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UNIT -

Basic concepts: Introduction to data structures, classification of data
structures, operations on data structures; Searching techniques:
Linear search and Binary search; Sorting techniques: Bubble sort,
selection sort, insertion sort and comparison of sorting algorithms.
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Introduction to Data Structures

« A data structure is a way of storing data in a computer so
that it can be used efficiently and it will allow the most
efficient algorithm to be used.

« A data structure should be seen as a logical concept that

must address two fundamental
concerns.

|.  First, how the data will be stored, and

Il. Second, what operations will be performed on it.



Classification of Data Structures

Data Structures

simple Data Structures

Compound D ata Strudture

Linear Data Structures Non-Linear Data Strucutres

Stack Tree

Queue Graph
Lists




Simple and Compound Data Structures

Simple Data Structure: Simple data structure can be constructed with the
help of primitive data structure. A primitive data structure used to
represent the standard data types of any one of the computer languages.
Variables, arrays, pointers, structures, unions, etc. are examples of
primitive data structures.

Compound Data structure: Compound data structure can be constructed
with the help of any one of the primitive data structure and it is having a
specific functionality. It can be designed by user. It can be classified as



Linear and Non-linear Data Structures

Linear Data Structure:

Linear data structures can be constructed as a continuous
arrangement of data elements in the memory. It can be constructed by
using array data type. In the linear Data Structures the relationship of
adjacency is maintained between the data elements.

Non-Linear Data Structure:

Non-linear data structures can be constructed as a collection of
randomly distributed set of data item joined together by using a
special pointer (tag). In non-linear Data structure the relationship of
adjacency is not maintained between the dataitems.
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Operations on Data Structures

Add an element

Delete an element
Traverse

Sort the list of elements

Search for a data element




Algorithm Definition

 An Algorithm may be defined as a finite sequence of instructions each
of which has a clear meaning and can be performed with a finite
amount of effort in a finite length of time.

* The word algorithm originates from the Arabic word Algorism which is
linked to the name of the Arabic Mathematician Al Khwarizmi.

* Al Khwarizmi is considered to be the first algorithm designer for adding
numbers.



Structure of anAlgorithm

* An algorithm has the following structure:
— Input Step
— Assignment Step
— Decision Step

— Repetitive Step

— Output Step




Properties of an Algorithm

Finiteness:- An algorithm must terminate after finite number of
steps.

Definiteness:-The steps of the algorithm must be precisely defined.
Generality:- An algorithm must be generic enough to solve all problems
of a particular class.

Effectiveness:- The operations of the algorithm must be basic enough
to be put down on pencil and paper.

Input-Output:- The algorithm must have certain initial and precise
inputs, and outputs that may be generated both at its intermediate
and final steps



Algorithm Analysis and Complexity

The performances of algorithms can be measured on the scales of Time
and Space.

The Time Complexity of an algorithm or a program is a function of the
running time of the algorithm or a program.

The Space Complexity of an algorithm or a program is a function of the
space needed by the algorithm or program to run to completion.



Time Complexity

Constant

Logarithmic

Linear

Quadratic

Cubic

Exponential

O(logn)

O(n)

O(n2)

O(n3)

0o(2n)
O(kn)

Constant number of operations, not
depending onthe input data size.

Number of operations proportional of log(n)
wheren is the size of the input data.

Number of operations proportional to the
input data size.

Number of operations proportional to the
square of the size of the input data.

Number of operations proportional to the cube
ofthe

size of the input data.

Exponential number of operations, fast
growing.



Time Complexities of various Algorithms
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Searching Methods

* Search: A search algorithm is a method of locating a specific item of
information in a larger collection of data.

* There are two primary algorithms used for searching the contents of an
array:

1. Linear or Sequential Search

2. Binary Search




Linear Search

Begins search at first item in list, continues searching
sequentially(item by item) through list, until desired item(key) is
found, or until end of list is reached.

Also called sequential or serial search.

Obviously not an efficient method for searching ordered lists like
phone directory(which is ordered alphabetically).

Advantages
1. Algorithmis simple.

2. List need not be ordered in any particular way.

Time Complexity of Linear Search is O(n).



Linear Search

#LINEAR SEARCH
input_string = input("Enter a list element separated by space ")
items = input_string.split()
print(items)
x=int(input("enter element to search:"))
i=flag=0
while(i<len(items)):
if(int(items[i])==x):
flag=1
break
I=i+1
if(flag==1):
print("location number statrts from 0 and found at location ",i)
else:
flag=-1
print("not found")




Binary Search

Binary search uses a recursive method to search an array to find a
specified value

The array must be a sorted array:
a[0]<a[1]=a[2]s. .. < a[finalindex]

If the value is found, its index is returned

If the value is not found, -1 is returned

Note: Each execution of the recursive method reduces the search
space by about a half



Binary Search

An algorithm to solve this task looks at the middle of the array or array
segment first

If the value looked for is smaller than the value in the middle of the
array
Then the second half of the array or array segment can be ignored

This strategy is then applied to the first half of the array or array
segment



If the value looked for is larger than the value in the middle of the
array or array segment
Then the first half of the array or array segment can be ignored
This strategy is then applied to the second half of the array or
array segment
If the value looked for is at the middle of the array or array segment,
then it has been found
If the entire array (or array segment) has been searched in this way
without finding the value, then it is not in the array



Binary Search : In computer science, a binary search or half-interval
search algorithm finds the position of a target value within a sorted array.
The binary search algorithm can be classified as a dichotomies divide-and-
conquer search algorithm and executes in logarithmic time.

Step by step example:
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Python Code for binary search

def binary_search(item_list,item):
first=0
last = len(item_list)-1
found = False
while( first<=last and not found):
mid = (first + last)//2
if item_list[mid] == item :
found = True
else:
if item < item_list[mid]:
last = mid -1
else:
first = mid + 1
return found
print(binary_search([1,2,3,5,8], 6))
print(binary_search([1,2,3,5,8], 5))




Basic Sorting Methods :-Bubble Sort

* First Level Considerations

e Tosort list of n elements in ascending order
Pass 1 :make nth element the largest
Pass 2 :if needed make n-1th element the 2nd |argest
Pass 3 :if needed make n-2th element the 31 largest

Pass n-2: if needed make 3rd n-(n-3)thelement the (n-2)th
largest

Pass n-1 :if needed make 2nd n-(n-2)thelement the (n-1)th
largest

Maximum number of passes is (n-1).



Bubble Sort

Pass 1: Make nth element the largest. Compare each successive pair
of elements beginning with 1st 2nd and ending with n-1th nth and swap
the elements if necessary.

Pass 2 : Make n-1th element the 2nd largest. Compare each
successive pair of elements beginning with 1st 2nd and

ending with n-2th n-1th and swap the elements if necessary



Pass n-1:Make 2nd n-(n-2)th element the (n-1)th largest.

Compare each successive pair of elements beginning with 1st 2nd and
ending with n-(n-1) th n-(n-2)th 1st 2nd and swap the elements if
necessary.

List is sorted when either of the following occurs No swapping
involved in any pass
Pass n-1:the last pass has been executed



Bubble Sort Example

A A = = =4 =4 ™ = &3
A A = = =4 =4 ™ = &3
A A = = =4 =4 ™ = &3
A A = = =4 =4 ™ = &3
A A = = =4 =4 ™ = &3
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HI HI HI HI HI HI
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Selection Sort

Tosort list of n elements in ascending order
Pass 1: make 1st element the smallest

Pass 2: make 2nd element the 2nd smallest
Pass 3: make 3rd element the 3rd smallest

Pass n-2: make (n-2)th element the (n- 2)th smallest

Pass n-1: make (n-1)th element the (n- 1)th smallest
Number of passes is (n-1).



Selection Sort

Second Level Considerations

e Pass 1: Make 1st element the smallest

Examine list from 1st to last element locate element with
smallest value and swap it with the 1st element where
appropriate .

e Pass 2: Make 2nd element the 2nd smallest

Examine list from 2nd to last element locate element with
smallest value and swap it with the 2nd element where
appropriate.

* Pass n-1: Make (n-1)th element the (n-1)thsmallest

Examine list from (n-1)thto last element locate element with
smallest value and swap it with the n-1th element where
appropriate.



Selection Sort Example

3 9 6 1 2
Scan right starting with 3.
1 is the smallest. Exchange 1 and 3. f f
1 9 6 3 2
Scan right starting with 9.
2 is the smallest. Exchange 9 and 2. * *
1 2 6 3 9
Scan right starting with 6.
3 is the smallest. Exchange 6 and 3. L__J
1 2 3 6 9
Scan right starting with 6.
6 is the smallest. Exchange 6 and 6. *




Insertion Sort

First Level Considerations

Tosort list of n items (stored as 1D array) in ascending order

NOTE: 1-element sub-array (1st) is always sorted
Pass 1: make 2-element sub-array (1st 2nd)sorted
Pass 2 :make 3-element sub-array (1st 2nd 3rd)sorted
Pass 3 :make 4-element sub-array (1st 4th)sorted

Pass n-2: make n-1-element sub-array (1st(n-1)th)
sorted

Pass n-1: make entire n-element array (1st nth)sorted
Number of passes is (n-1)



Insertion Sort

Checking second element of
array with element before

e | = ) ' it and inserting it in proper
Step1 [ 12 3 ‘ 1 > I 8 I position. In this case, 3 is
: ' ' inserted in position of 12,
Checking third element of
‘ l array with elements before
f =30 [ BB it and inserting it in proper
Step 2 ' 3 12 1 5 8 position. In this case, 1 is
t inserted in position of 3.
{ I T ) | Checking fourth element of
— - —-‘— ey array with elements before
Step 3 { 1 3 l 12 s I 8 I it and inserting it in proper
, position. In this case, S is
t— inserted in position of 12.
: - Checking fifth element of
L I ‘ £ ‘ array with elements before
Step 4 1 3 5 12 8 it and inserting it in proper
=" position. In this case, 8 is
! | inserted in position of 12.




Sorting And Searching Algorithms - Time

Complexities

Algorithm | Best Time Complexity | Average Time Complexity | Worst Time Complexity | Worst Space Complexty

Linear Search | (1) ) ol ol
Binary Search | O] Oflog ) flog ) ol
Bubtie Sort{0fn) 0(?) () off
Selection Sort | 0(n"2) () 0(r2) ol

Insertion Sort |O(n) on'2) o) o)




UNIT -li

Stacks: Primitive operations, implementation of stacks using arrays,
applications of stacks arithmetic expression conversion and evaluation;
Queues: Primitive operations; Implementation of queues using Arrays,
applications of linear queue, circular queue and double ended queue (deque).




Stacks

* Astack s a list of elements in which an element may be inserted or
deleted only at one end, called the top of the stack.

* The elements are removed from a stack in the reverse order of that
in which they were inserted into the stack.

e Stack is also known as a LIFO (Last in Fast out) list or Push down list.



Basic Stack Operations

e PUSH: It is the term used to insert an element into a stack.

4 4 4 4
3 3 3 —» 3
TOP
2 2 —» 2 33 | 2
TOP
1 » 1 22 |1 a2 | 1
TOP
—» i 11 | 0 11 | o 11 | 0
TOP
Emply Insert Insert Insert
Stack 11 22 33

PUSH operations on stack



Basic Stack Operations

POP: It is the term used to delete an element from a stack.

! L ] 4 4
» 3 3 3 i ;
TOP
=z " z 2 z
33 TOP
22 1 22 1 T{m.l 1 1
—»
| [|] [ ] 1]
11 11 11 TOoP
In#tial PP [ H & H POP
Stack
Emply
Stack

POP operation from a stack



Standard Error Messages in Stack

 Two standard error messages of stack are

— Stack Overflow: If we attempt to add new element beyond the
maximum size, we will encounter a stack overflow condition.

— Stack Underflow: If we attempt to remove elements beyond the
base of the stack, we will encounter a stack underflow condition.



Stack Operations

PUSH (STACK, TOP, MAXSTR, ITEM): This procedure pushes an ITEM
onto a stack

1. If TOP = MAXSIZE, then Print: OVERFLOW, and Return.
2. Set TOP :=TOP + 1 [Increases TOP by 1]

3. Set STACK [TOP] := ITEM. [Insert ITEM in TOP position]
4. Return

POP (STACK, TOP, ITEM): This procedure deletes the top element of
STACK and assign it to the variable ITEM

1. If TOP =0, then Print: UNDERFLOW, and Return.
2. Set ITEM := STACK[TOP]

3. Set TOP :=TOP - 1 [Decreases TOP by 1]

4. Return



Applications of Stack

* Converting algebraic expressions from one form to another. E.g. Infix to
Postfix, Infix to Prefix, Prefix to Infix, Prefix to Postfix, Postfix to Infix
and Postfix to prefix.

* Evaluation of Postfix expression.
e Parenthesis Balancing in Compilers.
* Depth First Search Traversal of Graph.

* Recursive Applications.



Arithmetic Expression

Infix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator in between the two operands. E.g.: (A + B) * (C- D)

Prefix: It is the form of an arithmetic notation in which we fix (place) the
arithmetic operator before (pre) its two operands. The prefix notation is
called as polish notation. E.g.: *+AB—-CD

Postfix: It is the form of an arithmetic expression in which we fix (place) the
arithmetic operator after (post) its two operands. The postfix notation is
called as suffix notation and is also referred to reverse polish notation. E.g: A
B+CD-*



Conversion from Infix to Postfix

Convert the following infix expression A+B *C—-D /E * Hinto its
equivalent postfix expression.

Symbol  Postfix string Stack Femarks
A A

+ A

B AR

* AR L E

- ABC -

- ABC*+ -

D ABC*F+D -

! ABC*+ D -/

E ABC*+DE -/

* ABC*¥+ DE/ -#

H ABC*¥+DE/H -#

End of The input is naw empty. Pop the output symbels from
strig ABC*F+DE/H*- the stackuntl it is empty.



Evaluation of Postfix Expression

Postfix expression:6523+8 *+3 + *

Symbol Operand 1 Operand 2 Value | Stack Remarks
= (=
o B, O
= B, O, &
The first four symbels are
= Gr I 2 3 placed on the stack
Mext a "+’ is meead, so Zand 2
+ 2 = S & 59 are popped from the stack
and their sum 5, is pushed
S = = S 6 5 5 8 | Mext 8 is pushed
Mow a ** is seen, so Band 5
* i =2 40 G, 5, <40 are popped as 8 ¥5 = 40 is
pushed
Mext, a "+  is sesn, so <40
+ S <40 45 5, 45 and S are popped and 40 +
S =45 is pushed
= o <40 A5 G, 45, 3 Mow, 2 is pushed
Mext, "+’ pops 2 and 45 and
+ 45 = = ] 5, 48 pushes 45 + 32 = 48 is
pushed
Fnally, a "¥ is seen and 48
* (= 42 288 233 and & are popped, the reaulk

6 ¥ 48 = 228 is pushed



A queue is a data structure where items are inserted at one end called
the rear and deleted at the other end called the front.

Another name for a queue is —FIFO|| or—First-in-first-out|| list.
Operations of a Queue:
» enqueue: which inserts an element at the end of the queue.

» dequeue: which deletes an element at the front of the queue.



Representation of Queue

Initially the queue is empty.

0 1 . 3 4

Du=u= Empty
FRONT = REAR =0

Tt

Now, insert 11 to the queue. Then queue status will be:

L1} 1 =2 = 4

11 REAR = REAR + 1 = 1
FRONT = D

F R

Next, insert 22 to the queue. Then the queue status is:




Representation of Queue

Now, delete an element 11.

1] 1 2 3 4
REAR = 3
22 +3 FRONT = FRONT +1 =1
F B

Next insert another element, say 66 to the queue.
We cannot insert 66 to the queue as it signals queue is full. The queue status
is as follows:

0 1 2 3 £

REAR = 35

33| 44 | 33 FRONT = 2

-
-



Queue Operations using Array

* Various operations of Queue are:

» insertQ(): inserts an element at the end of queue Q.
> deleteQ(): deletes the first element of Q.

» displayQ(): displays the elements in the queue.

 There are two problems associated with
linear queue. They are:

» Time consuming: linear time to be spent in shifting the elements to
the beginning of the queue.

» Signaling queuefull: even if the queue is having vacant position



Applications of Queue

» Itis used to schedule the jobs to be processed by the CPU.

» When multiple users send print jobs to a printer, each printing job
is kept in the printing queue. Then the printer prints those jobs
according to first in first out (FIFO) basis.

» Breadth first search uses a queue data structure to find an
element from a graph.



Circular Queue

A circular queue is one in which the insertion of new element is done at
the very first location of the queue if the last location of the queue is
full.

Suppose if we have a Queue of n elements then after adding the
element at the last index i.e. (n-1)th , as queue is starting with 0 index,
the next element will be inserted at the very first location of the queue
which was not possible in the simple linear queue.



Circular Queue operations

 The Basic Operations of a circular queue are

» InsertionCQ: Inserting an element into a circular queue results in
Rear = (Rear + 1) % MAX, where MAX is the maximum size of the

array.

» DeletionCQ, : Deleting an element from a circular queue results in
Front = (Front + 1) % MAX, where MAX is the maximum size of the

array.

» TraversCQ: Displaying the elements of a circular Queue.

e Circular Queue Empty: Front=Rear=0



Circular Queue Representation Using Arrays

Let us consider a circular queue, which can hold maximum (MAX) of six
elements. Initially the queue is empty.

F R
¥y
5 [
1 ueuse Emply
4 MAX = &
FRONT = REAR =1
COUNT =0
3 2

Gre ular Queue
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Insertion and Deletion operations on a Circular Quel.l%é

CEre unlasr Queane

R
& o
5
1 FRONT — (FRONT 4+ 1)} % & — =2
- REAR — 5
COUNT = COUNT - 1 = 3

] == K

= =

e ullar Quewne
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Insertion and Deletion operations on a Circular

m =

2 IARE 3
% \
& 23

Queue

o
5
66
a 1
FRONT = 2
REAR = {(REAR 1+ 1} % &6 = 0
COUNT = COUNT + 1 = 4
44 33 ‘\
3 . r

65 77

4.4 33 K\
3 27~ R

G ular Queue




Double Ended Queue (DEQUE)

* ltis aspecial queue like data structure that supports insertion and
deletion at both the front and the rear of the queue.

* Such an extension of a queue is called a double-ended queue, or
deque, which is usually pronounced "deck" to avoid confusion with
the dequeue method of the regular queue, which is pronounced
like the abbreviation "D.Q."

 |tis also often called a head-tail linked list.



DEQUE Representation using arrays

enqueue_front{3 3] enqueue_rzar{44)

11|22 33|11 |22 - 33|11 |22 |44

dequeue front{33)

enqueue front{ 53]

2311 |22
+£

1122

dequeue_rear{44]
.




Types of DEQUE

* There are two variations of deque. They are:
— Input restricted deque (IRD)
— Output restricted deque (ORD)

* An Input restricted deque is a deque, which allows insertions at one end
but allows deletions at both ends of the list.

* An output restricted deque is a deque, which allows deletions at one
end but allows insertions at both ends of the list.



Applications of Deque

Since Deque supports both stack and queue operations, it can be
used as both.

The Deque data structure supports clockwise and anticlockwise
rotations in O(1) time which can be

useful in certain applications.

Also, the problems where elements need to be removed and or added
both ends can be efficiently

solved using Deque.



UNIT -lII

Linked lists: Introduction, singly linked list, representation of a linked list in
memory, operations on a single linked list; Applications of linked lists: Polynomial
representation and sparse matrix manipulation. Types of linked lists: Circular
linked lists, doubly linked lists; Linked list representation and operations of Stack
and Queue.




Introduction to Linked List

A linked list is a collection of data in which each element contains
the location of the next element—that is, each element contains two
parts: data and link.

null pomnter

s - B B B~ B

SCOres data link data Ik data link data link

icdrec | sk [ i

sCores data link




Arrays versus Linked Lists

 Both an array and a linked list are representations of a list of items in
memory. The only difference is the way in which the items are linked
together. The Figure below compares the two representations for a list
of five integers.

Lo o mmm
scores

scores [ 1] 66 — 72 -_l
scores [2] 72 Y: -
scores | 3] 74 I |
scores | 4] 85 . k5 -_I
scores [ 5] 96

7 e

a. Array representation b. LLinked list representation
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Linked List: A Dynamic Data Structure

A data structure that can shrink or grow during program execution.

The size of a dynamic data structure is not necessarily known at

compilation time, in most programming languages.
Efficient insertion and deletion of elements.

The data in a dynamic data structure can be stored in non-contiguous
(arbitrary) locations.

Linked list is an example of a dynamic data structure.
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Advantages of linked list

* Unused locations in array is often a wastage of
space

* Linked lists offer an efficient use of memory
— Create nodes when they are required
— Delete nodes when they are not required anymore
— We don‘t have to know in advance how long the list should be




Applications of linked list

Linked lists are used to represent and manipulate polynomial.
Polynomials are expression containing terms with non zero coefficient
and exponents. For example:

P(X) =apgXn+a; Xn1+ ... +a,1 X+ an

Represent very large numbers and operations of the large number such
as addition, multiplication and division.

Linked lists are to implement stack, queue, trees and graphs.
Implement the symbol table in compiler construction.




Types of linked lists

* There are four types of Linked lists:
— Single linked list
» Begins with a pointer to the first node
* Terminates with a null pointer

* Only traversed in one direction
— Circular single linked list
* Pointer in the last node points back to the first node

— Doubly linked list

» Two —start pointersll - first element and last element
« Each node has a forward pointer and a backward pointer

* Allows traversals both forwards and backwards
— Circular double linked list

* Forward pointer of the last node points to the first node and
backward pointer of the first node points to the last node




Singly Linked Lists

B A singly linked list is a concrete
data structure consisting of a

next
sequence of nodes » e >
B Each node stores
= Element
= link to the next node M
elem node




Singly Linked Lists

A linked list allocates space for each element separately in its own
block of memory called a "node".

Each node contains two fields; a "data" field to store whatever element,
and a "next" field which is a pointer used to link to the next node.

Each node is allocated in the heap using malloc(), so the node memory
continues to exist until it is explicitly de-allocated using free().

The front of the list is a pointer to the —startll node.
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Single Linked List

STALC R

400

HEAP
100
sh=ark
10 (Zoo— 20 (Zo0— 30
The stat 100 : T-., 200 00
point er s Meay
hold=s the Each node Stores the next
address of stores the data. node address,
the st
node of the
list.
sirict shinklst node:
1
int data;
siruct shinkhist™ next;
e
typedd stnct shnklist node;
Emply liskt
nide *start = NULL;

The nexd hield of
the last node i=
HMULL.

data | next

shart

NILL
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Operations on Linked Lists

* The basic operations of a single linked list are
— Creation
— Insertion
— Deletion

— Traversing




Creating a node for Single Linked List:

Sufficient memory has to be allocated for creating a node. The
information is stored in the memory, allocated by using the malloc()
function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the
item (i.e., data) has to be read from the user, set next field to NULL and
finally returns the address of the node.

newnode

10 X

100
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class Node:

def init (self,data,nextNode=None):
self.data = data

self.nextNode = nextNode def getData(self):
return self.data def setData(self,val):

self.data = val def getNextNode(self):

return self.nextNode def setNextNode(self,val):
self.nextNode = val




class LinkedList:
def init (self,nead = None): self.nead = head

self.size=0

def getSize(self):

return self.size def addNode(self,data):
newNode = Node(data,self.head) self.head =
newNode self.sizet+=1

return True def printNode(self):

curr = self.nead while curr:

print(curr.data)

curr = curr.getNextNode()



2 000

Creating a single linked list with N nodes = 'ar:

shart
100

B 10 (200 20 [300— 30 (400—P 40 | X

100 200 300 400




Inserting a node

* Inserting a node into a single linked list can be done at
— Inserting into an empty list.
— Insertion at the beginning of the list.
— Insertion at the end of the list.

— Insertion in the middle of the list.




Inserting a node at the beginning

#Function to insert a new node at the def push(self,
new_data):

# Allocate the Node & Put in the data
new_node = Node(new_data)

#Make next of new Node as head

new_node.next = self.head

# Move the head to point to new Node self.head =
new_node




Inserting a node at the beginning

skark
s00 | |
A
- i0 |200—» 20 (300— 30 [400—p 40 | X
100 200 300 400
— 5 100

200




Inserting a node at the end

* The following steps are followed to insert a new node at the end of

the list:

# This function is defined in Linked List class # Appends a new node at
the end. This method is defined inside LinkedList class shown
above def append(self, new_data):

# Create a new node, Put in the data, Set next as None
new_node = Node(new_data)

# If the Linked List is empty, then make the new node as head
if self.head is None: self.head = new_node return

#Else traverse till the last node last = self.head

while last.next:

last = last.next

# Change the next of last node last.next = new_node



skart

100

Inserting a node at the end
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Inserting a node at intermediate position

- The following steps are followed, to insert a new node after the given
previous node in the list:

def insertAfter(self, prev_node, new_data): #check if the given prev_node
exists
if prev_node is None:

print(—The given previousnode must in Linked List.ll)

return
#Create new node & Put in the data new_node = Node(new_data)

# Make next of new Node as next of prev_node new_node.next =
prev_node.next
#Make next of prev_node as new_node prev_node.next = new_node
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Deletion of a node

Another primitive operation that can be done in a singly linked list is the
deletion of a node. Memory is to be released for the node to be

deleted. A node can be deleted from the list from three different places
namely.

— Deleting a node at the beginning.
— Deleting a node at the end.
— Deleting a node at intermediate position.

110



Deleting a node at the beginning

* The following steps are followed, to delete a node at the beginning of
the list:
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Deleting a node at the end

* The following steps are followed to delete a node at the end of the list:
— If listis empty then display _Empty List‘message.
— If the list is not empty, follow the steps given below:

temp = prev = start; while(temp -> next != NULL)

{

prev = temp;

temp = temp -> next;

}
prev -> next = NULL; free(temp);




Deleting a node at the end
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Deleting a node at Intermediate position

¥ For \*

* The following steps are followed, to delete a node from an

intermediate position in the list:

# Given a reference to the head of a list and a position, delete the node
at a given position def deleteNode(self, position):

# If linked list is empty if self.head == None:

return

# Store head node temp = self.head
# If head needs to be removed if position == O:
self.head = temp.next temp = None

return

# Find previous node of the node to be deleted
for i in range(position -1 ): temp = temp.next

if temp is None: break



# If position is more than number of nodes
if temp is None:
return

if temp.next is None: return

# Node temp.next is the node to be deleted store pointer to the next of
node to be deleted
next = temp.next.next
# Unlink the node from linked list temp.next = None temp.next=next
# Find previous node of the node to be deleted for i in range(position -1 ):
temp = temp.next if temp is None:
break

# If position is more than number of nodes if temp is None:
return

if temp.next is None: return



Deleting a node at Intermediate position A
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Traversal and displaying a list

 To display the information, you have to traverse (move) a linked list,
node by node from the first node, until the end of the list is reached.
Traversing a list involves the following steps:

— Assign  the address of start pointer to a
temp pointer.

— Display the information from the data field of each node.




Double Linked List

A double linked list is a two-way list in which all nodes will have two
links. This helps in accessing both successor node and predecessor

node from the given node position. It provides bi-directional traversing.
Each node contains three fields:

— Leftlink.
— Data.
— Right link.

The left link points to the predecessor node and the right link points to
the successor node. The data field stores the required data.



A Double Linked List

STALK Stores the HEAP
previous node
100 address,

H .-"1:.?

. start " B p

V X Illl Ellll 4 100 | 20 EIIIIH_ 200 | 30 X
The start o ! w200 300 o
poinker v ) K
holds the Stores the data, Stores the next The right field of
address of node address, the last node is
the frst MILL.
node of the

list.



Basic operations in a double linked list

« Creation
* Insertion
* Deletion
« Traversing

« The e beginning of the double linked list is stored in a "start" pointer
which points to the first node. The first node’s left link and last
node’s right link is set to NULL.




Structure of a Double Linked List
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Creating a Double Linked List with N number of

nodes

« The following steps are to be followed to create

_Nn" number of nodes:
class Node(object):

def init (self, data, prev, next): self.data = data

self.prev = prev
self.next = next

class DoubleList(object): head = None
tail = None




Creating a Double Linked List with N number 2&

of hodes
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Inserting a node at the beginning

« The following steps are to be followed to insert a new node at
the beginning of the list:

« Getthe new node using getnode(). newnode=getnode();
 If the list is empty then start = newnode.

 If the list is not empty,follow the steps given below:
newnlgge -> right = start; start -> left = newnode; start =
5
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Inserting a node at the beginning

« The following steps are followed to insert a new node at
the end of the list:

« Get the new node using getnode()

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:
temp = start;

while(temp -> right != NULL) temp = temp -> right;

temp -> right = newnode; newnode -> left = temp;
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Inserting a node at an intermediate position

« The following steps are followed, to insert a new node in an
Intermediate position in the list:
Get the new node using getnode(). newnode=getnode();

« Ensure that the specified position is in between first node
and last node. If not, specified position is invalid. This is
done by countnode() function.

« Store the starting address (which is in start pointer) in temp
and prev pointers. Then traverse the temp pointer upto the
specified position followed by prev pointer.

After reaching the specified position, follow the steps given
below: newnode -> left = temp;

newnode -> right = temp -> right; temp -> right -> left =
newnode;

temp -> right = newnode;



Inserting a node at an intermediate position
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Deleting a node at the beginning

« The following steps are followed, to delete a node
at the beginning of the list:

* Iflistis empty then display_Empty List' message.

 If the list is not empty, follow the steps given below:

temp = start;
start = start -> right;

start -> left = NULL; free(temp);
slark
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Deleting a node at the end

« The following steps are followed to delete a node at the end
of the list:
— If list is empty then display _Empty List' message
— If the list is not empty, follow the steps given below:

temp = start;

while(temp -> right != NULL)

{

temp = temp -> right;

}

temp -> left -> right = NULL,; free(temp);
start
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Deleting a node at Intermediate position

Intermediate position in the list.

oIf list is empty then display _ Empty List’ message.
*If the list is not empty, follow the steolos %lven below:
— Get the position of the node to delete.

— Ensure that the specified position is in between first node
and last node. If not, specified position is invalid.

*Then perform the following steps:
If(pos > 1 && pos < nodectr)

{

temp = start; | =1;

while(i < pos)

{

temp =temp ->right; i++;
}

temp -> right -> left = temp -> left; temp -> left -> right = temp
-> right; free(temp);
printf("\n node deleted..”);}



Deleting a node at Intermediate position A
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Traversal and displaying a list (Left to Right)

« The following steps are followed, to traverse a list from left to
right:

« If listis empty then display _Empty List" message
If the list is not empty, follow the steps given

below: temp = start;

while(temp = NULL)
{

print temp -> data; temp = temp -> right;

}
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Traversal and displaying alist (Right to Leftﬁ%}

« The following steps are followed, to traverse a list from
right to left:

« If listis empty then display _Empty List" message.
« If the list is not empty, follow the steps given below:
temp = start;
while(temp -> right != NULL) temp = temp -> right;
while(temp = NULL)
{

print temp -> data; temp = temp -> left;

}
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Advantages and Disadvantages of Double Linked>&
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List

« The major disadvantage of doubly linked lists (over singly
linked lists) is that they require more space (every node has
two pointer fields instead of one). Also, the code to
manipulate doubly linked lists needs to maintain the prev
flelds as well as the next fields; the more fields that have to
be maintained, the more chance there is for errors.

« The major advantage of doubly linked lists is that they make
some operations (like the removal of a given node, or a right-
to-left traversal of the list) more efficient.



Circular Single Linked List

« It is just a single linked list in which the link field of the last
node points back to the address of the first node.

« A circular linked list has no beginning and no end. It is
necessary to establish a special pointer called start pointer
always pointing to the first node of the list.

* Circular linked lists are frequently used instead of ordinary
linked list because many operations are much easier to
Implement. In circular linked list no null pointers are used,
hence all pointers contain valid address.



Circular Single Linked List and its basic

operations
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The basic operations in a circular single linked list
are:

» Creation
*[nsertion
*Deletion
*Traversing




Creating a circular single Linked List with N
number of hodes
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 The following steps are to be followed to create _n" number
of nodes:

« Get the new node using getnode().
newnode = getnode();
If the list is empty, assigh new node as start. start =
newnode;
 If the list is not empty, follow the steps given below:
temp = start;
while(temp -> next = NULL) temp = temp -> next;
temp -> next = newnode;
Repeat the above steps _n" times.

newnode -> next = start;

144



Inserting node at the beginning

« The following steps are to be followed to insert a new node
at the beginning of the circular list:

« Get the new node using getnode().
newnode = getnhode();
If the list is empty, assign new node as start.
start = newnode;
newnode -> next = start;
If the list is not empty, follow the steps given below:
last = start;
while(last -> next != start) last = last -> next;
newnode -> next = start; start = newnode;
last -> next = start;



Inserting a node at the beginning
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Inserting a node at the end

« The following steps are followed to insert a new node at the
end of the list:

Get the new node using getnode().
newnode = getnode();
If the list is empty, assigh new node as start.
start = newnode;
newnode -> next = start;
If the list is not empty follow the steps given below:
temp = start;
while(temp -> next |= start) temp = temp -> next;
temp -> next = newnode; newnode -> next = start;



Inserting a node at the end

skart

100

.

200

100

300

400

—W 40

200

400

e

100

a0




Deleting a node at the beginning

« The following steps are followed, to delete a node at the
beginning of the list:

- If the list is empty, display a message ‘Empty List’.

« If the list is not empty, follow the steps given below: last
= temp = start;

while(last -> next != start) last = last -> next;

start = start -> next; last -> next = start;

« After deleting the node, if the list is empty then start = NULL.

efepl 10 1200} 20 :mn—rl 30 |400— 40 [200

- I 1
47" jpo 200 300 400 —‘
temp
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Deleting a node at the end

« The following steps are followed to delete a node at the end of

the list:

« If the list is empty, display a message Empty List".

. If the list is not empty, follow the steps given below: temp
= start;

prev = start;

while(temp -> next != start)

{

prev =temp;

temp =temp -> next;

}

prev -> next = start;

« After deleting the node, if the list is empty then start = NULL.



Deleting a node at the end
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Traversing a circular single linked list from left t9&
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right

« The following steps are followed, to traverse a list from left to
right:

* Iflist is empty then display _Empty List° message.

« Ifthe list is not empty, follow the steps given below:

temp = start;

do

{

printf("%d ", temp -> data); temp =temp -> next;

} while(temp != start);




Advantages of Circular Lists

« The major advantage of circular lists (over non-circular
lists) is that they eliminate some extra-case code for
some operations (like deleting last node).

 Also, some applications lead naturally to circular list
representations.

 For example, a computer network might best be modeled
using a circular list.



A polynomial is of the form:

polynomial

_;T_.c_l .:l-:'-l

Where, c;is the coefficient 01 the ithterm and n is the degree of the

Some examples are: 5x2+ 3x + 1, 5x4— 8x3 + 2x2 + 4x1 + 9x0

The computer implementation requires implementing polynomials
as a list of pairs of coefficient and exponent. Each of these pairs
will constitute a structure, so a polynomial will be represented as
a list of structures. A linked

polynomials

list structure that

5x4— 8x3+ 2x2+ 4x1+ 9xO0jllustrated.
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Addition of Polynomials

To add two polynomials, if we find terms with the same
exponent in the two polynomials, then we add the coefficients;
otherwise, we copy the term of larger exponent into the sum
and go on. When we reach at the end of one of the polynomial,
then remaining part of the other is copied into the sum.

To add two polynomials follow the following steps:

— Read two polynomials.
— Add them.
— Display the resultant polynomial.



UNIT - IV

Trees: Basic concept, binary tree, binary tree representation, array and linked
representations, binary tree traversal, binary tree variants, application of trees;

Graphs: Basic concept, graph terminology, graph implementation, graph
traversals, Application of graphs.




Tree — a Hierarchical Data Structure

Trees are non linear data structure that can be represented in a
hierarchical manner.

— A tree contains a finite non-empty set of elements.

— Any two nodes in the tree are connected with a
relationship of parent-child.

— Every individual elements in a tree can have any number of
sub trees.




An Example of a Tree




Tree — Basic Terminology

Root : The basic node of all nodes in the tree. All operations on the
tree are performed with passing root node to the functions.

Child : a successor node connected to a node is called child. A node
In binary tree may have at most two children.

Parent : a node is said to be parent node to all its child nodes.

Leaf : a node that has no child nodes.

Siblings : Two nodes are siblings if they are children to the same
parent node.



Tree — Basic Terminology Contd... 5, IARE £

Ancestor . a node which is parent of parent node ( A is
ancestor node to D,E and F).

Descendent : a node which is child of child node (D, E and F
are descendent nodes of node A)

Level : The distance of a node from the root node, The root is
at level — 0,( B and C are at Level 1 and D, E, F have Level 2 (
highest level of tree is called height of tree)

Degree : The number of nodes connected to a particular parent
node.



Binary Tree

« Abinary tree is a hierarchy of nodes, where every parent node has
at most two child nodes. There is a unique node, called the root,
that does not have a parent.

« A binary tree can be defined recursively as
 Root node

 Left subtree: left child and all its descendants
* Right subtree: right child and all its descendants




Binary Tree




Full and Complete Binary Trees

« Afull treeis abinary tree in which
— Number of nodes at level | is 2|-1
— Total nodes in a full tree of height n is
« A complete tree of height n is a binary tree
— Number of nodes at level 1 I n-1is 2|-1

— Leaf nodes at level n occupy the leftmost positions in the
tree

£ b

full tree complete tree



Tree Traversals

« A binary tree is defined recursively: it consists of aroot, a left
subtree, and a right subtree.

 To traverse (or walk) the binary tree is to visit each node in
the binary tree exactly once.

 Tree traversals are naturally recursive.
« Standard traversal orderings:

* preorder

* Inorder

* postorder

* level-order




Preorder, Inorder, Postorder

 In Preorder, theroot is visited
before (pre)

the subtrees traversals.
* In Inorder, therootis

visited in-between left

and right subtree traversal.
* In Preorder, the root

IS visited after (pre)

the subtrees traversals.




Example of Tree Traversal

« Assume: visiting a node /@

IS printing its data e

*Preorder: 1582637

11 10 12 14 20 27 22 30 6
*lnorder: 236781011

12 14 15 20 22 27 30 \

Postorder: 376210 14 Q
1

12 11 8 22 30 27 20 15




Traversal Techniques

void preorder(tree *tree) {
If (tree->isEmpty()) return; visit(tree->getRoot( )); preOrder(tree-

>getLeftSubtree()); preOrder(tree->getRightSubtree());
}

void inOrder(Tree *tree){

If (tree->IsEmpty( )) return; inOrder(tree->getLeftSubtree());
visit(tree->getRoot( )); inOrder(tree->getRightSubtree( ));

}

void postOrder(Tree *tree){

If (tree->isEmpty( )) return; postOrder(tree->getLeftSubtree());

postOrder(tree->getRightSubtree( )); visit(tree->getRoot( ));
}




Threaded Binary Tree

« A threaded binary tree defined as:

« "Abinarytreeis threaded by making
all right child pointers that would
normally be null pointto theinorder
successor of the node, and all left child
pointers that would normally be null point
to theinorder predecessor of the node




Graph Basics

« Graphs are collections of nodes connected by edges —G=(V,E) where
Visasetof nodes and E a setof edges.

« Graphs are useful in anumber of applications including

— Shortest path problems
— Maximum flow problems

« Graphs unlike trees are more general for they can have connected
components.




Graph Types

Directed Graphs: A directed graph edges allow travel in one

direction.

e Undirected Graphs: An undirected graph edges allow

travel in either direction.

FIGURE 8.1A

The graph G = ({1, 2, 3, 4, 5}, {{1, 2},
{1,3}L {2, 3}, {2, 4}, {3, 5}, {4, B}D

FIGURE 8.1B

The directed graph G = ({1, 2, 3, 4, 5}, [(, 2),
(1,3). (2, 1), (3, 2), (4, 3), (4, 5),
(5, 2). (5,4))




Graph Terminology

« Agraphis an ordered pair G=(V,E) with a set of vertices or

nodes and the edges that connect them.
« A subgraph of a graph has a subset of the vertices and edges.

« The edges indicate how we can move through the graph.

« A pathis asubset of E that is a series of edges between two
nodes.

« Agraph is connected if there is at least one path between

every pair of nodes.



Graph Terminology

The length of a path in a graph is the number of edges in the
path.

A complete graph is one that has an edge between every pair
of nodes.

A weighted graph is one where each edge has a cost for
traveling between the nodes.

A cycle is a path that begins and ends at the same node.
An acyclic graph is one that has no cycles.
An acyclic, connected graph is also called an unrooted tree
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Data Structures for Graphs An Adjacency Matrix *

 For an undirected graph, the matrix will be symmetric along the

diagonal.

« For a weighted graph, the adjacency matrix would have the
weight for edges in the graph, zeros along the diagonal, and
infinity () every place else.




Adjacency Matrix Example 1

1 2 3 4 5
1 () 1 1 0 0
2 1 0 1 1 0

4 0 1 0 0 1

5 0 0 | 1 0

FIGURE 8.1A |
The graph G = ({1, 2, 3, 4, 5}, {{1, 2}, | | FIGURE 8.2
(1,3}, {2, 3}, {2, 4},{3,5}, {4, 5))) The adjacency matrix for the graph in Fig. 8.1(@)




Adjacency Matrix Example 2

FIGURE8.1B |5 0 1 0 1 0
The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2), —

(1,3),(2,1), (3, 2), (4, 3), (4, ), FIGURE 8.2B
(5' 2), (5’ 4) ]) The adjacency matrix for the digraph in Fig. 8.1(b)
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Data Structures for Graphs An Adjacency List "

« Alist of pointers, one for each node of the graph.

« These pointers are the start of a linked list of nodes that can be
reached by one edge of the graph.

« For a weighted graph, this list would also include the weight
for each edge.




Adjacency List Example 1

FIGURE 8.1A |° - | 8 |=» | 4
Thegraph G=({1, 2, 3,4, 5}, {{1, 2},
{1,3]. 12, 3}, {2, 4}, {3, &}, [4. 5]} FIGURE 8.3A

The adjacency list for the graph in Fig. 8.1(a)




Adjacency List Example 2

FIGURE 8.1B 5 il 2 | 4
The directed graph G = ({1, 2, 3, 4, 5}, {(1, 2),
(11 3)! (2! 1)! (31 2)! (4) 3)! (4| 5)) FlGURE 8.38

(5, 2)’ (5-4)}) The adjacency list for the graph in
Fig. 8.1(b)




Graph Traversals

« Some algorithms require that every vertex of a graph be visited
exactly once.

« The order in which the vertices are visited may be important,
and may depend upon the particular algorithm.

 Thetwo common traversals:
- depth-first
- breadth-first
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Graph Traversals: Depth First Search Traversal, ars:

We follow a path through the graph until we reach a dead end.

We then back up until we reach a node with an edge to an

unvisited node.

We take this edge and again follow it until we reach a dead end.

This process continues until we back up to the starting node
and it has no edges to unvisited nodes.
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Depth First Search Traversal Example
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FIGURE 8.4
A graph




Breadth First Search Traversal

« From the starting node, we follow all paths of length one.
« Then we follow paths of length two that go to unvisited nodes.

« We continue increasing the length of the paths until there are

no unvisited nodes along any of the paths.
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Breadth First Search Traversal Example
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« Consider the following graph:

FIGURE 8.4
A graph

« Theorder of the breadth-first traversal of this graph starting at node 1
wouldbe: 1,2,8,3,7, 4,5,9,6




UNIT -V

Binary search trees: Binary search trees, properties and operations; Balanced
search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and
collision: Introduction, hash tables, hash functions, collisions, applications of

hashing.




Binary Search Trees

« In a BST, each node stores some information including a
unique key value, and perhaps some associated data. A binary
tree is a BST iff, for every node n in the tree:

« All keys in n's left subtree are less than the key in n, and
« All keys in n's right subtree are greater than the key in n.

* In other words, binary search trees are binary trees in which all
values in the node‘s left subtree are less than node value all
values in the node’‘s right subtree are greater than node value.

180



BST Example

Here are some BSTsin which eachnode just stores an integer key:

=

sl cu i
// » /,/7— /'/ \.\ "J" \

() i SN G G

In the left one 5 is not greater than 6. In the right one 6 is not greaterthan 7.



Properties and Operations

A BST is a binary tree of nodes ordered inthe following way:
l. Each node contains one key (also unique)

ll.  The keys in the left subtree are < (less) thanthe key in
Its parent node

1.  The keys in the right subtree > (greater) thanthe key in
its parent node

Iv. Duplicate node keys are not allowed.




Operations - Inserting anode

* A naive algorithm for inserting a node into a BST is that, we start from
the root node, if the node to insert is less than the root, we go to left
child, and otherwise we go to the right child of theroot.

* We then insert the node as a left or right child of the leaf node based on
node is less or greater than the leaf node. We note that a new node is
always inserted as a leaf node.



Operations - Inserting anode

* A recursive algorithm for inserting a node into a BST is as follows.
Assume we insert a node N to tree T if the tree is empty, the we return
new node N as the tree. Otherwise, the problem of inserting is reduced
to inserting the node N to left of right sub trees of T, depending on N is
less or greater than T.A definition is asfollows.

Insert(N, T) =N if Tisempty
= insert(N, T.left) if N<T
= insert(N, T.right) if N>T



Operations - Searching for anode

Searching for a node is similar to inserting a node. We start
from root, and then go left or right until we find (or not find the
node). A recursive definition of search is as follows. If the node
IS equal to root, then we return true. If the root is null, then we
return false. Otherwise we recursively solve the problem for
Tleft or Tright, depending on N < T or N > T. A recursive
definition is as follows.

Search should return a true or false, depending on the node is
found or not.



Searching for anode

Search(N, T) =false if T is empty Searching for anode is similar
to inserting a node. We start from root, and then go left or right
until we find (or not find thenode).

A recursive definition of search is as follows. If the node is
equal to root, then we return true. If the root is null, then we
return false. Otherwise we recursively solve the problem for
T.left or T.right,depending on N < T or N>

T.Arecursive definition is as follows.

Search should return a true or false, depending on the node is
found or not.

Search(N, T) = false if T is empty
= true If T=N
=search(N, Tleft) ifN<T

186



Operations - Deleting anode

A BST is a connected structure. That is, all nodes in a tree are
connected to some other node. For example, each node has a
parent, unless node is the root. Therefore deleting a node could
affect all sub trees of that node. For example, deleting node 5
from the tree could result in losing sub trees that are rooted at 1
and 9.




Balanced Search Trees

A self-balancing (or height-balanced) binary search treeis any
node-based binary search tree that automatically keeps its
height (maximal number of levels below the root) small in the
face of arbitrary item insertions and deletions.

 AVL Trees: An AVL tree is another balanced binary search tree.
Named after their inventors, Adelson-Velskii and Landis, they
were the first dynamically balanced trees to be proposed. Like
red-black trees, they are not perfectly balanced, but pairs of
sub-trees differ in height by at most 1, maintaining an O(logn)
search time. Addition and deletion operations also take O(logn)
time.



AVL Tree -Definition

* Definition of an A/L tree: An A/L tree iIs a binary
search tree which has the following properties:

l. The sub-trees of every node differ in height by at most one.
ii.  Every sub-tree is anAVL tree.

 Balance requirement for an A/L tree: the left and right
sub-trees differ by at most 1 in height.




Balance
requirement
foran AVL
tree: the left
and right
sub-trees
differ by at
most I in
height.

For example. here are some trees:

Yes this is an AVL tree. Examination shows that each left sub-tree has a height 1 greater than
each nght sub-tree.

No this is notan AV L tree. Sub-tree with root 8 has height 4 and sub-tree with root 18 has height
2z



Balance Factor

To implement our AVL tree we need to keep track of a balance
factor for each node in the tree. We do this by looking at the
heights of the left and right subtrees for each node. More
formally, we define the balance factor for a node as the difference
between the height of the left subtree and the height of the right
Subtree.

balanceFactor=height(leftSubTree)=height(rightSubTree)

Using the definition for balance factor given above we say that
a subtree is left-heavy if the balance factor is greater than zero.
If the balance factor is less than zero then the subtree is right
heavy. If the balance factor is zero then the tree is perfectly in
balance.



Balance Factor
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Introduction to M-Way Search Trees

m =
2 IARE §
s \3
» 2

A multiway tree is a tree that can have more than two children.

A multiway tree of order m (or an m-way tree) is one in which a
tree can have m children.

As with the other trees that have been studied, the nodes in an

m-way tree will be made up of key fields, in this case m-1 key
fields, and pointers to children.

Multiday tree of order 5
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Properties of M-way Search Trees

m =

2 IARE 3
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* m-way search tree is a m-way tree in which:
I Each node has m children and m-1 key fields
Il.  The keys in each node are in ascending order.
lii.  The keys in the firsti children are smaller than the ithkey
Iv. The keys in the last m-i children are larger than theith

key
 4-way search tree . e
30 35 58 59 63 70 73 100

62 54 61 62




B -Trees

 An extension of a multiway search tree of order m is a B- tree of
order m. This type of tree will be used when the data to be
accessed/stored is located on secondary storage devices

because they allow for large amounts of data to be stored in a
node.

« A B-tree of order m is a multiway search tree inwhich:

I.  Theroot has at least two subtrees unless it is the only
nodein

the tree.

1.  Each nonroot and each nonleaf node have at most m
nonempty children and at least m/2 nonempty children.

The number of keys in each nonroot and each nonleaf

node is one less than the number of its nonempty
children.

Iv. All leaves are on the same level.



Searching a B -Tree

Start at the root and determine which pointer to follow based

on a comparison between the search value and key fields in
the root node.

Follow the appropriate pointer to a child node.

Examine the key fields in the child node and continue to follow
the appropriate pointers until the search value is found or a

leaf node is reached that doesn't contain the desired search
value.



Insertion into aB-Tree

« The condition that all leaves must be on the same level forces
a characteristic behavior of B-trees, namely that B-trees are not

allowed to grow at the their leaves; instead they are forced to
grow at the root.

« When inserting into a B-tree, a value is inserted directly into a
leaf. This leads to three common situations that can occur:

I.  AKkeyis placed into a leaf that still hasroom.
ii.  The leaf in which a key is to be placed isfull.
iii.  The root of the B-tree is full.



Casel: A key is placed into a leaf that still has room

This is the easiest of the cases to solve because the value is ssmply inserted into the correct sorted

position in the leaf node.
12
5 8 13 15
Inserting the number 7 results in:
12

'\




Case2: The leafin which a key is to be placed is full

In this case. the leaf nmnode where the value should be inserted is split in two. resulting in a new
leaf node. Half of the keys will be moved from the full leaf to the new leaf. The new leaf is then
incorporated into the B-tree_

The new leaf is incorporated by moving the middle value to the parent and a pointer to the new
Ieaf is also added to the parent This procsss is continues up the tree until all of the values have

"found"” a location._

Insert 6 into the following B-tree:

1=
=2 = ra = 1> 15
resuits in a split of the first leafnode:
12
2 5 7 E=3 13 15
12
2 s <3 br =3 13 15

The new node needs to be incorporated into the tree - this is accomplished by taking the middise
value and inserting itin the parent:

12




Case3: The root of the B-tree is full

The upward movement of values from case 2 means that it's possible that a value could move up
to the root of the B -tree_ If the root is full. the same basic process ffom case 2 will be applied and
a new root will be created. This tvpe of split results in 2 new nodes being added to the B-tree.

Inserting 13 into the following tree:

6122 |m
23‘45 r‘awu wls|ele| [alsls|z 3133&’35
Results in-
AR
tiviels] |7lslelnl [oluls m;m’ alnlsiz nlnlsls

The 15 needs to be moved to the root node but it is full. This means that the root needs to be

divided:
L K 5 AR
213|435 T8 (0|1 13 14 G519 aA\1185 (8 J %%

The 15 is inserted into the parent. which means that it becomes the new root node:




Deleting from a B -Tree

« The deletion process will basically be a reversal of the
insertion process - rather than splitting nodes, it's possible that
nodes will be merged so that B-tree properties, namely the

requirement that a node must be at least half full, can be
maintained.

* There are two main cases to be considered:
I Deletion from a leaf
ii. Deletion from anon-leaf




Case 1: Deletion from a leaf

1a) If the leaf is at least half full afier deleting the desired value, the remaining larger values are
moved to "fill the gap”.

Deleting 6 from the following tree:

results in:

>

HE

lts’;n

=3

16




If there 1s a left or right sibling with the number of kevs exceeding the minimum requirement, all
of the keys from the leaf and sibling will be redistributed between them by moving the separator
key from the parent to the leaf and moving the middle kev from the node and the sibling
combined to the parent.

JNEN
11 n|s
\1‘1. \ "'-'-._‘_
112 | & B 14| 15 18 | 2% oM T
MNow delete B from the tree:
18
——
3|1 | s |
_,_,-'-"f” o xx'\-\._h _\-\_\_\_\_—_‘_"‘—\-._
|1 a | £ #| 15 EHE | = | o | a7

Iif the number of keys in the sibling does not exceed the minimum requirement, then the leaf and sibling
are merged by putting the kewvs from the leaf, the sibling, and the separator from the parent into th
leaf. The sibling node is discarded and the keys in the parent are mowved to "fill the gap”. it's possib
that thiz will cause the parent to underflow. If that is the case, treat the parent as= a leaf and continu
repeating step 1b-2 until the minimum reguirement is met or the root of the tree is reached.



Hashing

Hashing is the technique used for performing almost constant
time search in case of insertion, deletion and find operation.

Taking a very simple example of it, an array with its index as key
IS the example of hash table. So each index (key) can be used
for accessing the value in a constant search time. This
mapping key must be simple to compute and must helping in
identifying the associated value. Function which helps us in
generating such kind of key- value mapping is known as Hash
Function.

In a hashing system the keys are stored in an array which is
called the Hash Table. A perfectly implemented hash table would

always promise an average insert/ delete / retrieval
time of O(1).



Hashing Function

A function which employs some algorithm to computes the key
K for all the data elements in the set U, such that the key K
which is of a fixed size. The same key K can be used to map
data to a hash table and all the operations like insertion,
deletion and searching should be possible. The values returned
by a hash function are also referred to as hash values, hash
codes, hash sums, or hashes.

hash

keys function hashes
Q0
— .. o
oA - op
- 03
i i B q?

s 13
S - o

15



Hash Collision

A situation when the resultant hashes for two or more data
elements in the data set U, maps to the same location in the
has table, is called a hash collision. In such a situation two or
more data elements would qualify to be stored / mapped to the
same location in the hash table.

Hash collision resolution techniques:

Open Hashing (Separate chaining):Open Hashing, is a
technique in which the data is not directly stored at the hash
key index (k) of the Hash table. Rather the data at the key index
(k) in the hash table is a pointer to the head of the data
structure where the data is actually stored. In the most simple
and common implementations the data structure adopted for
storing the element is alinked-list.



keys buckets entries




Closed Hashing (Open Addressing) A

 In this technique a hash table with pre-identified size is
considered. All items are stored in the hash table itself. In
addition to the data, each hash bucket also maintains the three
states: EMPTY, OCCUPIED, DELETED. While inserting, if a
collision occurs, alternative cells are tried until an empty bucket
Is found. For which one of the following techniqueis adopted.

 Liner Probing
« Quadratic probing
 Double hashing



A Comparative Analysis ofClosed Hashing vs Open

Hashino

Open Addressing

Closed Addressing

All elements would be
stored in the Hash table
itself No additional data
structure is needed.

Additional Data structure
needs to be used to

accommeodate collision
data.

In cases of collisions. a
unique hash key must be
obtained.

approach to collision

resoluton. Key may or may
not be unique.

Determmuining size of the
hash table. adequate enough
for storing all the data is
difficult.

Perfommance deterioration
of closed addressing much
slower as compared

Simple and effective |
Open addressing. |

State needs be maintained

for the data (additional
work)

No state data needs to be

maintained (easier to
maintain)

Uses space efﬁcientl;,.r

Expensive on space




Applications of Hashing

A hash function maps a variable length input string to fixed
length output string -- its hash value, or hash for short. If the
input is longer than the output, then some inputs must map to
the same output -- a hash collision.

Comparing the hash values for two inputs can give us one of
two answers: the inputs are definitely not the same, or there is
a possibility that they are the same. Hashing as we know it is
used for performance improvement, error checking, and
authentication.

In error checking, hashes (checksums, message digests, etc.)
are used to detect errors caused by either hardware or
software. Examples are TCP checksums, ECC memory, and
MD5 checksums on downloaded files.
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Applications of Hashing

« Construct a message authentication code (MAC)
« Digital signature

« Make commitments, but reveal message later

* Timestamping

« Key updating: key is hashed at specific intervals
resulting in new key







