable.

• Below is a schedule which is view-serializable but not conflict
serializable.

• What serial schedule is above equivalent to?
• Every view serializable schedule that is not conflict serializable has

blind writes.
Other Notions of Serializability

RECOVERABILITY

125

• Recoverable schedule — if a transaction Tj reads a data item
previously written by a transaction Ti , then the commit operation
of Ti appears before the commit operation of Tj. The following
schedule (Schedule 11) is not recoverable if T9 commits
immediately after the read

• If T8 should abort, T9 would have read (and possibly shown to the
user) an inconsistent database state. Hence, database must
ensure that schedules are recoverable.

• Cascading Rollbacks
Cascading rollback – a single transaction failure leads to a
series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed

LOCK-BASED PROTOCOLS

126

• A lock is a mechanism to control concurrent access to a data item

• Fig:Lock-compatibility matrix

• Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

LOCK-BASED PROTOCOLS

127

• Example :if a transaction performing locking:
T2: lock-S(A);

read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

• Locking as above is not sufficient to guarantee serializability — if A
and B get updated in-between the read of A and B, the displayed
sum would be wrong.

LOCK-BASED PROTOCOLS

128

• A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks.

• Locking protocols restrict the set of possible schedules. Pitfalls of
Lock-Based Protocols Consider the partial schedule Neither T3 nor
T4 can make progress — executing lock-S(B) causes T4 to wait for
T3 to release its lock on B, while executing lock-X(A) causes T3 to
wait for T4 to release its lock on A.

• Such a situation is called a deadlock. To handle a deadlock one of
T3 or T4 must be rolled back and its locks released.

• The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

TIMESTAMP -BASED PROTOCOLS

129

• Each transaction is issued a timestamp when it enters the system.
If an old transaction Ti has time-stamp TS(Ti), a new transaction Tj
is assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

• The protocol manages concurrent execution such that the time-
stamps determine the serializability order.In order to assure
such behavior, the protocol maintains for each data Q two
timestamp values:

• W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that
executed read(Q) successfully.

• The timestamp ordering protocol ensures that any conflicting read
and write operations are executed in timestamp order.

VALIDATION -BASED PROTOCOLS

130

• Execution of transaction Ti is done in three phases.
1. Read and execution phase: Transaction Ti writes only to

temporary local variables
2. Validation phase: Transaction Ti performs a ``validation

test'' to determine if local variables can be written without
violating serializability.

3. Write phase: If Ti is validated, the updates are applied to
the database; otherwise, Ti is rolled back.

VALIDATION -BASED PROTOCOLS

131

• The three phases of concurrently executing transactions can be
interleaved, but each transaction must go through the three
phases in that order.

• Assume for simplicity that the validation and write phase occur
together, atomically and serially i.e., only one transaction
executes validation/write at a time. Also called as optimistic
concurrency control since transaction executes fully in the hope
that all will go well during validation.

• Each transaction Ti has 3 timestamps
• Start(Ti) : the time when Ti started its execution
• Validation(Ti): the time when Ti entered its validation phase
• Finish(Ti) : the time when Ti finished its write phase

Serializability order is determined by timestamp given at
validation time, to increase concurrency.

VALIDATION -BASED PROTOCOLS

132

MULTIPLE GRANULARITIES

133

• Allow data items to be of various sizes and define a hierarchy of
data granularities,

• where the small granularities are nested within larger ones Can
be represented graphically as a tree

• When a transaction locks a node in the tree explicitly, it implicitly
locks all the node's descendents in the same mode.

• Granularity of locking (level in tree where locking is done):ine
granularity (lower in tree):

• high concurrency, high locking overhead coarse granularity
(higher in tree): low locking overhead, low concurrency

MULTIPLE GRANULARITIES

134

Example of Granularity Hierarchy

MULTIPLE GRANULARITIES

135

Example of Granularity Hierarchy

MULTIVERSION SCHEMES

136

• Multiversion concurrency control techniques keep the old values of
a data item when the item is updated.

• Several versions (values) of an item are maintained. When a
transaction requires access to an item, an appropriate version is
chosen to maintain the serialisability of the concurrently executing
schedule, if possible.

• The idea is that some read operations that would be rejected in
other techniques can still be accepted, by reading an older version
of the item to maintain serialisability.

• An obvious drawback of multiversion techniques is that more
storage is needed to maintain multiple versions of the database
items. However, older versions may have to be maintained anyway

• For example, for recovery purpose. In addition, some database
applications require older versions to be kept to maintain a history
of the evolution of data item values.

MULTIVERSION SCHEMES

137

• The extreme case is a temporal database, which keeps track of all
changes and the items at which they occurred.

• In such cases, there is no additional penalty for multiversion
techniques, since older versions are already maintained

• In this multiversion two-phase locking scheme, reads can proceed
concurrently with a write operation an arrangement not permitted
under the standard two-phase locking schemes.

• The cost is that a transaction may have to delay its commit until it
obtains exclusive certify locks on all items it has updated.

• It can be shown that this scheme avoids cascading aborts, since
transactions are only allowed to read the version X that was written
by committed transaction. However, deadlock may occur

DEADLOCK

138

• Another problem that may be introduced by 2PL protocol is
deadlock. The formal definition of deadlock will be discussed below.

• Example is used to give you an intuitive idea about the deadlock
situation.

• The two transactions that follow the 2PL protocol can be interleaved
as shown here:

• At time step 5, it is not possible for T1â€™ to acquire an exclusive
lock on X as there is already a shared lock on X held by T2â€™.

• Therefore, T1â€™ has to wait. Transaction T2â€™ at time step 6 tries
to get an exclusive lock on Y, but it is unable to as T1â€™ has a
shared lock on Y already. T2â€™ is put in waiting too.

• Therefore, both transactions wait fruitlessly for the other to release
a lock. This situation is known as a deadly embrace or deadlock. The
above schedule would terminate in a deadlock.

DEADLOCK

139

RECOVERY: FAILURE CLASSIFICATION

140

• A transaction has to abort when it fails to execute or when it
reaches a point from where it can’t go any further.

• This is called transaction failure where only a few transactions or
processes are hurt.

• Reasons for a transaction failure could be −
• Logical errors − Where a transaction cannot complete because it has

some code error or any internal error condition.
• System errors − Where the database system itself terminates an

active transaction because the DBMS is not able to execute it, or it
has to stop because of some system condition.

• For example, in case of deadlock or resource unavailability, the
system aborts an active transaction.

RECOVERY: FAILURE CLASSIFICATION

141

• There are problems − external to the system − that may cause the
system to stop abruptly and cause the system to crash.

• For example, interruptions in power supply may cause the failure of
underlying hardware or software failure.

• Examples may include operating system errors.
• Disk Failure
• In early days of technology evolution, it was a common problem

where hard-disk drives or storage drives used to fail frequently.
• Disk failures include formation of bad sectors, unreachability to the

disk, disk head crash or any other failure, which destroys all or a part
of disk storage.

STORAGE STRUCTURE

142

• We have already described the storage system. In brief, the storage
structure can be divided into two categories −

• Volatile storage − As the name suggests, a volatile storage cannot
survive system crashes.

• Volatile storage devices are placed very close to the CPU; normally
they are embedded onto the chipset itself.

• For example, main memory and cache memory are examples of
volatile storage. They are fast but can store only a small amount of
information.

• Non-volatile storage − These memories are made to survive system
crashes.

• They are huge in data storage capacity, but slower in accessibility.
Examples may include hard-disks, magnetic tapes, flash memory,
and non-volatile (battery backed up) RAM.

RECOVERY AND ATOMICITY

143

• When a system crashes, it may have several transactions being
executed and various files opened for them to modify the data
items.

• Transactions are made of various operations, which are atomic in
nature. But according to ACID properties of DBMS, atomicity of
transactions as a whole must be maintained, that is, either all the
operations are executed or none.

• When a DBMS recovers from a crash, it should maintain the
following −
• It should check the states of all the transactions, which were

being executed.

RECOVERY AND ATOMICITY

144

• A transaction may be in the middle of some operation; the DBMS
must ensure the atomicity of the transaction in this case.

• It should check whether the transaction can be completed now or it
needs to be rolled back.

• No transactions would be allowed to leave the DBMS in an
inconsistent state.

• There are two types of techniques, which can help a DBMS in
recovering as well as maintaining the atomicity of a transaction −

• Maintaining the logs of each transaction, and writing them onto
some stable storage before actually modifying the database.

• Maintaining shadow paging, where the changes are done on a
volatile memory, and later, the actual database is updated.

LOG BASED RECOVERY

145

• Log is a sequence of records, which maintains the records of actions
performed by a transaction.

• It is important that the logs are written prior to the actual
modification and stored on a stable storage media, which is failsafe.

• Log-based recovery works as follows −
• The log file is kept on a stable storage media.
• When a transaction enters the system and starts execution, it writes

a log about it.

LOG BASED RECOVERY

146

<Tn, Start>
When the transaction modifies an item X, it write logs as follows −
<Tn, X, V1, V2>
It reads Tn has changed the value of X, from V1 to V2.
When the transaction finishes, it logs −
<Tn, commit>

• The database can be modified using two approaches −
• Deferred database modification − All logs are written on to the

stable storage and the database is updated when a transaction
commits.

• Immediate database modification − Each log follows an actual
database modification. That is, the database is modified
immediately after every operation

RECOVERY WITH CONCURRENT TRANSACTIONS

147

• When more than one transaction are being executed in parallel, the
logs are interleaved.

• At the time of recovery, it would become hard for the recovery
system to backtrack all logs, and then start recovering. To ease this
situation, most modern DBMS use the concept of 'checkpoints'.

• Checkpoint
• Keeping and maintaining logs in real time and in real environment

may fill out all the memory space available in the system. As time
passes, the log file may grow too big to be handled at all.

• Checkpoint is a mechanism where all the previous logs are removed
from the system and stored permanently in a storage disk.

• Checkpoint declares a point before which the DBMS was in
consistent state, and all the transactions were committed.

• Recovery
• When a system with concurrent transactions crashes and recovers,

it behaves in the following manner

RECOVERY WITH CONCURRENT TRANSACTIONS

148

• The recovery system reads the logs backwards from the end to the
last checkpoint.

• It maintains two lists, an undo-list and a redo-list.
• If the recovery system sees a log with <Tn, Start> and <Tn, Commit>

or just <Tn, Commit>, it puts the transaction in the redo-list.
• If the recovery system sees a log with <Tn, Start> but no commit or

abort log found, it puts the transaction in undo-list.
• All the transactions in the undo-list are then undone and their logs

are removed. All the transactions in the redo-list and their previous
logs are removed and then redone before saving their logs.

MODULE V
DATA STORAGE AND QUERY PROCESSING

149

150

CLOs Course Learning Outcome

CLO 21 Knowledge about the physical storage media,
magnetic disks, storage access.

CLO 22 Apply working with file organization, organization of

records in files.

CLO 23 Understand ordered indices, b+-tree index files, b-

tree index files, static hashing, dynamic hashing.

CLO 24
Comparison of ordered indexing and hashing.

CLO 25 Illustrate query processing: overview, measures of

query cost.

151

CLOs Course Learning Outcome

CLO 25 Learning method of separation of variables

CLO 26 Solving the heat equation and wave equation in
subject to boundary conditions

CLO 27 Understand the concept of partial differential
equations to the real-world problems of
electromagnetic and fluid dynamics

OVERVIEW OF PHYSICAL STORAGE MEDIA

152

• Storage media are classified by speed of access, cost per unit of data
to buy the media, and by the medium's reliability.

• Unfortunately, as speed and cost go up, the reliability does down.
• Cache is the fastest and the most costly for of storage.
• The type of cache referred to here is the type that is typically built

into the CPU chip and is 256KB, 512KB, or 1MB.
• Thus, cache is used by the operating system and has no application

to database, per se.

OVERVIEW OF PHYSICAL STORAGE MEDIA

153

• Main memory is the volatile memory in the computer system that is
used to hold programs and data.

• While prices have been dropping at a staggering rate, the increases
in the demand for memory have been increasing faster.

• Today's 32-bit computers have a limitation of 4GB of memory. This
may not be sufficient to hold the entire database and all the
associated programs, but the more memory available will increase
the response time of the DBMS.

• There are attempts underway to create a system with the most
memory that is cost effective, and to reduce the functionality of the
operating system so that only the DBMS is supported.

• so that system response can be increased. However, the contents of
main memory are lost if a power failure or system crash occurs.

OVERVIEW OF PHYSICAL STORAGE MEDIA

154

• Flash memory is also referred to as electrically erasable
programmable read-only memory (EEPROM). Since it is small (5 to
10MB) and expensive, it has little or no application to the DBMS.

• Magnetic-disk storage is the primary medium for long-term on-line
storage today. Prices have been dropping significantly with a
corresponding increase in capacity.

• New disks today are in excess of 20GB. Unfortunately, the demands
have been increasing and the volume of data has been increasing
faster.

• The organizations using a DBMS are always trying to keep up with
the demand for storage. This media is the most cost-effective for on-
line storage for large databases.

• Optical storage is very popular, especially CD-ROM systems. This is
limited to data that is read-only. It can be reproduced at a very low-
cost and it is expected to grow in popularity, especially for replacing
written manuals.

OVERVIEW OF PHYSICAL STORAGE MEDIA

155

• Tape storage is used for backup and archival data. It is cheaper and
slower than all of the other forms.

• but it does have the feature that there is no limit on the amount of
data that can be stored, since more tapes can be purchased.

• As the tapes get increased capacity, however, restoration of data
takes longer and longer, especially when only a small amount of
data is to be restored.

• This is because the retrieval is sequential, the slowest possible
method

MAGNETIC DISKS

156

• A typical large commercial database may require hundreds of disks!
Physical Characteristics of Disks
• Disks are actually relatively simple. There is normally a collection of

platters on a spindle.
• Each platter is coated with a magnetic material on both sides and

the data is stored on the surfaces.
• There is a read-write head for each surface that is on an arm

assembly that moves back and forth.
• A motor spins the platters at a high constant speed, The surface is

divided into a set of tracks (circles).
• These tracks are divided into a set of sectors, which is the smallest

unit of data that can be written or read at one time.
• Sectors can range in size from 31 bytes to 4096 bytes, with 512

bytes being the most common.
• A collection of a specific track from both surfaces and from all of

the platters is called a cylinder.

MAGNETIC DISKS

157

Performance Measures of Disks
• Seek time is the time to reposition the head and increases with the

distance that the head must move. Seek times can range from 2 to
30 milliseconds. Average seek time is the average of all seek times
and is normally one-third of the worst-case seek time.

• Rotational latency time is the time from when the head is over the
correct track until the data rotates around and is under the head
and can be read. When the rotation is 120 rotations per second, the
rotation time is 8.35 milliseconds. Normally, the average rotational
latency time is one-half of the rotation time.

• Access time is the time from when a read or write request is issued
to when the data transfer begins. It is the sum of the seek time and
latency time.

• Data-transfer rate is the rate at which data can be retrieved from
the disk and sent to the controller. This will be measured as
megabytes per second.

MAGNETIC DISKS

158

RAIDs are Redundant Arrays of Inexpensive Disks. There are six levels
of organizing these disks:
0 -- Non-redundant Striping
1 -- Mirrored Disks
2 -- Memory Style Error Correcting Codes
3 -- Bit Interleaved Parity
4 -- Block Interleaved Parity
5 -- Block Interleaved Distributed Parity
6 -- P + Q Redundancy
Tertiary Storage
This is commonly optical disks and magnetic tapes

STORAGE ACCESS

159

• Programs in a DBMS make requests (that is, calls) on the buffer
manager when they need a block from a disk.

• If the block is already in the buffer, the requester is passed the
address of the block in main memory.

• If the block in not in the buffer, the buffer manager first allocates
space in the buffer for the block, through out some other block, if
required, to make space for the new block.

• If the block that is to be thrown out has been modified, it must first
be written back to the disk.

• The internal actions of the buffer manager are transparent to the
programs that issue disk-block requests.

STORAGE ACCESS

160

• Replacement strategy. When there is no room left in the buffer, a
block must be removed from the buffer before a new one can be
read in.

• Typically, operating systems use a least recently use (LRU) scheme.
There is also a Most Recent Used (MRU) that can be more optimal
for DBMSs.

• Pinned blocks. A block that is not allowed to be written back to disk
is said to be pinned. This could be used to store data that has not
been committed yet. Forced output of blocks.

• There are situations in which it is necessary to write back to the
block to the disk, even though the buffer space is not currently
needed. This might be done during system lulls, so that when
activity picks up, a write of a modified block can be avoided in peak
periods.

FILE ORGANIZATION

161

• Fixed-Length Records
• Suppose we have a table that has the following organization:
• type deposit = record

branch-name : char(22);
account-number : char(10);
balance : real;
end

• If each character occupies 1 byte and a real occupies 8 bytes, then
this record occupies 40 bytes.

• If the first record occupies the first 40 bytes and the second record
occupies the second 40 bytes, etc. we have some problems.

• It is difficult to delete a record, because there is no way to indicate
that the record is deleted

• Unless the block size happens to be a multiple of 40 (which is
extremely unlikely), some records will cross block boundaries. It
would require two block access to read or write such a record.

FILE ORGANIZATION

162

• Variable-Length Records
• We can use variable length records:

• Storage of multiple record types in one file.
• Record types that allow variable lengths for one or more fields
• Record types that allow repeating fields.

• A simple method for implementing variable-length records is to
attach a special end-of-record symbol at the end of each record. But
this has problems:

• To easy to reuse space occupied formerly by a deleted record.
• There is no space in general for records to grow. If a variable-length

record is updated and needs more space, it must be moved. This can
be very costly.

• It could be solved by making a variable-length into a fixed length.By
using pointers to point to fixed length records, chained together by
pointers.

ORGANIZATION OF RECORDS IN FILES

163

• Heap File Organization
Any record can be placed anywhere in the file.
There is no ordering of records and there is a single file for each
relation.

• Sequential File Organization
Records are stored in sequential order based on the primary
key.

• Hashing File Organization
Any record can be placed anywhere in the file. A hashing
function is computed on some attribute of each record.
The function specifies in which block the record should be
placed.

• Clustering File Organization
Several different relations can be stored in the same file.
Related records of the different relations can be stored in the
same block.

ORGANIZATION OF RECORDS IN FILES

164

• A RDBMS needs to maintain data about the relations, such as the
schema. This is stored in a data dictionary.

• Names of the relations
• Names of the attributes of each relation
• Domains and lengths of attributes
• Names of views, defined on the database, and definitions of those

views
• Integrity constraints
• Names of authorized users
• Accounting information about users
• Number of tuples in each relation
• Method of storage for each relation (clustered/non-clustered)
• Name of the index
• Name of the relation being indexed
• Attributes on which the index in defined
• Type of index formed

INDEXING AND HASHING: BASIC CONCEPTS

165

• An index for a file is like a catalog for a book in the library. Cards in
the catalog are stored in order with portions of the catalog order by
author's name, book title, or subject.

• Items in the database are catalogued with indices based on keys.
When a table is defined, it has a primary key; however, it can have
additional keys defined.

• Typical databases are too large to search sequentially looking for
specific records and more sophisticated indexing techniques are
employed. The two basic kinds of indices are:

ORDERED INDICES

166

• Dense and Sparse Indices
• This can be improved by adding another data structure (especially

for random access).
• Dense Index. An index record (or index entry) appears for every

search-key value, containing the value and the location for the first
data record with that valueSparse Index.

• An index record is created only for some of the values, which is the
only difference between the two versions in terms of the data and
its structure.

• With the sparse index, the system has to locate the largest value in
the index that does not exceed the search key. From that point the
records must be checked sequentially until a match is found.

ORDERED INDICES

167

Ordered indices
• Hash indices
• Different techniques are evaluated on the basis of several opposing

factors:
• Access types: The access could be for a specific value or a

specified range.
• Access time: The amount of time it takes to find a particular

data item or set of items.
• Insertion time: The time it takes to insert a new data item.

This value includes the time it takes to find the correct place
to insert the new data items, as well as update the index
structure.

B+-TREE INDEX FILES

168

• B+ tree is used to store the records in the secondary memory. If the
records are stored using this concept, then those files are called as
B+ tree index files.

• Since this tree is balanced and sorted, all the nodes will be at same
distance and only leaf node has the actual value, makes searching
for any record easy and quick in B+ tree index files.

• Even insertion/deletion in B+ tree does not take much time. Hence
B+ tree forms an efficient method to store the records.

• Searching, inserting and deleting a record is done in the same way
we have seen above. Since it is a balance tree, it searches for the
position of the records in the file, and then it fetches/inserts
/deletes the records.

• In case it finds that tree will be unbalanced because of
insert/delete/update, it does the proper re-arrangement of nodes
so that definition of B+ tree is not changed.

B-TREE INDEX FILES

169

• B tree index file is similar to B+ tree index files, but it uses binary
search concepts.

• In this method, each root will branch to only two nodes and each
intermediary node will also have the data. And leaf node will have
lowest level of data.

• However, in this method also, records will be sorted. Since all
intermediary nodes also have records, it reduces the traversing till
leaf node for the data. A simple B tree can be represented as
below:

STATIC HASHING

170

• In a hash file organization, we obtain the address of the disk block
(actually a bucket that can contain one or more records) containing
the desired record by computing a function on the search-key
value of the record.

• If K is the set of all search-key values, B is the set of all bucket
addresses, h is the hash function, we can computer the address of
the bucket to insert a record with the search-key Ki using h(Ki).

• Assuming there is space in the bucket, we can simply insert the
record. We locate the record with the search-key Ki using h(Ki).
Deletion is done the same way.

• However if it turns out the two records have the same hash
value, h(K5) = h(K7), then we do a sequence search on the bucket
for the record that is desired.

STATIC HASHING

171

• In static hashing, when a search-key value is provided, the hash
function always computes the same address.

• For example, if mod-4 hash function is used, then it shall generate
only 5 values. The output address shall always be same for that
function.

• The number of buckets provided remains unchanged at all times.
Insertion − When a record is required to be entered using static
hash, the hash function h computes the bucket address for search
key K, where the record will be stored.

• Bucket address = h(K)
Search − When a record needs to be retrieved, the same hash
function can be used to retrieve the address of the bucket where the
data is stored.

STATIC HASHING

172

• Delete − This is simply a search followed by a deletion operation.
Bucket Overflow

• The condition of bucket-overflow is known as collision. This
is a fatal state for any static hash function. In this case,
overflow chaining can be used.

• Overflow Chaining − When buckets are full, a new bucket is
allocated for the same hash result and is linked after the
previous one. This mechanism is called Closed Hashing.

DYNAMIC HASHING

173

• The problem with static hashing is that it does not expand or shrink
dynamically as the size of the database grows or shrinks.

• Dynamic hashing provides a mechanism in which data buckets are
added and removed dynamically and on-demand. Dynamic hashing is
also known as extended hashing.

• Hash function, in dynamic hashing, is made to produce a large
number of values and only a few are used initially.

COMPARISON OF ORDERED INDEXING AND HASHING

174

• Each scheme has advantages in certain situations. And the DBMS
implementer could leave the decision to the database designer and
provide several methods.

• Normally, the implementer only provides a very limited number of
schemes.

• Typically, ordered indexing is used unless it is known in advance that
range queries will be infrequent, in which case hashing is used.

• Hash organizations are particularly useful for temporary files
created during query processing, if lookups on a key value are
required and no ranges queries will be performed.

COMPARISON OF ORDERED INDEXING AND HASHING

175

• Index Definition in SQL
• Creating an index:
• CREATE INDEX <index-name> ON <relation-name> (<attribute-list>)
Example:
• CREATE INDEX branch-index ON branch (branch-name)
• Deleting an index:
DROP INDEX <index-name>

QUERY PROCESSING: OVERVIEW

176

1. Parsing and translation
2. Optimization
3. Evaluation
• Parsing and translation

• Translate the query into its internal form. This is then
translated into relational algebra.

• Parser checks syntax, verifies relations.
• Optimization

• A relational algebra expression may have many equivalent
expressions. Each relational algebra operation can be
evaluated using one of several different algorithm.

• Evaluation
• The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query

MEASURES OF QUERY COST

177

• Cost is generally measured as total elapsed time for answering
query.

• Many factors contribute to time cost
• "disk accesses, CPU, or even network communication.

• Typically disk access is the predominant cost, and is also relatively
easy to estimate. Measured by taking into account

• Number of seeks * average-seek-cost
• Number of blocks read * average-block-read-cost
• Number of blocks written * average-block-write-cost
• "Cost to write a block is greater than cost to read a block –

data is read back after being written to ensure that the write
was successful

MEASURES OF QUERY COST

178

• For simplicity we just use number of block transfers from disk as the
cost measure

• We ignore the difference in cost between sequential and
random I/O for simplicity

• We also ignore CPU costs for simplicity
• Costs depends on the size of the buffer in main memory

• Having more memory reduces need for disk access
• Amount of real memory available to buffer depends on other

concurrent OS processes, and hard to determine ahead of
actual execution

• We often use worst case estimates, assuming only the
minimum amount of memory needed for the operation is
available

• Real systems take CPU cost into account, differentiate between
sequential and random I/O, and take buffer size into account

• We do not include cost to writing output to disk in our cost formulae

