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Solution for linear systems

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set of ‘m’ rows, each

row consisting of an ordered set of ‘n’ numbers between [] (or) () (or) || || is called a matrix of order m xn.

= [aj]mxn Where 1< ism, 1<j<n.

Some types of matrices:
1. square matrix : A square matrix A of order n x n is sometimes called as a n- rowed matrix A (or) simply a

square matrix of order n

11 )
. . 2n .
eg 5 9 is order matrix

2. Rectangular matrix: A matrix which is not a square matrix is called a rectangular matrix,

1 -12] _
2 3 4 is a 2x3 matrix

3. Row matrix: A matrix of order 1xm is called a row matrix
eg: [l 2 3]1)(3

4. Column matrix: A matrix of order nx1 is called a column matrix

1
Eg: |1
2

3x1

. Unit matrix: if A= [a;] o Such that a; = 1 for i = j and a; = 0 for izj, then A is called a unit matrx.

1 0 1 0 O
Eg:|2= |3= 01 0

01
0 01

Zero matrix : it A = [a;] e such thata; =0 V 1and jthen Ais called a zero matrix (or) null matrix

0 0O
0 0O

Eg: Oya= {

Diagonal elements in a matrix: A= [a;].xn, the elements a; of A for which i =]. i.e. (a1, @2,....ann) are called
the diagonal elements of A
1 2 3

Eg:A=|4 5 6| diagonal elements are 1,5,9
7 8 9

Note: the line along which the diagonal elements lie is called the principle diagonal of A




8. Diagonal matrix: A square matrix all of whose elements except those in leading diagonal are zero is

called diagonal matrix.

If d;, ds..... d, are diagonal elements of a diagonal matrix A, then A is written as A = diag
(dy,ds....dy)
3 0 O
Eg. :A=diag(3,1,-2)= |0 1 O
0 0 -2
Scalar matrix: A diagonal matrix whose leading diagonal elements are equal is called a scalar matrix.
2 0 0
Eg:A=|0 2 O
0 0 2
. Equal matrices : Two matrices A = [a;] and b= [b;] are said to be equal if and only if (i) A and B are of
the same type(order) (ii) aj= b;; for every i &
. The transpose of a matrix: The matrix obtained from any given matrix A, by interchanging its rows
and columns is called the transpose of A. It is denoted by A* (or) A”.
If A = [a;] mxn then the transpose of A'is Al= [bj] nxm, where b ;= a ;; Also (Al)1 =A
Note: A’ and B! be the transposes of A and B respectively, then
(i) () = A
(ii) (A+B)' = A'+B*
(iii) (KA)' = KA', K is a scalar
(iv) (AB)'= B'A!
. The conjugate of a matrix: The matrix obtained from any given matrix A, on replacing its elements by

corresponding conjugate complex numbers is called the conjugate of A and is denoted by A

Note: if A and é be the conjugates of A and B respectively then,

(i) (A) =A

(i) A+B=A+B

(jii) (KA) = K A (Kis a any complex number )
(iv) AB = AB

2 3i 2-5i —_ |2 =3I 2+5i
Eg;ifA= | . . then A=| . .
—1 0 4i+3 243 i 0 -—-4i+3 43

13. The conjugate Transpose of a matrix

The conjugate of the transpose of the matrix A is called the conjugate transpose of A and is denoted by A®




Thus A®= (Al) where A" is the transpose of A. Now A = [a;] mxn => A° =[by] nxm, where bij = aij

i.e. the (i,j)™ element of A° conjugate complex of the (j, i) element of A.

{5 3—j —Zi}
Eg:if A= . .
0 1+i 4-i %3

5 0
then Ae —|3+i 1—i
2i 4+i
3x2
14,
(i) Upper Triangular matrix: A square matrix all of whose elements below the leading diagonal are zero is
called an Upper triangular matrix.

1 3 8
Eg; |10 4 -5
0 0 2

is an upper triangular matrix

(ii) Lower triangular matrix: A square matrix all of whose elements above the leading diagonal are zero is
called a lower triangular matrix. i.e, aj-o for i< j

0 O
Eg: 2 0
3

6

is an Lower triangular matrix

(iii) Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a lower
triangular matrix

15. Symmetric matrix: A square matrix A =[a;] is said to be symmetric if a; = a; for every i and j

Thus A is a symmetric matrix if A'= A

is @ symmetric matrix

16. Skew — Symmetric: A square matrix A = [a;] is said to be skew — symmetric if a; = — a; for every i and j.
0 a -b
Eg.:|—-a O C |is a skew — symmetric matrix
b -c 0
Thus A is a skew — symmetric iff A=-A*  or  -A= A’
Note: Every diagonal element of a skew — symmetric matrix is necessarily zero.
Since aj=-a; = a;=0
17. Multiplication of a matrix by a scalar.
Let ‘A’ be a matrix. The matrix obtain by multiplying every element of A by a scalar K, is called the

product of A by K and is denoted by KA (or) AK
Thus: A+ [au-] mn then KA = [kaij] mxn = k[ai,-] mxn




18. Sum of matrices:
Let A = [a;] mxn ,B = [by] mxn be two matrices. The matrix C = [¢;] mxn where ¢;; = aj+bj; is called the sum

of the matrices A and B.
The sum of A and B is denoted by A+B.
Thus [ag] ma + [by] mx = [aj+by] mn and  [ajtby] ma - [ag] ma + [by] m«
19. The difference of two matrices: If A, B are two matrices of the same type then A+(-B) is taken as A—B
20. Matrix multiplication: Let A = [&, ]Jmxn, B = [byj]nx then the matrix C = [c;]my Where ¢ is called the product
of the matrices A and B in that order and we write C = AB.
The matrix A is called the pre-factor & B is called the post — factor
Note: If the number of columns of A is equal to the number of rows in B then the matrices are said to be
conformable for multiplication in that order.
21. Positive integral powers of a square matrix:

Let A be a square matrix. Then A’ is defined A.A
Now, by associative law A® = A2.A = (AA)A

= A(AA) = AA®

Similarly we have A™*A = A A™" = A" where m is a positive integer
Note: I"=1

0"=0
Note 1: Multiplication of matrices is distributive w.r.t. addition of matrices.

i.e, A(B+C) = AB + AC

(B+C)A = BA+CA

Note 2: If A is a matrix of order mxn then Al,=I,A=A

n
22. Trace of A square matrix : Let A = [a;] nxn the trace of the square matrix A is defined as Zaii .And is
i=1

denoted by ‘tr A’

n
Thus trA = Za” =aptaxnt
i=1

a 9

h
Eg:A=|h Db f |thentrA=a+b+c
g f c
Properties: If A and B are square matrices of order n and A is any scalar, then
(i) tr (AA)=AtrA
(ii) tr (A+B)=trA+tr B
(iii) tr(AB) = tr(BA)

23. Idempotent matrix: If A is a square matrix such that A’ = A then ‘A’ is called idempotent matrix




24. Nilpotent Matrix: If A is a square matrix such that A"=0 where m is a +ve integer then A is called nilpotent

Note: If m is least positive integer such that A™ = 0 then A is called nilpotent of index m

25. Involutary : If A is a square matrix such that A% =1then A is called involuntary matrix.

26. Orthogonal Matrix: A square matrix A is said to be orthogonal if AA" = ATA= |
Examples:

cos 6 sin@
—-sing  cosé
cosd sing
—-sin@  cos 0}

1. Show that A = { } is orthogonal.

Sol: Given A = {

R cosfd  —sing
sinéd cos @

cosd sin@ cos @ —sin@
—sing cos @ sin@ cos @

Consider A.A" = {

cos® @ +sin? 6 —c0s @sin &+ cos @sin 6
—sin@cos@+cosPsind  cos’ O +sin’ 6

10 )
01|
.. A'is orthogonal matrix.

-1 2 2
2. Provethatthematrix1 2 -1 2 |isorthogonal.
2 2 -1
-1 2 2
SoI:GivenA=1 2 -1 2
2 2 -1

-1 2 2
ThenAT=12 -1 2
2 2 -1
-1 2 2 -1 2 2
ConsiderA.AT=1 2 -1 2 2 -1 2
2 2 =112 2 -1




AA =
Similarly AT A=
Hence A is orthogonal Matrix
0 2b c
3. Determine the values of a, b, cwhen |@ b —cC | is orthogonal.

a -b c

Sol: - For orthogonal matrix AA" =

0 2b c||0 a a
soAA'=|a b —c||2b b —-b|=I
a -b c||c -c ¢

4b® +¢c*  2b* —c? —2b% +c?
—)| 2b* —c* a’+b*+c® a’-b®-c?
—2b* +c? a’-b*>-c* a’+b*+c?
Solving 2b%c? =0, a*-b*c? =0
Wegetc= ++/2b a®=b%+2b*=3b’
> a= +/3b
From the diagonal elements of |

4Ab%+c*= 1 2 4b%+2b%=1 (c*=2b?)

b=t

1
J6




27. Determinant of a square matrix:

28. Minors and cofactors of a square matrix
Let A =[a;] nxn be a square matrix when form A the elements of i" row and jth column are deleted the
determinant of (n-1) rowed matrix [Mij] is called the minor of aij of A and is denoted by | M;|
The signed minor (-1) ™ | M| is called the cofactor of a; and is denoted by A;;..
8y &, day
IfA= a,; a,, a, then
a31 a32 a33

| Al =a1 [My]| +a [My | +a13 [Mys] (or)
= ap1 Aqg +ag Agp a1z Ags

1 1 3
E.g.: Find Determinant of |1 3 —3]| by using minors and co-factors.
-2 -4 -4
1 1 3
Sol: A= |1 3 -3
-2 -4 -4

3 -3 0 -3 1 3
detA=1 - +3
-4 -4 |-2 -4 |-2 -4

=1(-12-12)-1(-4-6)+3(-4+6)
=-24+10+6 = -8
Similarly we find det A by using co-factors also.

Note 1: If A is a square matrix of order n then|KA| =K" |A| , Where k is a scalar.

Note 2: If A is a square matrix of order n, then |A| = ‘AT‘




Note 3: If A and B be two square matrices of the same order, then |AB| = |A| |B|

29. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that AB = BA =l then B is

called inverse of A and is denoted by A™.

Note:1 (A") = A
Note 2: ' =1
30. Adjoint of a matrix:
Let A be a square matrix of order n. The transpose of the matrix got from A
By replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted by adj
A.
Note: For any scalar k, adj(kA) = k"" adj A

Note: The necessary and sufficient condition for a square matrix to posses’ inverse is that |A|¢0

_ L
A

31. Singular and Non-singular Matrices:

Note: if |A|¢O then A™ (adj A)

A square matrix A is said to be singular if |AI =0.

If |A|¢0 then ‘ A’ is said to be non-singular.

Note: 1. only non-singular matrices possess inverses.
2. The product of non-singular matrices is also non-singular.
Theorem : If A, B are invertible matrices of the same order, then
(i). (AB)* = BA™
(ii). (A')* = (A™)*
Proof: (i). we have (B'A™") (AB) =B(A"A)B
=B™(IB)

(AB)'=B"A"
(ii). ATA= AA =

Consider AA =
= (A'l A)l =
> AL (A7) =1
= (Al)-l — (A-l)l
Unitary matrix:
A square matrix A such that (K)T =A"

ie (A) A=A(A) =I

If A’A=Ithen A is called Unitary matrix




Note:The transpose of a unitary matrix is unitary.

PROBLEMS
3 7-4i -2+5i
1) IfA=| 7+4 2 3+i | then show that
-2-51 3-i 4
A is Hermitian and iA is skew-Hermitian.

3 7-4i -2+5i
Sol: Given A=| 7+4i -2 3+i | then
-2-51  3-i 4

3 7+41 —2-5i 3 7—-4i

A=| 7-4i 2 3-i |And(A) =| 7T+4i -2
2451 3+i 4 2-5 3-i

A= (Z)T Hence A is Hermitian matrix.

Let B=iA

3i 4471 -5-2i
i.eB=|-4+7i -2i -1+3i| then
5-2i 1+3i 4i
3 4-7i -5+2i
2i -1-3i

5+2i 1-3i —4j
=3 —4-7i 5+2i 3i 4+7i —-5-2i
4-7i 21 1-3i| =(-1)|-4+7i -2i -1+3i|=-B
S5+2i -1-3i i 5-2i 1+3i 4i

: (E)T -B
..B=iAis a skew Hermitian matrix.

2) If A and B are Hermitian matrices, prove that AB-BA is a skew-Hermitian matrix.

Sol: Given A and B are Hermitan matrices

(A =A And (B

Now (AB—BA) =(AB-BA)




—BA-AB (By (1))

=—(AB-BA)

Hence AB-BA is a skew-Hemitian matrix.

a+ic -b+id

brid  aic } is unitary if and only if a®+b®+c*+d’=1

3) Show that A:{

a-+ic —b+id}

Sol: Given A= ) .
{b+ id a-ic

a—ic —b—id}

Then A=
o [b—id a+ic

a—ic b-id
—-b-id a+ic

AN~ a+ic —b+id| a-ic b-id
“|b+id a-ic |-b—id a+ic

Hence A’ = (Z\)T :{

_(a*+b*+c*+d? 0
0 a’+b?+c?+d?
- AA” =1 ifand only if a®+b®+c?+d* =1

4)Show that every square matrix is uniquely expressible as the sum of a Hermitian matrix and a
skew- Hermitian matrix.

Sol. Let A be any square matrix
0\? 0 0\?
Now (A+A ) =A +(A )
=A"+ A
0\’ 0 0 " .
(A+A ) =A+A”" = A+ A" is a Hermitian matrix.

1 : . :
E(A+ A’) i also a Hermitian matrix

Now (A-A%)" = A7 (%)
=A-A=—(A-A)

Hence A— A’ is a skew-Hermitian matrix




Unigueness:

Let A =R+S be another such representation of A
Where R is Hermitian and

S is skew-Hermitian
Then A’ =(R+S)’

=R?+S’
=R-S (R’=R,8"=-8)
“R :%(A+ A’)=P and s :%(A— A’)=Q

Hence P=R and Q=S
Thus the representation is unique.

0 1+ 2i
-1+2i 0

I 0 1+2i
OLWehave I=R= g 117 2142i 0

1 -1-2i
= . And
1-2i 1
10 0 1+2i
| +A= + ]
0 1 -1+ 2i 0

[ 1 1+
142 1

5)Given that A:{ } , show that (1 — AY1 +A)™ is a unitary matrix.

(e AV = 1 1 -1-2
H+A _1—i4i2—1iL—2i 1 }

1 1 -2
T6l1-2i 1

Let B=(1-A)l+A)"




6|2+4i -4 6| 2+4i -4
B(E)T:i —4. 24 —4. 2+ 4i

36|2-4 -4 -2+41 -4

_1[36 0] 10 _

"36/0 36| |0 1|

(8] e

— 1| 4 244 1l -4 2+4i
Now B=- and —

i.e., B is unitary matrix.
- (1= AX1 + A)is a unitary matrix.
6) Show that the inverse of a unitary matrix is unitary.

Sol: Let A be a unitary matrix. Then AA’ =1

ie (A7) =1

:>(A9)_l Al=]

= (A1) At=l
Thus A™ is unitary.

Problems

1). Express the matrix A as sum of symmetric and skew — symmetric matrices. Where




Matrix A can be written as A = % (A+A")+ % (A-A")

3 -2 6
=>P=‘/2(A+AT)=% 2 7 -1|+|-2
5 4 0

3 0
=10 7
11/2  3/2

5 0
~1|-|-2 7 4 =%4
6 -1 0 -1
1/2
0 -5/2
~1/2 5/2 0

A = P+Q where ‘P’ is symmetric matrix
‘Q’ is skew-symmetric matrix.

Sub — Matrix: Any matrix obtained by deleting some rows or columns or both of a given matrix is called is sub
matrix.

1 56 7

Eg:letA=|8 9 10 5. } is a sub matrix of A obtained by deleting first row and
34 5 -1 2x3

4™ column of A.

Minor of a Matrix: Let A be an m x n matrix. The determinant of a square sub matrix of A is called a minor of
the matrix.

Note: If the order of the square sub matrix is‘t’ then its determinant is called a minor of order is‘t’.




be a matrix

21
—>B ={3 J is a sub-matrix of order ‘2’

|B| =2-3 =-1is a minor of order 2’

211
—C=|3 1 2| isasub-matrix of order ‘3’
56 7

detc= 2(7-12)-1(21-10)+(18-5)
= 2(-5)-1(11)+1(13)

=-10-11+13 = -8 is a minor of order ‘3’

*Rank of a Matrix:
Let A be m x n matrix. If A is a null matrix, we define its rank to be ‘0’. If A is a non-zero matrix, we say

that r is the rank of A if
(i) Every (r+1)" order minor of A is ‘0’ (zero) &
(i) At least one r'" order minor of A which is not zero.
Note: 1. It is denoted by p (A)
2. Rank of a matrix is unique.
3. Every matrix will have a rank.
4. If A'is a matrix of order mxn,
Rank of A < min (m,n)
. If p(A) = r then every minor of A of order r+1, or more is zero.
. Rank of the Identity matrix I, is n.

. If Alis a matrix of order n and A is non-singular then p(A) = n

Important Note:
1. The rank of a matrix is <r if all minors of (r+1)" order are zero.

2. The rank of a matrix is 2r, if there is at least one minor of order ‘r’ which is not equal to zero.
PROBLEMS
1 2 3

Find the rank of the given matrix |3 4 4
710 12




Sol: Given matrix A =

= det A= 1(48-40)-2(36-28)+3(30-28)
= 8-16+6=-2%0

We have minor of order 3
p(A) =3

1
2. Find the rank of the matrix | 5
8

Sol: Given the matrix is of order 3x4
Its Rank £ min(3,4) =3
Highest order of the minor will be 3.

1 2
Let us consider the minor |5 6
8 7

Determinant of minor is 1(-49)-2(-56)+3(35-48)
=-49+112-39=24 0.
Hence rank of the given matrix is ‘3’.
* Elementary Transformations on a Matrix:
i). Interchange of i row and j™ row is denoted by R; ¢ R;
(ii). If i"™ row is multiplied with k then it is denoted by R; >K R;
(iii). If all the elements of i*" row are multiplied with k and added to the corresponding elements of | row
then it is denoted by R; — R; +KR;
Note: 1. The corresponding column transformations will be denoted by writing ‘c’. i.e
¢ ¢, c—kg ¢, — ¢+ kg
2. The elementary operations on a matrix do not change its rank.
Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on A,
then B is said to be equivalent to A.
It is denoted as B~A.

Note :1.If Aand B are two equivalent matrices, then rank A = rank B.




2. If A and B have the same size and the same rank, then the two matrices are equivalent.

A matrix is said to be in Echelon form, if
(i). Zero rows, if any exists, they should be below the non-zero row.
(ii). the first non-zero entry in each non-zero row is equal to ‘1’.

(iii). the number of zeros before the first non-zero element in a row is less than the number of such zeros in

the next row.
Note: 1. the number of non-zero rows in echelon form of A is the rank of ‘A’.

2. The rank of the transpose of a matrix is the same as that of original matrix.

3. The condition (ii) is optional.

is a row echelon form.

0

0
1
0

0 O

0 O | isarow echelon form.

0 0

PROBLEMS

2 3 7
1. Find the rank of the matrix A= |3 —2 4 | by reducing it to Echelon form.
1-3-1

2 3 7
sol: GivenA= |3 -2 4
1-3-1
Applying row transformations on A.
1-3-1
A~ |3 -2 4| R ©R;
2 3 7
1 -3-1
0 7 7|R,>R;-3R;
09 9
Rs=> R3-2R;
1 -3-1
0 1 1 |R;=>Ry/7Rs>Ry/9
01 1




This is the Echelon form of matrix A.
The rank of a matrix A.

= Number of non — zero rows =2

4 4 -3 1
1 1 -10
For what values of k the matrix has rank ‘3’.
k 2 2 -2
99 Kk 3

Sol: The given matrix is of the order 4x4
If its rank is 3 = det A =0

4 4 -3 1
11 -10
k2 2 -2
99 k 3

Applying R; > 4R,-Ry, Rs >4R; — kRy, Ry = 4R, — 9R;

4 -3 1

0 -1 -1

4k 8+3k 8-k
4k +27 3

We getA™

8—
0

Since Rank A=3 = det A =0
0 -1 -1

=>4 8-4k 8+3k 8-k[=0
0 4k +27 3

= 1[(8-4k)3]-1(8-4k)(4k+27)] =0

= (8-4k) (3-4k-27) =0

= (8-4k)(-24-4k) =0

= (2-k)(6+k)=0

= k=2ork=-6

Normal Form:




a finite number of elementary transformations, where I, is the r — rowed unit matrix.

Note: 1. If Ais an mxn matrix of rank r, there exists non-singular matrices P and Q such that PAQ =

¢ o)

Normal form another name is “canonical form”

1 2 3 4
e.g.: Byreducingthematrix |2 1 4 3 into normal form, find its rank.
30 5 -10

1 2 3 4
Sol: GivenA=|2 1 4 3
30 5 -10

2 3 4
-3 -2 5 |R;>R-2R
-6 -4 -22
Rs 2 R3—3R;

Rs =2 Rs+R;

€ C - 2Cy, C3—2C3-3Cy, C4—>Cq-4Cy

€3 > 3 ¢3-2¢; ¢4~>3¢4-5¢;

C,—>Cy/-3, ca—~>c,/18

1T 1T
O Ok OO0k O o o




This is in normal form [I5 0]
Hence Rank of Ais ‘3.

Gauss — Jordan method

e The inverse of a matrix by elementary Transformations: (Gauss — Jordan method)

1. suppose A is a non-singular matrix of order ‘n’ then we write A=, A
2. Now we apply elementary row-operations only to the matrix A and the pre-factor |, of the
R.H.S

We will do this till we get |, = BA then obviously B is the inverse of A.

16 4

Find the inverse of the matrix A using elementary operations where A=|0 2 3

01 2
Sol:
16 4
GivenA= |0 2 3
01 2

We can write A= 13 A

Applying R; 2R;-R,, we get
1 6 4
02 3
00 1

Applying R1=>R:-3R;, we get

1 0 -5 1 -3 0

02 3|=|{01 0 |A

00 1 0 -1 2
Applying Ry = R;+5R;, R, = R,-3R3, we get

1 0 0 1 -8 10
0 2 0|=|0 4 -6 |A
0 0 1 0o -1 2
Applying R, > R,/2, we get




B is the inverse of A.

= 1(10+6)-2(15-1)+3(-18+2)
=16+32-48=0

HIGHER ORDER LINEAR DIFFERENTIAL
EQUATIONS

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

Page



Pn(X) .y = Q(X) Where P1(x), P2(X), Ps(x)
a linear differential equation of order n.
LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
. dﬂ} dn_lj' dﬂ—zj}.
Def: An equation of the form ot P1 . -1t P, . 2

Ps.....P,, are real constants and Q(x) is a continuous function of x is called an linear differential

+ Pn.y = Q(X) where Py, Py,

equation of order ‘ n’ with constant coefficients.

Note:

2. Operator iQ = f @ ie D'Q iscalled the integral of Q.

To find the general solution of f(D).y =0 :
Where f(D) = D"+ P, D"* + P, D" +

Now consider the auxiliary equation : f(m) =0
ief(m)= m"+P,m"+P,m"? +

where p1,p2,p3 pn are real constants.
Let the roots of f(m) =0 be my, my, ms......my.

Depending on the nature of the roots we write the complementary function
as follows:




Consider the following table

Roots of A.E f(m) =0 Complementary function(C.F)

my, My, ..M, are real and distinct. | ye = c1e™*+ coe ™* +.. + ¢ g™

my, My, ..m, are and two roots are
equal i.e., my, m; are equal and Ve = (C1+Cox)e™*+ c3e™* +.. .+ c e
real(i.e repeated twice) &the rest

are real and different.

my, My, ..m, are real and three Ve = (C1HCox+Cax?)e™™ + ™+, .+ cpe™™
roots are equal i.e., mg, m, , ms are
equal and real(i.e repeated thrice)
&the rest are real and different.

Two roots of A.E are complex say Yo = €% (crcosfFx + Cosinfi x)+ cze™ +.. .+ cne™
a+iff & -if5 and rest are real and
distinct.

If ct+if5 are repeated twice & rest | ye = @™ [(C1+C2X)c0s 5 X + (Ca+C4aX) Sinf3 x)]+ cse™s"

are real and distinct +...+ cpe™*

If /S are repeated thrice & rest |y = €™ [(Cr+Cox+ Cax?)cosfS X + (Ca+Csx+ Cex?) sinf3

are real and distinct X)]+ c,™7 + + cpe™

If roots of A.E. irrational say y, =e*|c, cosh/Bx+c,sinh\[Bx|+ c.e™ +
o +./p and rest are real and

distinct.

Solve the following Differential equations :

By _dy
1. solveZX 3% 4oy=0
dx dax

Sol: Given equation is of the form f(D).y = 0
Where f(D) = (D*-3D +2) y=0
Now consider the auxiliary equation f(m) =0
f(m)=m®-3m+2=0 = (M-1)(m-1)(m+2) =0
= m=1,1,2

Since m; and m;, are equal and mg3 is -2

We have Y. = (Ci+Cox)e” + cae™
Solve (D* -2 D*-3D? +4D +4)y =0
Sol: Given f(D) = (D*-2D*-3D? +4D +4) y=0
= A.equation f(m)=(m*-2m*-3m? +4m+4) =0
2 (M+1)°M-2)2=0
= m=-1,-1,2,2




= Y= (c1+c2x)e'x +(03+C4x)e2X

Sol: Given f(D) = (D* +8D*+ 16) y = 0
Aucxiliary equation f(m) = (m* +8 m* + 16) = 0
= (M’ +4)*=0
=2 (m+2i)’> (m+2i)>=0
= m=2i,2i,-2i,-2i
Ye = €%% [(cr+cox)cos2X + (Ca+CaX) SiN2x)]
4. Solve y"+6y'+9y = 0 ; y(0) = -4, y*(0) = 14
Sol:  Given equation is y**+6y'+9y = 0
f(D)y=0 = (D*+6D +9)y=0
Auxiliary equationf(m) =0 = (m?+6m +9) =0
= m=-3,-3
ye = (Cr+Cox)e™
Differentiate of (1) w.r.tox =y =(ci+Cox)(-38) + co(e™)
Giveny; (0)=14 = c1=-4&cCy;=2
Hence we get y =(-4 + 2x) (&)

111 + 4y11 +yl =0

111

. Solve 4y
Sol: Given equation is 4y** + 4y™ +y* = 0
That is (4D*+4D*+D)y=0
Auxiliary equation f(m) =0

4m* +4m*+m=0

m(4m? +4m + 1) = 0

m2m + 1)%=0

m=0,-1/2 ,-1/2

y =Ci+ (Co+ C3x) €7
. Solve (D?-3D +4)y=0

Sol: Given equation (D? - 3D +4) y =0
AE. f(m)=0

=>4

7
2:

2. Vi ] V7
y = e2" (C1C0ST X + CSINTX)

General solution of f(D)y = O(x)
Isgivenbyy=y:+Y,
i.e.y=C.F+P.I




Where the P.I consists of no arbitrary constants and P.1 of f (D) y = Q(X)

Is evaluated as P.l = ———. Q(X)

Depending on the type of function of Q(x).
P.1is evaluated as follows:
1. P.1 of f (D) y = Q(x) where Q(x) =e** for (a) # 0

. __1 _ = . R :

Provided f(a) #0
Case 2: If f(a) = 0 then the above method fails. Then
if f(D) = (D-a)< O(D)
(i.e “a’is arepeated root k times).

Then P.I = — ¢ . % X< provided @ (a) # 0

P
C'I\ a)

2. P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ¢ a ¢ is constant then P.I =
1

o) Q(X).

Case 1: In f(D) put D? = - a2 3 (-a2) # 0 then P.I = sin ax
D)p (-a%) # 0 then ?(?)

Case 2: If f(-a%) =0 then D? + a? is a factor of @(D?) and hence it is a factor of f(D). Then let
f(D) = (D? + &) .®(D?).

sinax sin ax 1 sinax 1 —xcosax

Then = = -
f(D) (D*+a’)®(D?) ®(-a%)D’+a®> o(-a’) 2a

cosax COS ax 1  cosax 1  xsinax

f(D) (D’+a’)d(D’) @(-a’)D’+a’ o(-a’) 2a

. P.Ifor f(D) y = Q(x) where Q(x) = x“ where k is a positive integer f(D) can be express as

f(D) =[1x O(D)]
Express }% =z 1@} =[10(D)

1
Hence P.1 = 120(D) Q(X).

=[1+ O(D)]* X

4. P.1of f(D)y = Q(x) when Q(x) = e® V where ‘a’ is a constant and V is function of x.

where V =sin ax or cos ax or x~

-1
Then P.I "7 ) QX)

1
=™V
f (2




= > [———(V)]

o V is evaluated depending on V.

P.1 of f(D) y = Q(X) when Q(x) =xV where V is a function of x.
-
Then P.l = ) Q(x)

_;XV
fiom

[y __ L 1
=[x fuzn:sf(D)]fu:D:sV

i. P.1. of f(D)y=Q(x) where Q(x)=x"v where v is a function of x.

ThenPI—— xQ(x) = 1 x"v = |.P.of 1 x" (cos ax +isin ax)

f(D) f(D) f(D)

= |.P.of 1 xMel2x

f(D)
ii. P.I. = 1 x™cosax = R.P.of 1 x"Me!
f(D) f(D)

Formulae

1. —=(1-D)'=1+D+D*+D’+

- =(1+D)'=1-D+D*-D+

— a‘-?z (1-D)*=1+2D+3D*+4D%+
1

pprcal D)?=1-2D +3D?-4D%+

~ - x_E:(l—D)'?’:1+3D+6D2+1OD3+

R DE—(1+D) =1-3D +6D?- 10D% +
+

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS:
Find the Particular integral of f(D) y = e™ when f(a) #0

. Solve the D.E (D? + 5D +6) y = €*

. Solve y"+4y*+4y =4¢¥:y(0)=-1,y*0)=3

. Solve y' + 4y' +4y= 4cosx+3sinx , y(0) = 1, y*(0) = 0
. Solve (D*+9) y = cos3x




Solve the D.E (D®- 4 D?-D + 4) y = ¥ cos2x

Solve (D? - 4D +4) y =x°sinx + e + 3
dE .
. Apply the method of variation parameters to solve ﬁ + Y = COSecx

11. Solve%:3x+2y,%+5x+3y:0
12. Solve (D?+ D - 3) y =x%™*
13. Solve (D?-D-2)y=3e* y(0)=0,y"(0)=-2
SOLUTIONS:
1) Particular integral of f(D) y = ¢**when f(a) #0

Working rule:
Case (i):
In f(D), put D=a and Particular integral will be calculated.

1
fo)

ax

Particular integral= e 2™ provided f(a) #0

" @
Case (ii) :
If f(a)= 0, then above method fails. Now proceed as below.
If (D)= (D-a) @ (D)
i.e. ‘@’ is a repeated root k times, then

-
gﬂ"

¥ o
m provided ¢b(a) #0

Particular integral= - .
l.zll"'\.af!
2. Solve the Differential equation(D?*+5D+6)y=¢*
Sol : Given equation is (D*+5D+6)y=e"
Here Q(x) =e”

Auxiliary equation is f(m) = m’+5m+6=0

m%+3m+2m+6=0

m(m+3)+2(m+3)=0
m=-2 or m=-3
The roots are real and distinct

CF=y=ce™+c,e™




1
Particular Integral = y,= ——. Q(x)

1

== _-___¢€ e
D2+353D+6 (D+2}(D+3)

PutD=1inf(D)

1
P.l.= e*

Particular Integral = y,= .

General solution is y=y +y,

.
=2
y=C, 2x c, 3x

<

3) Solve y*-4y'+3y=4e* y(0) = -1, y*(0) = 3

Sol : Given equation is y**-4y'+3y=4e>

. d%y

d -
i.e. 42 +3y=4e™

dx? dx

it can be expressed as

D?y-4Dy+3y=4e*

(D*-4D+3)y=4e>

Here Q(x)=4e**; (D)= D*4D+3
Aucxiliary equation is f(m)=m%4m+3 =0
m2-3m-m+3 =0

m(m-3) -1(m-3)=0 =>m=3 or 1

The roots are real and distinct.

C.F= ye=ce¥+c,e% ----> (2)

P.L=yp= —~. Q)

1

3
— e
(D—1}D-3)

et yp:

Put D=3

4e3* 4 e*

Yo = B-1\D-3) 2(D-3)

General solution is y=yc+y,

y=cie>+c, e*+2xe*




Equation (3) differentiating with respect to ‘x’

y'=3c.e¥+c e +2e>* +6xe*
By data, y(0) = -1, y'(0)=3
From (3), -1=cit+cC;
From (4), 3=3ci+c,+2
3ci+c=1
Solving (5) and (6) we get c;=1 and ¢, =-2
y=-2e * +(1+2x)e*
(4). Solve y''+4y'+4y= 4cosx + 3sinx, y(0) = 0, y*(0) = 0

Sol: Given differential equation in operator form
(D‘2 + 4D + 4)y=4cosx +3sinx
A.Eis m*+4m+4=0

(m+2)°=0 then m=-2, -2

o C.Fisye=(c, + czx)E_h

doosx+3as5iny 2
T —— put D~

P.lis= Yo= I:DZ —aD +‘L:i

dcosx+3siny (4D-3)dcosx+3sinx]

VoI T uD +3) | (2D-3)(4D +3)

(4D=3)(dcosx+3sinx)
- 16025

Put DE =-1

*

" 1yp:

(4D —3)(4cosx+3sinx)
—1a—%

—lésinx+12cosx—12cosx—9sinx)

—25
“+General equation isy = y+ Yo
y=(ci + czx)E_Ex + sinx
By given data, y(0) = 0*+c, = 0 and
Diff (1) w.r..t. y' = (c+cx)(—2)e ™ v e~
given y'(0) =0

(2) =-2c; + c,+1=0




-
e

+*Required solutionisy = —X&"~ * ¥sinx

5. Solve (D*+9)y = cos3x
Sol:Given equation is (D*+9)y = cos3x

AEism’+9=0

Ve = C.F = ¢; cos3x+ ¢,sin3x

cosdx cos3x

=P.l= =
& DZ+3 D%+ 32

k‘ . }‘ .
= -sin3x = ; sin3x

2(3)

General equationisy = y+ Yy,

'
Y = C€1C0S3X + C,C0S83X + g sin3x

6. Solve y'''+2y" - y'-2y= 1-4x°

Sol:Given equation can be written as

(D3 +2D?—D— 21y =1-4¢
AEis(m®+2m?> —m—2)=0
(m? — 1)(m+2)=0

m?* =1 o0rm=2
m=1,-1,-2

C.F =C1E * + CZE_x + C3E_2x

1
P.1

(D3 +2D2—D—2}(1_4X3)

-1
(D3 +2D2 D}
R

(1-4x%)

(D3+2D?-D)

T (-4




-1 (D3+20?-D) (D*+2D*-D)* (D3+2D%-D)?

_ ‘?1{1%(03 +2D% - D)+%(D2 —4D3)+%(— Ds)}(l—‘“‘s)

= 11-2(D?)+2 (D?)-; 0 (14%7)

=== [(2-4°) g (—=24) +3 (~242) - (120")

—1
= —[-4x’+6x” -30x +16] =

= [2x*-3x* +15x -8]
The general solution is
y=C.F+P.

—2x

y=¢c & * c,E s c3E + [2x*-3x% +15x -8]

7. Solve (D3 —7D? 414D -8)y=2" cos2x

Given equation is

(D® —7D%+ 14D -8)y = €% cos2x
AEis(m® —7m? + 14m—8)=o0
(m-1) (m-2)(m-4) =0
Thenm=1,2,4

C.F=¢¥& * 4 czsz + c3E‘4x

e*cos2x
" (D2-7D2+14D -8§)

P.l

1
"(D+1)3-7(D+1)2+14(D+1)-

i

=g . Cos2x
a3




1
"(—4D+3D+16)

.c0s2x (Replacing D* with -2°)

1

B —— o0 1 V2
(16-D)

16+D
"(16—D J(16+D)

.CO0S2X

la+D

. W .COS2X
L0

1la+D

.::———7——j.c052x
256—(—4)

-
F

e
(16cos2x — 2sin2x)
al

X

= Zi(8003 2Xx —sin 2x)
260

X

=% (8cos2x—sin2x)
130

General solutionisy =y +vy,

X

y =ce* +c,e? +c,e’ +1eﬁ(8<:os 2x —sin 2x)

8.Solve (D7 — 4D +a)y=x?sinx + e** 43
Sol:Given (D? — 4D +a)y = x* sinx + e?* +3
AEis(m? —4m+ 4)=0
(m — 2)2 =0then m=2,2
CF.=(c, + czx)E‘zx
x®sinx+ 2% +3

P.I= = _1232 (x2sinx)r — —e’ +

(D—23° (D (D-2)

1

F— 2
(D—-2}

1 2 . - P
Now (x°sinx) = (x7) (P of ')

F— 972
(D—2)

Z 1P of — (x?) (e™)

(D—-2%

- 1Pof (™), —2 - (x?)

(D+i—-2)

On simplification, we get

1

22
(D—2}

(3)




= -2 A 3
P.l= [(220x+244)cosx+(40x+33)sinx] +"T (e2%) -

625
Y=Yt VYp

o 1 -2 . 2
y=(c; + czx)E‘}‘ +—— [(220x+244)cosx+(40x+33)sinx] + AT (E"‘) +I

&

Variation of Parameters :

Working Rule :

2

Reduce the given equation of the form % + P(x)% +Q(X)y =R

Find C.F.
Take P.I. y,=Au+Bv where A= _j—‘iRdX _andB =] _uleX i
uv- —vu uv- —vu
Write the G.S. of the given equation y =y +Yy,
d®y
9. Apply the method of variation of parameters to solve 7,2 Ty = cosecx

Sol: Given equation in the operator form is (E]'2 + ljj’ = f0secx

AEis(m*+1)=o0

The roots are complex conjugate numbers.

s C.F. is Yc=C1COSX + C,SinX
Let y, = Acosx + Bsinx be P.I. of (1)

dv  d 2. .
U= v =0S X+ SINTX =1

dx dx

A and B are given by

1 1 1

J- vRdx _ _J-s:'izx Cosac x dx=-fd.¥=-x
uv- —vu

| uRdx

B [ cosx.cosecx dx = [ cotx dx = log(sinx)

*

Yp= -Xcosx +sinx. log(sinx)




*+ General solution is y = y.+ y,.

Y = €1COSX + C,Sinx-xcosx +sinx. log(sinx)

10. Solve (4D * — 4D +1)y = 100

Sol:AEis (4m* —4m+ 1)=0

2m— 1) = Othenm=-:

n
f A
¥

C.F = (c1+cyx) gz

100 100 &%
" (4D2-4D+1) (2D-1)2"

P.l

Hence the general solution is y = C.F +P.1

T

y= (citcx) €2
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Cayley - Hamilton Theorem:
Statement:

Every square matrix satisfies its own characteristic equation

PROBLEMS
1 -2 1

1. Show that the matrix A = [1 -2 3] satisfies its characteristic equation Hence find A™
0 —1 2

Sol: Characteristic equation of A is det (A-Al) =0

1—4 —2
= 1 —2—4 C2 > C2+C3
Q —1 2—4
0 2
1— 4 3 |=0
1—4 2-—4
1—4A 0 2
(1-AD] 1 1 3 |=0
0 1 2—4

B+ i-1=0
By Cayley — Hamilton theorem, we have A*-A%+A-1=0
1 -2 2 -1 0 0 -1 2 -2
A=1 -2 3| A*=[-1 -1 2| A’=|-2 2 -1
0 -1 2 -1 0 1 -11 0

-1 2 -2 (-1 0 0|1 -2 2| |1 00
AN-AN+A-1=-2 2 -1|-|-1 -1 2|+|1 -2 3|-[0 1 0
-11 0} (-1 0 1(1]0 -1 2] |0 0 1
o 0 0
=['D 0 'Dl=':]
o 0 0
Multiplying with A" we get A=A + [ =A""

-1 0 0|1 -2 2 (100 (-1 2 -2
At=-1 -1 2|-|1 -2 3[+|0 1 0|=|-2 2 -1
-1 0 1,10 -1 2,00 1] |-1 1 O

—1
& -1

7 —2
2)Using Cayley - Hamilton Theorem find the inverse and A* of the matrix A = [—5 2 l



The characteristic equation is given by |A-Al|=0

10
(1—A*0 1 1 =0
6 2 —(1+4)

A2 -5 +7i-3=0
By Cayley — Hamilton theorem we have A*>-5A%+7A-3I=0.....(1)

Multiply with A™ we get

Al= 142 —54+71]

25 8 -8 79 26 -26
A2=|-24 -7 8| A*=|-78 -25 26
24 8 -7 78 26 -25
-3 -2 2
A‘lz1 6 5 -2
3
-6 -2 5
Multiply (1)with A,we get
A* —54% £+ 747 —-34=0
395 130 -130] [ 175 56 -56| [ 21 6 -6

-390 -125 130 |-|-168 -49 56 |+|-18 -3 6
390 130 -125 168 56 -69| |18 6 -3

241 80 -80
-240 -79 80
240 80 -79

Problem

1 2 3
Verify Cayley — Hamilton Theorem forA= |2 4 5]. Hence find A™.
3 5 &

Linear dependence and independence of Vectors:
Show that the vectors (1,2,3), (3,-2,1), (1,-6,-5) from a linearly dependent set.




Sol.  The Given Vector X; =|2

The Vectors Xy, X, X3 from a square matrix.

1 3 1
Let A=|2 -2 -6
3 1 -5
1 3 1
Then [A|l=|2 -2 -6
3 1 -5
= 1(10+6)-2(15-1)+3(-18+2)
=16+32-48=0

The given vectors are linearly dependent - |A|=0

Show that the Vector X1=(2,2,1), X,=(1,4,-1) and X3=(4,6,-3) are linearly independent.
Sol. Given Vectors X;1=(2,-2,1) X,=(1,4,-1) and X3=(4,6,-3) The Vectors X1, X,, X3 form a square
matrix.

2 1 4
A=|-2 4 6
1 -1 -3

2 1 4
Then |[Al=|-2 4 6
1 -1 -3
=2(-12+6)+2(-3+4)+1(6-16)
=-20#£0
The given vectors are linearly independent
A0

Eigen Values & Eigen Vectors

Def: Characteristic vector of a matrix:

Let A=[ay] be an nxn matrix. A non-zero vector X is said to be a Characteristic Vector of A if there exists a
scalar such that AX=AX.

Note: If AX=AX (X£0), then we say ‘A’ is the Eigen value (or) characteristic root of ‘A’.




Here Characteristic vector of A is [_11] and Characteristic root of A is “1”.

Note: We notice that an Eigen value of a square matrix A can be 0. But a zero vector cannot be an Eigen
vector of A.

Method of finding the Eigen vectors of a matrix.

Let A = [a;] be a nxn matrix. Let X be an Eigen vector of A corresponding to the Eigen value A.
Then by definition AX=2AX.
= AX =AX
= AX AIX=0
= (A-ADX =0

This is a homogeneous system of n equations in n unknowns. Will have a non-zero solution X if and only
|A-M| =0
- A-Al is called characteristic matrix of A
|A-Al| is a polynomial in A of degree n and is called the characteristic polynomial of A
- |A-M|=0 is called the characteristic equation

Solving characteristic equation of A, we get the roots, 4; 4, A3 ....... A4, these are called the characteristic
roots or Eigen values of the matrix.
- Corresponding to each one of these n Eigen values, we can find the characteristic vectors.

Procedure to find Eigen values and Eigen vectors

be a given matrix

Characteristic matrix of Ais A — Al

Then the characteristic polynomial is |A— Al |

a11_2~ a,
a,—A

sayg(4)=|A-Al|= %1

anl a'n2




The characteristic equation is |A-AI| = 0 we solve the @(A) = |A — Al| = 0, we get n roots, these are called
igen values or latent values or proper values.
Let each one of these Eigen values say A their Eigen vector X corresponding the given value A is obtained by

solving Homogeneous system

and determining the non-trivial solution.

PROBLEMS

Find the Eigen values and the corresponding Eigen vectors of [g _24]

—4
N
Characteristic matrix = A — Nl
_ [8 -\ —4 ]

2 2—A

Characteristic equation of A is|A— Al | =0

sol:Let A = [g

= |8;)\ 2_—47\ =0
= B-N2-N)+8=0

=16 +A>—10A+8 =0

= A —10A+24=0

= (A=6)A—4)= 0

= A = 6,4 are eigen values of A

Consider system [8 ; A 2__4)\ (2) =0

Eigen vector correspondingtoA = 4
Put A = 4 in the above system, we get
(G 23 G)=0)
= 4x; —4x, =0———(1)
2x1 — 2%, =0———(2)
from (1)and (2)we have x; = x,

letx;= «a

-2l
Eigen vector is = =
X, o 1

[ﬂ is a Eigen vector of matrix A, corresponding eigen value A = 4




Eigen Vector correspondingto A = 6
put A = 6 in the above system, we get

G 2 G)=()
= 2x; —4x, =0———(1)

2x1—4x2 :0———(2)
from (1) and (2) we have x; = 2x,

Say X, =a = X, =2«

. 2a 2
Eigen vector :{ } = O{J

a
[ﬂ is eigen vector of matrix A corresponding eigen value A = 6

201]

Find the eigen values and the corresponding eigen vectors of matrix [0 2 0
1 0 2

Sol:LetA=|0 2 O
1 0 2

The characteristic equation is |A-Al|=0

2—-A 0 1
ie. [ANM=| 0 2-A o0 |=0
1 0 2-A

= 2-MD2-M)?>-0+[-2-N]=0
=02-MD3—@A-2)=0

= A-2[-(A=2)2 -1]=0

= A-2 [N +4-3]=0

= A-2)A-3)A-1)=0

201]

= A=1,2,3

The eigen values of Ais 1,2,3.

For finding eigen vector the systemis (A —A)X =0

2—A 0 1 X1 0
=0 2o o |fu|-lo
1 0 2—M X3 0

Eigen vector corresponding toA =1

1 0 11[* 0
0 1 O0f|*21=]0
1 0 111x3 0




X1+X3:0

X2:0
x1+x3=0

X1 = —X3,Xp = 0
sayxs3 =a

X, =- x =0, x3=a

-

0 | is Eigen vector
[ 1

Eigen vector corresponding to A = 2

0 0 11M™ 0
o 0 o|[z||o
1 0 0l1lxs 0

Here x; = 0 and x3 = 0 and we can take any arbitary value x, i.e x, = a (say)

-

0
Eigen vector is ]
K]

Eigen vector corresponding to A = 3

-1 0 17[* 0
0 -1 O0]f[*2|=|0
1 0 —111x3 0

—X1 +X3 =0

—Xy = 0
X1 — X3 = 0
here by solving we get x; = x3,x; = 0 say x3 =

X=X, x,=0 ,x3=«x

Eigen vector is [
1




Properties of Eigen Values:

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen
values is equal to its determinant.
1 2 3

Example:ifA=|0 2 5| then trace=1+2+1=4 and determinant=15
2 -1 1

Theorem 2: If A is an Eigen value of A corresponding to the Eigen vector X, then ™ is Eigen value A"

corresponding to the Eigen vector X.

1 00
Example: if A=| 0 2 0 |then Eigen values of A’are 1,8,1
0 01

Theorem 3: A Square matrix A and its transpose A" have the same Eigen values.

1 00
Example: if A=| 0 2 0| then Eigen values of A" are 1,2,1.
0 01
Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A’B and B A™ have same

Eigen values.

Theorem 5: If A, 4,, A, are the Eigen values of a matrix A then k 4, k 4, ..... k A, are the Eigen value

of the matrix KA, where K is a non-zero scalar.
Example:
If 1,2,3 are eigen values of A then eigen values of 3A are 3,3,9

Theorem 6: If /. is an Eigen values of the matrix A then #.+K is an Eigen value of the matrix A+KI

Example:

If 1,2,3 are eigen values of A then eigen values of 3+A are 4,5,6

Theorem 7: If A,, A,.. A,arethe Eigenvalues of A, then A,—K, 4, —K, .. A,—K,
arethe eigen values of the matrix (A— Kl ), where K is anon — zeroscalar

Example:

If 1,2,3 are eigen values of A then eigen values of 3-A are 2,1,0

Theorem 8: If 2.4, A ... A, are the Eigen values of A, find the Eigen values of the matrix (A4 — I‘-.I]:

Theorem 9: If % is an Eigen value of a non-singular matrix A corresponding to the Eigen vector X, then A7 s

an Eigen value of A and corresponding Eigen vector X itself.




Theorem 10: If

A is an eigen value of a non — singular matrix A, then ?i is an eigen value of the matrix Adj A

. . . 1., .
Theorem 11: If A is an eigen value of an orthogonal matrix then T is also an eigen value

Theorem 12: If . is Eigen value of A then prove that the Eigen value of B = agA*+a;A+a,l is ap #%+a; A+a,

Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and P AP
have the same Eigen values.

Corollary 1: If A and B are square matrices such that A is non-singular, then A"B and BA™ have the same Eigen
values.

Corollary 2: If A and B are non-singular matrices of the same order, then AB and BA have the same Eigen
Theorem 15: The Eigen values of a triangular matrix are just the diagonal elements of the matrix.

Theorem 16: The Eigen values of a real symmetric matrix are always real.

Theorem 17: For a real symmetric matrix, the Eigen vectors corresponding to two distinct Eigen values are

orthogonal.

PROBLEMS
Find the Eigen values and Eigen vectors of the matrix A and its inverse, where
1 3 4
A=|0 2 5‘
o 0 3
1 3 4]

Sol: GivenA= |0 2 &
o 0 3
The characteristic equation of A is given by |A-Al| =0

1—4 3 4
= 0 2—4 g

0 0 3—4
=(1-A(2-A)(3-4)]=0
= Ai=1,2,3

Characteristic roots are 1,2,3

Characteristic vector fori=1

0O 3 477% 0
For A=1,becames [0 1 5| |X2|=1|0

0 0 21Ll*s 0
= 3x, T 4dx, =10
X, + 5xy =10

2%, =0




¥, =0,23=0qnd x, =
a 1

X=|0|=a|0 is the solution where ¢ is arbitrary constant

0 0

1

. X=0 Is the Eigen vector correspondingto 4 =1

0

Characteristic vector for A= 2

-1 3 47[* 0
ForA=2 becomes |0 0 5| |xX|=|0
0 0 14 L*s 0

= —xy + 3x, +4x, =0
5%=0=x,=0
—X +3X%, =0=x, =3X,

Letx, =k
x, =3k

is the solution

3

X =1 is the Eigen vector corresponding to A=2

0

Characteristic vector for A= 3

-2 3 4|x] |0
For A=3becomes| 0 -1 5| x,|=|0
0 0 O0fx| [0

= —2xy+ 3x, +4x;, =10

—x, + 5xg =10

Savxy =K = x,=05K
19




- X =10 is the Eigen vector corresponding to A = 3

2

. _ 11 1
Eigen values of A"are —, — ,—
A AL Az

= Eigen values of A™ are 1%%

We know Eigen vectors of A~ are same as Eigen vectors of A.

Find the Eigen values of 34% + 54° — 64+ 2] where A = [

Sol:The characteristic equationof Ais|[A—AIl = 0
1—4 2 —3

] 3I—A 2

4] 0 —2-A
=[(1-A(3-A)(-2—-4)—-0]=0
=(1—-A)(3-A)(2+4) =0 A=13 -2
Eigen valuesof A are 1,3,—2
We know that if Ais an eigen value of 4 and f(4)is a polynomial in A.
then the eigen value of f(A)is f(1)
Let f(A) =34% + 547 — 64 + 2]
Then eigen values of f(A) are f(1), f(3) and f(-2)
f(1) = 3(1)%+5(1)%-6(1)+2(1) = 4
f(3) = 3(3)*+5(3)%-6(3)+2(1) = 110
f(-2) = 3(-2)*+5(-2)%-6(-2)+2(1) = 10
Eigen values of 34% + 547 — 64 + 21 are 4,110,10

) _ 3 2+i
1) Find the eigen values of A= 9 i i

3i 2+i}

Sol: we have A= [ ) )
—2+1 -




Thus A is a skew-Hermitian matrix.
.. The characteristic equation of Ais |[A—41|=0

3i—-4 —2+i
-2+ —-i—-A

— A*-2i1+8=0
= A =4i,-2i are the Eigen values of A

— A" = =0

V3

1.

y
2) Find the Eigen values of A=| 2 2
) : B
2 2

1.
—Zi

2

Now A = and
V3
2

3
2
I

1
2

3

1.

__I —_—
AV _ 2 2
(41 & 1
2

2

—T 10
We can see that A .A= 0 1 =

Thus A is a unitary matrix
- The characteristic equation is|A— 21| =0

%i—ﬁ,
=
V3
2

Which gives /1:£+i1and_—\/§+li and
2 2 2 2

A=1/23+1/2i

Hence above A values are Eigen values of A.

Diagonalization of a matrix:
Theorem: If a square matrix A of order n has n linearly independent eigen vectors (X1,X,...X,) corresponding to

the n eigen values Ay,A,....A, respectively then a matrix P can be found such that

P'AP is a diagonal matrix.




Proof: Given that (Xy,X,...X,,) be eigen vectors of A corresponding to the eigen values A,A;....A, respectively and
these eigen vectors are Tinearly independent Define P =

Since the n columns of P are linearly independent |P|#0

Hence P exists

Consider AP = A[X1,X,...X,]

= [AX;, AX,.....AX,]

= [AXy, AXae AnXi]

=PD

Where D = diag (ﬂi,ﬂ?,ﬂg,

AP=PD

PY(AP) =P (PD) = P'AP = (P‘lP)D

—P'AP= (D
=D
= diag (4, 4, 45, )

Hence the theorem is proved.

Modal and Spectral matrices:

The matrix P in the above result which diagonalizable the square matrix A is called modal matrix of A and the
resulting diagonal matrix D is known as spectral matrix.
Note 1:If X3,X,...X,are not linearly independent this result is not true.
2: Suppose A is a real symmetric matrix with n pair wise distinct Eigen values 4, 4,---1, then
the corresponding Eigen vectors X1,Xs...X, are pair wise orthogonal.
Hence if P = (ey,e2...en)
Where e; = (X1 / |[Xal), €2= (Xa / [IXal])....€n = (Xn) [IXall
then P will be an orthogonal matrix.
i.e, PTP=PP'=I
Hence P'=PT
P'4P =D =P'AP=D

Calculation of powers of a matrix:




We can obtain the power of a matrix by using diagonalization
A be the square matrix then a non-singular matrix P can

D’=(P'AP) (P*AP)

=P 'A(PPHAP

=P'A’P  (since PP '=I)

Similarly D* = P A%P

In general D" = P*A"P

To obtain A", Pre-multiply (1) by P and post multiply by P*

Then PD"P* = P(P'AP)P !

=(PPHA" (PP =A" = A"=PD"P™*

PROBLEMS

-2 2 =3
Determine the modal matrix P of =| 2 1 —6|. Verify that P~1 AP is a diagonal matrix.
-1 -2 0
Sol: The characteristic equation of Aiis |A-Al| =0
—2—4 2 —3
ie, 2 1—4A —6|=0
-1 -2 =i
which gives (A—5)(A+ 3)? =0

Thus the eigen values are A=5, A=-3 and A=-3

e
whenA=5 = | 2 —4
-1 =2

By solving above we get X; = [ 2
—1

Similarly, for the given eigen value A=-3 we can have two linearly independent eigen vectors X, =

2 3
—1| and X3 = |0
0 1
P=(X X, X3
1 2 3
2 —1 0|= modal matrixof 4
-1 0 1
NowdetP=1(—1)—2(2)+3(0—1)= —8




1 adj P _
det P

-1 -2 3
-2 4 6
-1 -2 -s5ll—1
-5 —10 15
6 —12 —18]
6 15
—40 0 0
—%[ 0 24 Gl

Q o 24

=0 -3 0 |=diag(5—-3,-3)
o 0 =3

Hence P™AP is a diagonal matrix.

[5 o o

Find a matrix P which transform the matrix A =
[l o -1

1 2 1| to diagonal form. Hence calculate A*
2 2 3

Sol: Characteristic equation of A is given by |A-Al| =0
1—24 0 -1
ie, | 1 2—4 1
2 2 3—4
=(1-AD[(2-4)(3-4)—-2]-0—-1[2—2(2—-A40}= 0
— (A—-1)(Ai-2)(A-3)=0
= A=1,1A=2,1=3
Thus the eigen valuesof Aare 1,2,3
If X1, X, X3 be the components of an Eigen vector corresponding to the Eigen value A, we have
1—A4 Q —1 7[*1 4]
[A-AIX = 1 2—4 1 Xz =10
2 2 3 — Al [xg 0

For A= 1, eigen vectors are given by

0 0 —-177% 0

1 1 1 |[*2]|=1[0] i.e, 0.x;40.X,40.X3=0 and x;+X,+x5=0
2 2 21Ll%s 0

X3=0 and X;+X,+Xx3=0

X3=0, X1=-X;

X1=1, X,=-1, X3=0




Eigen vector is [1,-1,0]"
Also every non-zero multiple of this vector is an Eigen vector corresponding to

For A=2, A=3 we can obtain Eigen vector [-2,1,2]"and [-1,1,2]"

-2 -1
1 1
2 2

The Matrix P is called modal matrix of A

NowP AP =

1 -2 -1t 0 0]
-|-1 1 10 16 0
0 2 2J0 0 8L

65 66 40

[—49 —50 —4@]
130 130 81

Double Integral :
l. When y1,y» are functions of x and X, and x, are constants. f(x,y)is first integrated w.r.t y
keeping ‘x’ fixed between limits y1,y2 and then the resulting expression is integrated w.r.t ‘x’ with in

the limits x1,X i.e.,




X=Xp Y=g (x)

X% y=h(x)
Il. When x3,X; are functions of y and y; Y- are constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits x1,X2 and then resulting expression is integrated w.r.t ‘y’
between the limits y1,y- i.e.,

y=y,  x=h(y)

ﬂf(x, y )dxdy = J. )f(x,y)dx dy

y=y1  x=h(y
1. When x3,X2, Y1,y are all constants. Then

Y2 Xy Xy Yo

” f(x,y)dxdy = I J. f(x,y)dx dy :.[ I f(x,y)dy dx

Y1 X X Y1

Problems

23
1. Evaluate J'J- xy®dx dy
11

X(x* +y? Jdxdy

Sol.

2 2 \2 tlos %Y g
f I x(x +y )dydx= jo[x y+?}

X= y=0




1

1 _ 1 a Y .. 1 zi “1(X
oy o jm{mn W} dx[.jx2+a2dx tan (A)]

( 1+x2) +y x=0

y=0

[Tan™1-Tan™0]dx or %(sinh*lx)}) :%(sinh’ll)

= dx =%[Iog(x+4/x2 +1)}l

x=0

2

4 x
5. Evaluate ”ey’xdydx
00

Answer: 3e*-7

1
6. Evaluate J' (x* + y*)dxdy
0

Answer: 3/35
2 X

. Evaluate ”e‘”y)dydx
00

4 2

e

—e
Ans:

2

1
8. Evaluate jx y2dxdy
-1

72_3

Ans: —
36

9. Evaluate ”e‘(xz+y2)dxdy
00

Sol: ﬁe‘(xzﬂz)dxdy = Te‘yz ﬁ e dx} dy
00 0 0




2
e Y dxdy = I j e rdrdg (=X +y2=r?)

6=0r=0

(changing to polar coordinates taking X =1 C0S#, y =rsind)

—_
)
g
N

%
|
0
1
2
T
2

10. Evaluate Ijxy(x+ y)dxdy over the region R bounded by y=x* and y=x

Sol: y= x> isa parabola through (0, 0) symmetric about y-axis y=x is a straight line through (0,0) with slopel.

Let us find their points of intersection solving y= X , Yy=X we get X2 =x = x=0,1Hence y=0, 1
.". The point of intersection of the curves are (0,0), (1,1)

Consider j j xy(X + y)dxdy
R

For the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x" to y=x and then w.r.t. X’ from x=0 to x=1

Ll_o[ yX:XZ Xy (x+y)dy }dx = Xl_OD‘:_XZ (X2y+ xy?-)dy }dx




1
65 14 24]

1 _28-12-7 28-19 9 3
168 168 168 56

11. Evaluate J.J.xydxdy where R is the region bounded by x-axis and x=2a and the curve x’=4ay.
R

Sol. The line x=2a and the parabola x’=4ay intersect at B(2a,a)

~The given integral = .”Xy dx dy
R

Let us fix ‘y’

For a fixed ‘y’, x varies from Zayay to 2a. Then y varies from 0 to a.

Hence the given integral can also be written as

j ;0 j :% xy dx dy = Iya:o U::;;E xdx}ydy

2a
X2
—} ydy

[

X=2a

i [ 2a* —2ay | ydy

28y’ [ _614_2a4 _3a*-2a’
3 | 3 3

7
12. Evaluatej _[rsm@d@dr

Sol. J':or“:/zosin Hde}dr
—I cose 7 dr

= rzo—r (cos% cosO)dr

1 1 r
= rzo—r(O—l)dr:J.O rdr :£ 5




13. Evaluate H(Xz +y? )dX dy in the positive quadrant

For

Which XTY=1

x2+y Jax dy = J. de.

Y 4

14. Evaluate H X +y )dxdy over the area bounded by the ellipse _+F
a

Sol. Given ellipse is —+y—2—1
a®> b

1
a®

b
Ly=t—+a?-x?
a
Hence the region of integration R can be expressed as

—b b
—aSXSa,—\/az—x2 < yé—\/az—x2

[+ y?)axdy = [ aj/V/;T;:XZ(x%yz)dxdy

ba\/ﬁ
o [T 0o 74

- Zfa[xz.é»\/az —x? +3b_;3(a2 —x? )%}dx




Changing to polar coordinates
putting x =asin @
dx=acos&dd

X _sing=o=sin?Z2

a a
x—>0,6—>0

x—>a,6?—>Z
2

_ 7 b/ a2cin2 b’ 3 3
—4j0 A.a sin «9.acos€+§.a cos” @ |acosddo

Double integrals in polar co-ordinates:

asin® rdrd [

N magm@ ity M 77{ T dr} y

:%Ifz(\/ﬁ)asmg dH:(—l)IO 42[\/a2 —a’sin?@ —+a —OJdG

0

1. Evaluate I/J'

T,

a)fo%(cos 0-1)do=(-a)(sin0-0) '

—a)[[sin %—%}—(0—0)}
-2 Y744 % Y )




3. Evaluate .[:L% e rdadr

a(l+cos0)

4. Evaluate j j r drdé

Change of order of Integration:
1. Change the order of Integration and evaluate J' j o dy dx

2

X
Sol. In the given integral for a fixed x, y varies from 4— to 24/ax and then x varies from 0 to 4a. Let us draw
a

2

X
the curves y:4— and y = 2+/ax
a

The region of integration is the shaded region in diagram.

4a p2+fax
The given integral is :I aOJ‘ Xa:/ dy dx
*=09Y="/4a

2

Changing the order of integration, we must fix y first, for a fixed y, x varies from Z— to «/4ay and theny
a

varies from 0 to 4a.

Hence the integral is equal to

[ axay= ] [1F, oxy
=[x ]ZJy_ dy=| [2\/_ /}y




32, 16,

3 3

2. Change the order of integration and evaluate = J'Oa If‘(xz +y?)dxdy
a

. . . . X X .
Sol. In the given integral for a fixed x, y varies from —to ’— and then x varies from 0 to a
a

X fx
Hence we shall draw the curves y=— and y =, |—
a a

i.e. ay=x an

d ay’=x

we get ay = ayz

—ay-ay’ =0

=ay(l-y)=0

=y=0y=1

If y=0, x=0 if y=1, x=a

The shaded region is the region of integration. The given integral is Jio J.yyz_;i%(xz +y? )dx dy

Changing the order of integration, we must fix y first. For a fixed y, x varies from ay” to ay and then y varies

fromOto 1.

Hence the given integral, after change of the order of integration becomes
1 ra 2 2
J.y:O -[x:ay2 (X ty )dX dy

:Ij_yayz (x*+ yz)dx} dy

)
—+X d
3 YJ y




2—x
J- xydxdy and hence evaluate the double integral.

XZ

1
3. Change the order of integration in j
0

Sol.In the given integral for a fixed x,y varies from x* to 2-x and then x varies from 0 to 1. Hence we shall draw
the curves y=x’ and y=2-x

The line y=2-x passes through (0,2), (2,0

Solving y:x2 ,Y=2-X

Then we get X° =2—X

=X +x-2=0

= X2 +2Xx—x-2=0

= X(x+2)-1(x+2)=0

= (x-1)(x+2)=0

=>x=1-2

If x=1,y=1

If x=-2,y=4

Hence the points of intersection of the curves are  (-2,4) (1,1)

The Shaded region in the diagram is the region of intersection.

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies from

Oto\/y

Then y varies from 0 to 1

For the region within CABC, for a fixed y, x varies from 0 to 2-y ,then y varies from 1 to 2

Hence j:j;ﬁxxydydx: ” xy dx dy + J.I xy dx dy
OACO CABC

I;:o Uxfz xdx} ydy + J'yzl“xz_oy X dx}y dy




3\! 2 3 472
(Y] 1Ay 4y Yy
3 o 2| 2 3 4 X

. +%[2.4—2.1—%(8—1)+%(16—1)]

1
2
1 1. 28 151 1 1[72-112+45] 1 1[5
=+ |b——F— =t —————— |==+ | —
62{ 3 4}62[ 12 }62{12}

2a-x

4. Changing the order of integration joa L7 xy “dy dx
a

5. Change of the order of integration J.:J.OJL_X y?dxdy Ans: %

Hint : Now limits are y =0t0land x =0to/1- Yy’
puty=sind

J1-y? =cos@
dy = cos@dé
= [y 1-yidy

= jo%sinz 0 cos’ 0de = Io%sin2 Hde—jo%sin“ ade

~3(7)- 33 (7%5)~Hs

(0 4

~
N

L

Change of variables:

The variables x,y in ” f (X, y)dx dy are changed to u,v with the help of the relations X = fl(U,V), y=f, (U,V)
R

then the double integral is transferred into

u,v u,v o(xy) udv
J;_!.f[fl( ! )’f2( ! ):' a(U,V) d d

Where R'is the region in the uv plane, corresponding to the region R in the xy-plane.

Changing from Cartesian to polar co-ordinates




X=rcosd,y=rsind

x X
G[M ~ 06| _|cos® —rsing
(r.0) oy| |[sin@ rcos@
o 00

(cos 6 +sin? 49 _”f X, ydxdy _U rcosé, rsm«9)rdr do
R

Note : In polar form dx dy is replaced by rdr d&

Problems:
1. Evaluate the integral by changing to polar co-ordinates J:O J:O ef(X i )dX dy
Sol.The limits of x and y are both from 0 to o

.. The region is in the first quadrant where r varies from 0 to © and & varies from 0 to %
Substituting X=rcosd,y=rsin@ and dxdy =rdrdé
Hence ijmef(xzwz)dxdy =j% J.OO e rdrdo

0 Jo 6=0Jr=0

Putr? =t
= 2rdr =dt

= rdr=at/

Wherer=0=t=0and r=co=t=w

H”‘“y dxdy = j j e'dtde

2 -1 -t\*
=[5, a0

j %0~ 1)do= / A
2. Evaluate the integral by changing to polar co-ordinates J.:J‘O o (X2 + y2 )dx dy

X = jaz_yz

=>x+y*=a’

Sol.The limits for x are x=0 to

". The given region is the first quadrant of the circle.
By changing to polar co-ordinates

X=rcosd,y=rsing,dxdy=rdrdéd

Here ‘r’ varies from 0 to a and '@ "' varies from 0 to %




:Aa4

3. Showthatj J‘y/gydxdy 8a’ (%—gj

X+y

2
Sol. The region of integration is given by x = y/a, x =Yy andy=0, y=4a

i.e., The region is bounded by the parabola y’=4ax and the straight line x=y.
Let X=rcosd,y=rsin@.Thendxdy =rdrdé

The limits for r are r=0 at O and for P on the parabola

4acosd

r’sin’@=4a(rcosf)=r=—-,
sin“ @

For the line y=x, slope m=1i.e., Tan@ =160 = %

The limits for 0 % - %

Also X2 —y? =2 (cos2 0—sin’ @)and x* +y* =r?

N B C

X + y
4acosd
2 Anze

:J";@(cosze—sinze)(%J do

0

)COS 046 —8a I/ cos* 6 —cot? e)de 8a {

—8a j/ cos 0—sin’@

Area and Double Integrals

If a region R is bounded below by y = gi(x) and above by y = ga(x),and a < x < b,
then the area is given by




Set up the double inte x> and y = x>. Thenusea
computer or calculator to evaluate this integral.

Solution

The picture below shows the region

A computer gives the answer of 1/12.
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MEAN VALUE THEOREMS

I Rolle’s Theorem:

Let f(x) be a function such that

(i). It is continuous in closed interval [a,b]

(ii). It is differentiable in open interval (a,b) and

(iii). f(a) = f(b).

Then there exists at least one point ‘c’ in (a,b) such that
f'(c) = 0.

Geometrical Interpretation of Rolle’s Theorem:

Let f :[@,b] = R be a function satisfying the three conditions of Rolle ’s Theorem. Then the graph.

™,

4

y
I;\r\'"""““'“] 5

Q X=C

y=f(x) in a continuous curve in [a,b].
There exist a unique tangent line at every point x=c, where a<c<b
The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are equidistant from
the X-axis.
By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which the
tangent line is parallel to the x-axis and also it is parallel to chord of the curve.
1. Verify Rolle’s theorem for the function f(x) = sinx/e” or €™ sinx in [0,r]
Sol: i) Since sinx and e* are both continuous functions in [0, rt].
Therefore, sinx/e* is also continuous in [0,1T].
ii) Since sinx and e* be derivable in (0,m), then f is also derivable in (0,m).
iii) f(0) = sin0/e° = 0 and f(r)= sin /e ™ =0
f(0) = f(m)

Thus all three conditions of Rolle ’s Theorem are satisfied.
.. There exists c €(0, 1) such that f*(c)=0

e* cosx—sinxe*  cos x—sinx

Now f~(x)= &)’ = -

cosc—sinc
— -

fi(c)=0 => 0

cosc=sinc=>tanc=1




c=1/4 €¢(0,n)

Hence Rolle’s theorem is verified.

2
X“ +ab
2. Verify Rolle’s theorem for the functions log| ——— in[a,b] , a>0, b>0,
x(a+b)

x? +ab
x(a+b)

Sol: Let f(x)= log (
= log(x*+ab) — log x —log(a+b)

(i). Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b].

2
(). fix) = o ,2X_E:X+ab
X“+ab X X(x"+ab)

f1(x) exists for all xe (a,b)

a’+ab
a’+ab

2
f(b) = Iog{g2 izg} =logl=0

f(a) = f(b)

}zloglzo

(iii). f(a) = Iog{

Thus f(x) satisfies all the three conditions of Rolle ’s Theorem.
So, 3 c € (a, b) =f(c)=0,

c’—ab

2—:0:c2:ab
c(c” +ab)

f'(c)=0, =

= c=+abe(ab)

Hence Rolle’s theorem verified.
3. Verify whether Rolle ’s Theorem can be applied to the following functions in the intervals.
i) f(x) = tan x in[0, ] and ii) f(x) = 1/x*in [-1,1]
(i) f(x) is discontinuous at x = /2 as it is not defined there. Thus condition (i) of Rolle ’s Theorem is not
satisfied. Hence we cannot apply Rolle 's Theorem here.
.. Rolle’s theorem cannot be applicable to f(x) = tan x in [0,m].
(ii). f(x) = 1/x*in [-1,1]
f(x) is discontinuous at x= 0.Hence Rolle ’s Theorem cannot be applied.
4. Verify Rolle’s theorem for the function f(x) = (x-a)™(x-b)" where m,n are positive integers in [a,b].
Sol: (i). Since every polynomial is continuous for all values, f(x) is also continuous in[a,b].
(ii) f(x) = (x-a)"(x-b)"
f1(x) = m(x-a)™ " (x-b)"+(x-a)™.n(x-b)"*

= (x-a)™ ™ (x-b)"[m(x-b)+n(x-a)]




=(x-a)™(x-b)"*[(m+n)x-(mb+na)]

Thus f(x) is derivable in (a,b)
(iii) f(a) =0 and f(b) = 0

.. f(a) =f(b)
Thus three conditions of Rolle’s theorem are satisfied.
.. There exists ce(a,b) such that f'(c)=0
(c-a)™*(c-b)™*[(m+n)c-(mb+na)]=0
= (m+n)c-(mb+na)=0 =>(m+n)c = mb+na
=c=mb+na €(a,b)

m+n

Rolle ’s Theorem verified.

5. Using Rolle ’s Theorem, show that g(x) = 8x*>-6x*-2x+1 has a zero between

Oand 1.

Sol: g(x) = 8x*-6x>-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1)

Now g(0) =1 and g(1)=8-6-2+1=1

Also g(0)=g(1)

Hence, all the conditions of Rolle’s theorem are satisfied on [0,1].

Therefore, there exists a number ce(0,1) such that g'(c)=0.

Now g'(x) = 24x>-12x-2

.g'(c)=0=>24c’12c-2 =0

3++21
12

=c= ie c=0.630r-0.132

only the value ¢ = 0.63 lies in (0,1)

Thus there exists at least one root between 0 and 1.

6. Verify Rolle’s theorem for f(x) = x? -2x */* in the interval (0,8).

Sol: Given f(x) = x2®2x 13

f(x) is continuous in [0,8]
fi(x) =2/3 . 1/x'-2/3 . 1/x** = 2/3(1/x'” = 1/x*")
Which exists for all x in the interval (0,8)
.. fis derivable (0,8).
Now f(0) = 0 and f(8) = (8)3-2(8)"* = 4-4 =0
i.e., f(0) = f(8)
Thus all the three conditions of Rolle’s Theorem are satisfied.

.. There exists at least one value of ¢ in(0,8) such that f*(c)=0




Hence Rolle’s Theorem is verified.

7. Verify Rolle’s theorem for f(x) = x(x+3)e"‘/ %2in [-3,0].

Sol: - (i). Since x(x+3) being a polynomial is continuous for all values of x and e™?is also continuous for all x,
their product x(x+3)e‘x/2 = f(x) is also continuous for every value of x and in particular f(x) is continuous in the
[-3,0].

(ii). we have f1(x) = x(x+3)( -1/2 e™?)+(2x+3)e™?

x> + 3x

= e [2x+3-
e [2x+ 5 |

=e™?[6+x-x*/2]
Since f'(x) doesnot become infinite or indeterminate at any point of the interval(-3,0).
f(x) is derivable in (-3,0)
(iii) Also we have f(-3) =0 and f(0) =0
- f(-3)=f(0)
Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0].
Hence there exist at least one value c of x in the interval (-3,0) such that f'(c)=0
i.e., % e“?(6+c-c%)=0 =>6+c-c*=0 (e*/*#0 for any c)
=> c*+c-6 = 0 => (c-3)(c+2)=0
c=3,-2
Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem.
Il. Lagrange’s mean value Theorem
Let f(x) be a function such that (i) it is continuous in closed interval [a,b] & (ii) differentiable in (a,b). Then 3 at
least one point cin (a,b) such that
f(b)-f(a)
b-a

Geometrical Interpretation of Lagrange’s Mean Value theorem:

fi(c) =

Let f :[a,b] > R be a function satisfying the two conditions of Lagrange’s theorem. Then the graph.

Yy

1.y=f(x) is continuous curve in [a,b]




2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By Lagrange’s

theorem there exists at least one point € € (a,b) > f*(c) =

b-a

Geometrically there exist at least one point c on the curve between A and B such that the tangent line is

L d
parallel to the chord AB

1. Verify Lagrange’s Mean value theorem for f(x)= x*-x*-5x+3 in [0,4]
Sol: Let f(x)= x*>-x*-5x+3 is a polynomial in x.
.. Itis continuous & derivable for every value of x.
In particular, f(x) is continuous [0,4] & derivable in (0,4)
Hence by Lagrange’s Mean value theorem 3 ce (0,4) >
f(4)-1(0)
4-0
f(4)-(0)
4
Now f(4) = 4°-4>-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3
f(4)-f(0) (1-3) _
4 4

fi(c)=

i.e., 3c%2¢-5=

7

From equation (1), we have
3c*2¢-5 =7 => 3¢*-2¢-12 =0

__2V4+144 2+V148 1437
6 6 3

1+~/37
We see that 3 lies in open interval (0,4) & thus Lagrange’s Mean value theorem is verified.

2. Verify Lagrange’s Mean value theorem for f(x) = log, X in[1,e]
Sol: - f(x) = log, X
This function is continuous in closed interval [1,e] & derivable in (1,e). Hence L.M.V.T is applicable

here. By this theorem, 3 a point c in open interval (1,e) such that

fe-f@ 1-0 1
e-1 e-1 e-1

1 1
But fi(c)= —— ==>—=

fi(c) =

1
e-1 ¢ e-1
J.c=e-1
Note that (e-1) is in the interval (1,e).

Hence Lagrange’s mean value theorem is verified.




3.Give an example of a function that is continuous on [-1, 1] and for which mean value theorem does not
old with explanations.

Sol:- The function f(x) = |x|is continuous on [-1,1]

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative does not

exist in (-1,1) at x=0.

b-a 1 1 a .
4.If a<b, P.T Lib? <Tan"b-Tan"a< L a2 using Lagrange’s Mean value theorem. Deduce the
+ +a

following.

rx 3 44 71
) —+—<Tan" —<—+=
4 25 3 4 6

S5z+4 T+2

<Tan"2<
Sol: consider f(x) = Tan™ x in [a,b] for O<a<b<1
Since f(x) is continuous in closed interval [a,b] & derivable in open interval (a,b).
We can apply Lagrange’s Mean value theorem here.
Hence there exists a point cin (a,b)>3
f(b)-f(a)

fi(c) =
() b_a

&hence f*(c) = L

Here f'(x) =
+x? 1+c

2

Thus 3 ¢, a<c<b 3

1 Tan'b-Tan™a

1
1+c? b—a 1

We have 1+a’<1+c’<1+b?
1 1 1
7 > 7 > >
1+a° 1+c¢° 1+b

From (1) and (2), we have

1 Tanb-Tan*a 1
> >
1+a® b-a 1+b?

or

< Tan'b-Tanta<
1+a 1+b

Hence the result
Deductions: -

(i) We have b_i <Tan*b-Tan™a< b_a;
1+b 1+a




4.4 43

4,4 _ 3 3
<Tan*(=)-Tan*() < ==>
(3) @ 1+12
9

25

:3+Z<Tan*1(ﬂ)<z+1
25 4 3 4 6

(i) Taking b=2 and a=1, we get

2_12 <Tan*2-Tan™1< 2-1 :>1<Tan’12—5<
1+2 1+1 5 4

1

:>£+Z <Tan'2< 2+7
5 4

4+57 2+ 7
=

+<Tan?2<

Show that forany x>0, 1+x<e*<1+xe".

Sol: - Let f(x) = e* defined on [0,x]. Then f(x) is continuous on [0,x] & derivable
on (0,x).
By Lagrange’s Mean value theorem 3 a real number c €(0,x) such that

f(X)— f(o) — fl(C)
x—0
S - |
= = =
x-0 X
Note that 0O<c<x => e’<e‘<e” ( €*is an increasing function)

X

e
=>1< <e* From (1)
X

=> x<e*-1<xe*

=> 1+x<e*<1+xe”.
5/
6. Calculate approximately 245 by using L.M.V.T.
Sol:- Let f(x) = 3/x =x"/* & a=243 , b=245

Then f4(x) = 1/5 x**° & f*(c) = 1/5¢ **
By L.M.V.T, we have

<Tan™ (ﬂ) “Ze
3 4

4-3
3
2




fh)-1@ _ .

_, f(245)-f(243) _1 C;
245 — 243 5

=> f (245) =f(243)+2/5¢*°

=> c lies b/w 243 & 245 take c= 243

-4

1 4
= %/245=(243) '° +2/5(243)** = (3°)® + %(35) s

= 3+ (2/5)(1/81) = 3+2/405 = 3.0049

7. Find the region in which f(x) = 1-4x-x? is increasing & the region in which it is decreasing using M.V.T.
Sol: - Given f(x) = 1-4x-x>
f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b) V a,b €R
.". f satisfies the conditions of LLM.V.T on every interval on the real line.
f1(x)= - 4-2x= -2(2+x)V xR
' (x)=0if x=-2
for x<-2, f!(x) >0 & for x>-2 , f*(x)<0
Hence f(x) is strictly increasing on (-o°, -2) & strictly decreasing on (-2,°°)

8. Using Mean value theorem prove that Tan x > x in 0<x<7/2

Sol:- Consider f(x) = Tan x in [f, X] where 0< & <x<n/2

Apply L.M.V.T to f(x)

3 a points ¢ such that 0< & <c<x<m/2 such that

Tanx—-Tan¢&
X=¢

=sec’C ==>

Tan x-Tan & = (x - £)sec® ¢

Take& —0+ OthenTanx = xsec? x

But sec’c>1.
Hence Tan x > x
9. If f}(x) = 0 Through out an interval [a,b], prove using M.V.T f(x) is a constant in that interval.
Sol:- Let f(x) be function defined in [a,b] & let f(x) =0 V x in [a,b].

Then f'(t) is defined & continuous in [a,x] where a<x<b.



& f(t) exist in open interval (a,x).
By L.M.V.T 3 a point c in open interval (a,x) >

f(0-f@)

X—a

=f(c)

But it is given that f'(c) =
- 1(x) - (@) =0

= () =f(@) vV x
Hence f(x) is constant.
10 Using mean value theorem

i) x> log (1+x) > ;T x>0

i) /6 + (1/3/15) <sin(0.6) <w/6 + (1/6)
i) 1+x <&’ <1+xe* ¥x>0
iv) == <tan™v - tan"Pu < == where 0 < u <v hence deduce
Q) w4+ (3/25) < tanP(4/3) <n/a+ (1/6)

lll. Cauchy’s Mean Value Theorem
If f: [a,b] &R, g:[a,b] >R > (i) f,g are continuous on [a,b] (ii) f,g are differentiable on (a,b)
(i) g*(x) = Ovx e (a,b), then
fi(c) f(b)-f(a)
g'c) 9 -9

1.Find c of Cauchy’s mean value theorem for

Ja pointc e (a,b)>

f(X)=vx & g(x) =%

in [a,b] where O<a<b

Sol: - Clearly f, g are continuous on [a,b] = R*

and g (x)——
2X\/_ which exits on (a,b)

fl(X)=—
We have \/_
., g are differentiable on (a,b) = R"
Also g' ()20, V x €(a,b) c R

Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so 3ce(a,b) 3

flb)—f(a) _ f*(c)
g(b)-g(a) gl(c)

b-vF 2 _ Jbda 2o
I 1L e o VR
B owk

Since a,b >0, Vab is their geometric mean and we have a<Vab <b

ce(a,b) which verifies Cauchy’s mean value theorem.




2. Verify Cauchy’s Mean value theorem for f(x) = e* & g(x) = e™in [3,7] &
find the value of c.
Sol: We are given f(x) = e* & g(x) = ™
f(x) & g(x) are continuous and derivable for all values of x.

=>f & g are continuous in [3,7]

=>f & g are derivable on (3,7)
Also g'(x) = e™#0 V x €(3,7)
Thus f & g satisfies the conditions of Cauchy’s mean value theorem.

Consequently, 3 a point ¢ €(3,7) such that

fF(M)-f@) _ () . e’ —e®

9(7)-9@) g'(c) e’ —g?

= _e7+3 — _e2c

=>2c=10
=>c=5¢(3,7)
Hence C.M.T. is verified




Triple integrals:

If x1,X, are constants. y,,y, are functions of x and z,,z, are functions of x and y, then f(x,y,z) is first integrated
w.r.t. ‘2’ between the limits z; and z, keeping x and y fixed. The resulting expression is integrated w.r.t ‘y’

between the limits y; and y, keeping x constant. The resulting expression is integrated w.r.t. ‘x’ from x; to x,

w”f (X, y,z)dxdydz—j B jy ol J‘Z:fZ(X'Y)f(x, y,z)dz dy dx

y=01(x) z=fi(xy)

Problems

lxy

1. Evaluate J' _[ _[ xyz dx dy dz

Sol. L OJ'y J'lxzjxyzdxdydz

_ 1 dX lexdyj-\/lx -y
x=0 y=0 z=0

e (2
X xy| —
z

Xyz dz

2




- J'_llj'oz [(xy + y% + zy)X+z }dx dz

_IJ' (x+2)—x(x- 2)7{72

oK L axz laxd
:LIO 22(x+z)+E Xz [dxdz

3 3

2 277
:2.[l ALV dz=2..|‘1 L
472 2 |, 4 2 2




Module-IV
FUNCTIONS OF SEVERAL VARIABLES AND
EXTREMA OF A FUNCTION

age O



Partial Differentiation

Partial differential coefficients : The Partial differential coefficient of f{x,y) with
respect to x is the ordinary differential coefficient of f(x,v) when vy is regarded as a
constant. It is written as
of or of/dx or Daf
i
af . f{x+h,v)-Hxv)
Thus Fri LI]E]I h
Again, the partial differential coefficient df/dy of f{x,y) with respect to y is the
ordinary differential coefficient of f(x,v) when x is regarded as a constant.
Thus 28 = i 1Y £ 10 100,y)
,a}.- k=D k
Similarly, if f is a function of the n variables x;, x2,.........x%s, the partial differential
coefficient of f with respect to x; is the ordinary differential coefficient of f when
all the variables except x; are regarded as constants and is written as 2f/dx.

% and :‘ii are also denoted by £ and fy respectively.
X ¥

The partal differential coefficients of fx and fy are fu., Fu, fyu By
. A T respectivel
ax* " dxdy " dydx dy'’ pechvely.

2
It should be specially noted that gt meamj—[ﬂ] and

dydx dy i dx
The student will be able to convince himself that in all ordinary cases
2 f _ a*f
dydx  dhdy




PROBLEMS
Example 1:If u = log (x% + y? +23- 3xyz) show that
Jo-am
Solution : The given relation is

u = log(x?* + y3+ x*- uyz)

Drifferentiate it w.r.t. x partally., we get
du _ F3x® —3yaz

o %t + }"" + 23— Iy
:r_
similarly i-;'—'}—= % 3? 13-:{3
v X 4y +E —3xyE
au 3z? — 3xve
nd ——=— T T
dz x'+v' '+ - 3xye
_3u+au+a'u 3(x* + v + 2% —yz — zx — xy)
Tax by d= x + Yy + 2 —Fxywm
_ 3(x* +¥? + 27 —yz—xz—xy)
(x+y+z)(x* +¥" +2° —y" —zx — xy)

a

X+y+z
a2t J,2(__1 ,2(_1
x|\ x+y+z dvl x+v+= dz| x+v+=

1 -1 -1
- 3 + 5 + 3
| (x+y+z) [x+wv+=) (x+v+z)

=3 —_3._2
[+ 3 + =)
=_—-—9---I—Hence Prowved.
(x+y+2)




Example 2:

E]'u au du _
fu=u(y-z2-%x-y)Provethat o "9y "oz

Solution : Here givenu=u(y -z, z-x, x - ¥)
letX=y-z Y=z-xand Z=x-y....... A1)
Thenu=u (X,Y,Z), where X, Y, Zml‘um:tmn of x,y and z.
Then

du du HK du E]Y au a7

ax  aX ax  9Y ax  OZ o
du _dudX dudY dudz

y aY dy a7 dy

_9udX dudY duodz

“axX 8z Avaz aZaz T
with the help of (i), equahﬁns (ii), (iii) and (iv) gives.
du du Ju o Eiu
—=——0+_—(-1)+—
ax ax QY{ )+ { )=
du = du du du du

'é}':‘—ﬁ- +ED+_{_]}=H_E

du du du du du

d S =221 —1 ) it
and == (D y (1 az” ax | aY
du du

Adding (v), (vi) and (vii) we get—- ‘.I_+ 8_- . Hence Proved.
L :r" Z

Example 3: [fzis a function of xand y and x = gv + g, y = gt - g |

dz.  dz dz az
F that Z_Z =
rove tha du dv X dx ¥ dy




Solution : Here z is a function of x and y, where x and y are functions of u and v.

“Fu oxdu oy du

Also given that

x =gt +egvand y=ev-—av
du " av

. From (i) we get

dz dz, .. @z, _,

3 =E{E ]+$(—E )

and from (ii) we get

=i

= =g , =

Subtracting (iv) from (1ii) we get

g " d—f — e —g® 'flE
dx Tay

Hence Proved.




** Maximum & Minimum for function of a single Variable:

To find the Maxima & Minima of f(x) we use the following procedure.
(i) Find f1(x) and equate it to zero

(i)  Solve the above equation we get Xo,X; as roots.

(iii)  Then find f*(x).

If £(X)x = x0) > O, then f(x) is minimum at xo

If f'(X)x=x0),< 0, f(x) is maximum at x,. Similarly we do this for other stationary points.

PROBLEMS:
1. Find the max & min of the function f(x) = x* -3x* +5 (°08 S-1)
Sol: Given f(x) = x* -3x* + 5
f1(x) = 5x* - 12x°

for maxima or minima f*(x) =0
5x* —12x° =0
x =0, x=12/5
11(x) = 20 x® - 36 x*

At x=0=> f"(x)=0. So fis neither maximum nor minimum at x = 0
At x=(12/5) => f*(x) =20 (12/5)% — 36(12/5)

=144(48-36) /25 =1728/25>0
So f(x) is minimum at x = 12/5

The minimum value is f (12/5) = (12/5)° -3(12/5)* + 5

** Maxima & Minima for functions of two Variables:

Working procedure:




Fa

1. Find%Zand < Equate each to zero. Solve these equations for x & y we get the pair of

values (az, bl) (az,bz) (az ,bs)
2 2
Find I:%,mz of ,n=
ox d X oy
i. If In-m?>0and | <0at (ay,b:) then f(x ,y) is maximum at (as,b;) and maximum

value is f(ay,b)

If In-m?*>0and | >0at (a,b;) then f(x ,y) is minimum at (a;,b;) and minimum value is

f(as,by) .

If In-m?<0andat (as, bl)then f(x, y) is neither maximum nor minimum at (as, by). In
this case (a;, b1) is saddle point.
If In-m*=0andat (a, b:), no conclusion can be drawn about maximum or minimum

and needs further investigation. Similarly we do this for other stationary points.

PROBLEMS:
Locate the stationary points & examine their nature of the following functions.

u=x*+y*-2x% +4xy -2y, (x>0,y>0)
Sol: Given u(x ,y) = x* + y* -2x% +4xy -2y°

ou
For maxima & minima — =0, a_u: 0
OX oy

Z=4CAx+4y=0 > X -x+y=0

%:4y3+4x-4y:0 =y +x-y=0

Adding (1) & (2),
X+y3=0
= X=-y

1) = xX*-2x=x=0,42,—/2

Hence3) =1y=0, V2,2
o%u

2 2
SOV g am=9Y —22y _agn=Y 122 4
ox° oxpy o= v oy’

In—m?=(12x*-4)(12y*—4) -16
V2), In—m? = (24 — 4)(24 -4) -16 =(20) (20)—16 > 0and 1=20>0

The function has minimum value at (— ﬁﬁ, wﬁ)




At (0,0), In—m?=(0-4)(0-4)-16 =0
0,0) Is not a extreme value.

Investigate the maxima & minima, if any, of the function f(x) = x*y? (1-x-y).

Sol: Given f(x) =X (1-x-y) = x3y%- XNy —xPyP
2 =3y - Ay? -3y I = 2y — 2xy -3y

. - . - L—:hr
For maxima & minima j— =0 and .;'-_ =0

s

2 3y -4y -3y’ = 0 => xy*(3-4x-3y) =0

2 2%y -2xY 3% = 0 => x%y(2-2x-3y)=0
From (1) & (2) 4x+3y—-3=0
2x+3y-2=0
2X=1 =>x=%
4(%)+3y—-3=0=>3y=3-2,y=(1/3)

— azf - 2 3
| = vl 6XY*-12X°y? -6Xy

2
[ . Z j(l,z,m) = 6(1/2)(1/3)? -12 (1/2)3(1/3)? -6(1/2)(1/3)* = 1/3 —1/3-1/9 = -1/9
X

m = =—
oxoy  ox\ oy

o* f 8(61‘

—] = 6x%y -8 X%y — 9x%y?

o°f — 6(U2)A(1/3) -8 (U2)(1/3) -9(1/2)2(1/3)° = &=*=3 = =L
(axayj w2 = B(L2)A(L/3) -8 (112)°(1/3) -0(1/2)(1/3)° = 2= 2

2
n=2 z = 2x3 -2x* -6y
oy

1

(?;; ] o) = 2(1/2)° -2(1/2)" -6(1/2)°(1/3) = - -

1
g

In-m? =(-U9)(-U8) (/12 =% - 1 =2t=1 >Qandl= _?1<O

== 1z ==

The function has a maximum value at (1/2, 1/3)

) ) 11 11 1(1 1 1
.. Maximum value is f(_’_):(_X_j(l____J:_(___j:_
23 8 9 2 3) 72\2 3) 432

Find three positive numbers whose sum is 100 and whose product is maximum.
Sol: Let x ,y ,z be three +ve numbers.
Then x+y+z=100




For maxima or minima j_ =0and

27 =100y —2xy-y* =0 =>y(100-2x -y) =0

B

2L = 100x -x* -2xy = 0 => X(100 X -2y) = 0

From (1) & (2)
100 -2x-y =0
200 -2x -4y =0

-100+3y =0 =>3y=100 => y=100/3

100 - x—(200/3) =0  => x =100/3
_ 0

| =
ox®

=- 2y

0% f _
— | (10073, 10073 ) = - 20073

X2

2
[Qj (100/3 , 100/3 ) = - 200/3
oy

In -m? = (-200/3) (-200/3) - (-100/3)*> = (100)? /3
The function has a maximum value at (100/3, 100/3)

100 100 100
i.e. at x =100/3, y = 100/3 -z =100—- 3 3 = 2

The required numbers are x = 100/3, y = 100/3, z = 100/3

Find the maxima & minima of the function f(x) = 2(x* -y?) —x* +y*
Sol: Given f(x) = 2(x* —y?) —x* +y* = 2x% —2y? —x* +y*

. .. - aF
For maxma&mmma% =0and = =0

x W

2 =4x-4C=0 =>4x(1x)=0 =>x=0 ,x=%1
ar

&

2
| = (a IJ = 4-12%°
OX

= Ay+4y =0 =>-4y(1-y")=0 =>y=0,y=+1




we have In — m? = (4-12x%)( -4 +12y* ) - 0
= -16 +48x° +48y* -144x%y*
= 48x% +48y* -144x%y* -16
At(0,+1)
IN-m?=0+48-0-16=32>0
|=4-0=4>0

f has minimum value at (0, £ 1)

f(x,y) =20y x" +y*
f(0,£1)=0-2-0+1 = -1

The minimum value is ‘-1 °.

At(+1,0)

In—m*= 48+0-0-16=32>0

1=4-12=-8<0
f has maximum value at (£ 1,0)
f(x.y)=20-y") X" +y*
f(x1,0)=2-0-1+0=1
The maximum value is ‘1 °.

iii) At (0,0),(x1,%1)

In—-m?<0

| = 4-12x°
(0,0) & (£1,%1) aresaddle points.

f has no max & min valuesat (0,0),(x1,£1).

*Extremum : A function which have a maximum or minimum or both is called
‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is

Extreme value.

*Stationary points: - To get stationary points we solve the equations ? =0and

Z— =0 i.e the pairs (a, by), (a2, b2) are called

Stationary.

*Maxima & Minima for a function with constant condition :Lagranges Method




2. Solving the equations (2) (3) (4) & (5) we get the stationary point (X, y, z).
3. Substitute the value of x , y, z in equation (1) we get the extremum

Problem:
Find the minimum value of x? +y? +7% given x +y + z =3a
Sol: u=x%+y* +2°

@=x+y+z-3a=0

Using Lagrange’s function
F(x,y,z)=u(X,y,2)+y@(x,y,2)
For maxima or minima

oF .
= Bu 4y
B )

OX
F
oy

= 8u +v
dy 8
oF 2u 4y
oo =
From (1), (2) & (3)
y=-2X =-2y =-22

@ =x+Xx+x-3a=0=x=a
j_':y:Z:a

Minimum value of u = a + a + a® =3 a°




MODULE-III

HIGHER ORDER LINEAR
DIFFERENTIAL EQUATIONS AND
THEIR APPLICATIONS




LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

o _ ﬂ dn=1y 42y
Definition: An equation of the form ot P1(X) 17 Pa(X) - qen-2t

Pn(X) .y = Q(x) Where P1(x), P2(x), P3(x) Py(X) and Q(x) (functions of x) continuous is called
a linear differential equation of order n.
LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

dlty a1y a2y

den T Py - g1t P> - qeni—2 7" + P,.y = Q(X) where Py, P,

Ps.....P,, are real constants and Q(x) is a continuous function of x is called an linear differential

Def: An equation of the form

equation of order ‘ n” with constant coefficients.

Note:

8. Operator iQ = f @ ie D'Q iscalled the integral of Q.

To find the general solution of f(D).y =0:
Where f(D) = D"+ P; D"* + P, D" + +P, is a polynomial in D.

Now consider the auxiliary equation : f(m) =0
ief(m=m"+P,m"+P, m"+
where p1,P2,P3 pn are real constants.

Let the roots of f(m) =0 be m;, m,, ms......m.




Depending on the nature of the roots we write the complementary function

Consider the following table

S.No

Roots of A.E f(m) =0

Complementary function(C.F)

1.

m1, My, ..M, are real and distinct.

Ye = C1€M+ coe M+, 4 g™

2.

my, My, ..m, are and two roots are
equal i.e., m;, m; are equal and
real(i.e repeated twice) &the rest

are real and different.

Ye = (C1+Cox)e™*+ ¢z 4., + g™

my, My, ..M, are real and three
roots are equal i.e., mg, m, , ms are
equal and real(i.e repeated thrice)
&the rest are real and different.

Ve = (Cr+Cox+Cax?)e™* + c M+, .+ cpe™™

Two roots of A.E are complex say

a+iff & -ifS and rest are real and
distinct.

Yo = €% (cpcosfSx + Cosinfd x)+ cae™ +.. .+ cpe™y

If ct+ifS are repeated twice & rest
are real and distinct

Yo = €% [(cr+cox)cos 5 x + (Ca+CaX) sinf3 x)]+ cse™s”

+...+ cpe™*

If ct+if5 are repeated thrice & rest
are real and distinct

Ye = E.I:T?.'
. =

X)]+ c.e™* +

[(C1HCox+ Cax?)cos 5 X + (CatCsx+ Cox°) sinfF

+ Cnemnx

If roots of A.E. irrational say
a £,/ and rest are real and
distinct.

y, =e™ [cl cosh./Bx+c,sinh \/sz+ ce™ + +c.e™




Solve the following Differential equations :

@y _dy
3=+
7. Solve—3-3—+2y=0

Sol: Given equation is of the form f(D).y = 0

Where f(D) = (D*-3D +2) y=0

Now consider the auxiliary equation f(m) =0
f(m)=m®-3m+2=0 = (m-1)(m-1)(m+2) =0

= m=1,1,2
Since m; and m,, are equal and mgs is -2
We have Y. = (Ci+Cox)e* + cae™
Solve (D*-2D*-3D? +4D +4)y =0

Sol: Given f(D) =(D*-2D*-3D? +4D +4) y=0
= A.equation f(m)=(m*-2m*-3m? +4m +4) =0
2 (M+1)°M-2)°2=0
> m=-1,-1,2,2
=y, = (Cr+CoX)e™ +(Catcax)e®™
9. Solve (D*+8D*+16)y =0
Sol: Given f(D) = (D* +8D%*+ 16) y = 0
Auxiliary equation f(m) = (m* +8 m*+16) =0
= (M’ +4)2=0
=2 (m+2i)’> (m+2i)°>=0
= m=2i,2i,-2i,-2i

Ye = €%% [(cr+cox)cos2X + (Ca+CaX) SiN2x)]

10. Solve y"'+6y'+9y = 0 ; y(0) = -4, y*(0) = 14
Sol:  Given equation is y"'+6y'+9y = 0
f(D)y=0 = (D*+6D +9)y=0
Auxiliary equationf(m) =0 = (m?+6m +9) =0
= m=-3,-3
Ve = (Cr+Cox)e ™
Differentiate of (1) w.rtox = y* =(ci+cox)(-3e™) + co(e™)
Giveny; (0)=14 = ¢ =-4&c;=2
Hence we get y =(-4 + 2x) (™)
11. Solve 4y + 4yt +y' =0

Sol: Given equation is 4y™* + 4y*! +y* = 0
That is (4D*+4D?*+D)y=0

Auxiliary equation f(m) =0




am® +4m>+m=0

m2m + 1)%=0

m=0,-1/2 ,-1/2

y =C1+ (Co+ C3x) €™
12. Solve (D*-3D +4) y =0

Sol: Given equation (D? - 3D +4) y =0
AE. f(m) =0
m*-3m+4=0
3++9-16
m=

2

-
&

="t

V7
2 —

£ ' . V7
y = e2" (C1C0STX + CaSINTTX)

-
&

General solution of f(D) y = Q(x)
Isgivenbyy=y:+Y,
i.e.y=C.F+P.l
Where the P.I consists of no arbitrary constants and P.1 of f (D) y = Q(x)

Is evaluated as P.I = }% .QX)

Depending on the type of function of Q(x).
P.l'is evaluated as follows:
1. P.1 of f (D) y = Q(x) where Q(x) =e* for (a) # 0
1
fia)

. — 1 - 1 ax -
Casel: P.I= o) Q(x) ) e

Provided f(a) # 0
Case 2: If f(a) = 0 then the above method fails. Then
if f(D) = (D-a)“ O(D)
(i.e “a’is arepeated root k times).

Then P.I = ——¢* . .ci x“ provided @ (a) # 0

g

B(a)

2. P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ¢ a ¢ is constant then P.I =
1
TN Q(X).

Case 1: In f(D) put D? = - a2 3 f(-a%) # 0 then P.I = sin ax
DO)p (-a”) # 0 then m

Case 2: If f(-a%) =0 then D? + a? is a factor of @(D?) and hence it is a factor of f(D). Then let

f(D) = (D? + a%) .®(D?).

sinax sin ax 1  sinax 1 —xcosax

Then = = -
f(D) (D*+a%)®(D?) ®(-a®)D*+a> o(-a’) 2a




cosax CoS ax 1  cosax 1  xsinax

9. P.Ifor f(D) y = Q(x) where Q(x) = x“ where k is a positive integer f(D) can be express as
f(D) =[1+ O(D)]
Express}%: 13 - =[1+O(D)1*

13D

1
Hence P.l =
1+G(D

= [1+£ O(D)]* x*

10. P.1 of f(D) y = Q(x) when Q(x) = e€® V where ‘a’ is a constant and V is function of x.

where V =sin ax or cos ax or X
1
Then P.1 —E Q(X)

1
= g™V
f (@

=e™[ -V

f.-‘_,‘l+

T V is evaluated depending on V.

. P.l of f(D) y = Q(x) when Q(x) = x V where V is a function of x.
-
Then P.l = ) Q(x)

_;XV
fiom

[y __ L 1
" TPl Y
1. P.I. of f(D)y:Q(x) where Q(x)=x"v where v is a function of x.

Then P.1. _ﬁ xQ(X) = f(lD) x"v = |.P.of f(lD) X" (cosax +isin ax)

= |.P.of 1 xMel2x
f(D)

m i

ii. P.l. = 1 x"™ cosax = R.P.of 1 x"e

f(D) T E(D)

Formulae
7. 1—_(1 D)'=1+D+D*+D%+
L
+D
1

9. ——=(1- D)?=1+2D +3D?+4D% +

8. =(1+D)'=1-D+D*-D+




10.———=(1+D)?=1-2D +3D? - 4D% + -rrmmeeeeeeeev

.zl_lmz: (1-D)3=1+3D+6D%+10D° +
( ) )
(1+D7*
HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS:
. Find the Particular integral of f(D) y = e** when f(a) #0

=(1+D)*=1-3D+6D*-10D* +

. Solve the D.E (D? + 5D +6) y = &

.Solve y?+4y'+dy =4 ¥ y(0)=-1,y'(0)=3

.Solve y™ + 4y* +4y= 4cosx+3sinx , y(0) =1, y*(0) =0
. Solve (D*+9) y = cos3x

19. Solve y** + 2yt -yt — 2y = 1-4x3

20. Solve the D.E (D®- 7 D? + 14D - 8) y = e* c0s2x
21. Solve the D.E (D®- 4 D* -D + 4) y = e cos2x
22. Solve (D? - 4D +4) y =x%sinx + e + 3

a2y

23. Apply the method of variation parameters to solve 2.2 Y = cosecx

24, Solve§:3x+2y,§+5x+3y:0

25. Solve (D* + D - 3) y =x%¢™*
26. Solve (D°-D-2)y=3e* y(0)=0,y*(0)=-2
SOLUTIONS:
2) Particular integral of f(D) y = ¢**when f(a) #0
Working rule:
Case (i):
In f(D), put D=a and Particular integral will be calculated.

L gaxz 1 gax provided f(a) #0

Particular integral= —— )
f(D) fla)

Case (ii) :
If f(a)= 0, then above method fails. Now proceed as below.
If (D)= (D-a)*@(D)
i.e. ‘@’ is a repeated root k times, then

T i
gﬂ.. At

Particular integral=—-— . 7
Dial A

provided gh(a) #£0
3. Solve the Differential equation(D*+5D+6)y=¢*

Sol : Given equation is (D*+5D+6)y=e"




Here Q(x) =e”*
Auxiliary equation is f(m) = m?+5m+6=0
m+3m+2m+6=0
m(m+3)+2(m+3)=0
m=-2 or m=-3
The roots are real and distinct

CF=y=ce™+c,e™

1

fI:D l' ' Q(X)

Particular Integral = y,=

1
(D+2}D+3)

X

e

Put D =1in f(D)

o 1-1 ex
(3)4)

Particular Integral = y,= .

General solution is y=y +y,

.
(=
y—Cle—2x+C2 e-3>< +

3) Solve y*-4y'+3y=4e* y(0) = -1, y'(0) =3

Sol : Given equation is y'*-4y'+3y=4e*

. %y
l.e. —

Y BV o pe3X
e 4dx +3y=4e

it can be expressed as

Dy-4Dy+3y=4¢>

(D*-4D+3)y=4¢>

Here Q(x)=4e*; f(D)= D*-4D+3
Auxiliary equation is f(m)=m4m+3 = 0
m?-3m-m+3 =0

m(m-3) -1(m-3)=0 =>m=3 or 1

The roots are real and distinct.

C.F= ye=ce¥+c,e* ----> (2)

~ Q)

P.l=y,= 0y




~ (p-1XD-3)
Put D=3

4e* 4 e* xt

Y» = 3-1(D-3) 2(D-3)

General solution is y=yc+y,

y=cie¥+c, e*+2xe>

Equation (3) differentiating with respect to ‘x’

y'=3c,e¥+c e +2e ¥ +6xe>*

By data, y(0) = -1, y*(0)=3

From (3), -1=c;+cC;

From (4), 3=3c;+cy+2

3c1+C=1

Solving (5) and (6) we get c;=1 and ¢, =-2
y=-2e X +(1+2x)e*

(4). Solve y''+4y'+4y= 4cosx + 3sinx, y(0) =0, y*(0) = 0

Sol: Given differential equation in operator form

(D‘2 + 4D + 4)y=4cosx +3sinx

A.Eism’+4m+4=0
(m+2)°=0 then m=-2, -2

"o C.Fisye=(c, + czx)E_zx

doosx+ 3siny

utD?=1
(D2+4D +4) P

P.lis=yp=

dcosx+3siny (4D-3)dcosx+3sinx]
Yo= (4D +3] B (4D-2)(4D +3)

(4D —-3)(4cosx+3sinx)
- 16025

put D? =-

(4D -3 4cosx+3sinx)
—-16-5

*
¥ -|yp_




—lésinx+12cosx—12cosx—95inxX) _25siny .
= = — = SINX

““General equation isy = y+ Yo
y=(c + czx)E_zx + sinx
By given data, y(0) = 0+*c; = 0 and
Diff (1) w.r.. t. y'=(c, + czx)(—Z)E_zx + E_zx(cz) +COSX

given y'(0) =0

(2) =-2¢; + c,+1=0 egy=-1

"“Required solution isy = —X&~ ~*+sinx

5. Solve (D*+9)y = cos3x
Sol:Given equation is (D*+9)y = cos3x

AEism*+9=0

Ve = C.F = ¢4 cos3x+ ¢,sin3x

cosdx cos3x

=P.| = =
Ye DZ+9 D24 32

'x . }‘ .
= sin3x = ; sin3x

2(3)
General equationisy =y+y,

'
Y = C1€083X + C,€083X + g sin3x

6. Solve y**'+2y™ - y'-2y=1-4%°

Sol:Given equation can be written as

(D*+2D*—D —2)y=1-45

AEis(m® +2m> —m—2)=0

(m? — 1)(m+2)=0




[ ]

m-=10rm=2
m=1,-1,-2

C.F=c,& * s CZE_X + Cge_zx

1
" (D3+2D%-D-2)

P.I (1-4x°)

-1
= 3 - 1—4X3)
o0 D +2D2-D) (

2

(D3+2D?-D)

S I CEVE%S

—1  (D®+2D%*-D) (D?*+2D*-D)* (D®+2D*-D)
= 4

. _?1[1+%(D3 +2D7 - D)+%(D2 —4D3)+%(— Dg)}(l—‘lxs)

=={1-2(D*)+= (D)0} (1-4x7)

=22 [(1-4x%) E (—24) { (—24x) -~ (-12x7)
= }1[-4x3+6x2 -30x +16] =

= [2x°-3x” +15x -8]
The general solution is

y=C.F+P.l
y=c8" +c,e T+ ey [2x*-3x” +15x -8]
7. Solve (D3 —7D?+ 14D 8)y=2" cos2x
Given equation is
(D® —7D%+ 14D -8)y = €% cos2x
AEis(m®*—7m?+ 14m—8)=0

(m-1) (m-2)(m-4)=0




Thenm=1,2,4
2x 4x

C.F= c e * + CzE + c3&

e*cos2x
" (D2-7D2+14D -8§)

P.1

i 1
e,
(D+1)3-7(D+1)2+14(D+1)-8

. Cos2x

1
"(DE-4DZ43D)

.COS2X

1
"(—4D+3D+16)

.c0s2x (Replacing D* with -2°)

1
m .CO0S2X
\ito—Ll )
1la+D

"(16—-D }(16+D)

.COS2X

la+D

. W .C0S2X
L0

-
=

e
(16cos2x — 2sin2x)
&0

X

= Zi(8cos 2x —sin 2x)
260

X

=% (8cos2x—sin2x)
130

General solutionisy =y +vy,

X

y =ce* +c,e” +ce’ +leﬁ(8cos 2x —sin 2x)

8. Solve (DE — 4‘[] +4)y = .'!'"'2 SEH!I., + EE}{ +3

Sol:Given (Dz — 4-[) +4)y = '!Lz SEH..!I., _|_ sz +3




AEis(m? —4m+ 4)=0
(m — 2)2 =0then m=2,2
CF.=(c, + czx)E‘zx
x¥sinx+ &% +3 1 1

2 i 1 2x
P.l= = (x-sinx)+ —e " + (3)

(D—2732 [(D—-272 (D-2) (D—2737

1

F— 2
(D—2)

1 =2 . b ix
Now (x°sinx) = (x°) (.P of ')

F— 972
(D—2}

Z 1P of — (x?) (e™)

(-2

1

(D+i—272

= 1.P of (™). (x*)

On simplification, we get

1 . 1
o (x° sinx) = o [(220x+244)cosx+(40x+33)sinx]
(D+i-2) 25

1 - 1.2 -
and (D-2)? (e™) T2 (e,

1 .z o
P.l= [(220x+244)cosx+(40x+33)sinx] +AT (e2¥) -

G625

Y=Yt VYp

- 1 -2 1
y=(c1 + czx)E“l + o [(220x+244)cosx+(40x+33)sinx] + AT (E"‘) +I

Variation of Parameters :

Working Rule :

2
Reduce the given equation of the form % + P(x)% +Q(X)y =R

Find C.F.

szxlandB:f ulex :
uv- —vu uv- —vu
Write the G.S. of the given equation y =y +y,

Take P.1. y,=Au+Bv where A= —|

diy
9. Apply the method of variation of parameters to solve ﬁ +y = cosecx

Sol: Given equation in the operator form is (D? + 1)v = cosecx
AEis(m*+1)=o0
S.m

The roots are complex conjugate numbers.




v's C.F. i y=C1C08X + C,SinX

Let y, = Acosx + Bsinx be P.I. of (1)

dv  d 2. .
U -v==C0S X + SiN7x =1

dx dx

A and B are given by

vRdx Sinx cosec x
A= [ VYROX _fotwxcosecx o [dx=-x
L amril R J

B= jﬂxl = _f COSX.cosecx dx = f cotx dx = log(sinx)

uvt —vu

T Y= -Xcosx +sinx. log(sinx)
*+ General solution is y = y.+ y,.

Y = €1COSX + C,SinxX-xcosx +sinx. log(sinx)
10. Solve (4D < — 4D +1)y = 100

Sol:AEis (4m? —4m+ 1)=0

2m— 1)% = Othenm=-:

¥

C.F = (cy+cyx) €t

Pl 100 100 &% 100

= == R - =100
(4p%2-4D+1) (2D-1)2 (0-1)2

Hence the general solution is y = C.F +P.1

T

y= (c1+coX) £z + 100

Applications of Differential Equations:

11. The differential equation satisfying a beam uniformly loaded ( w kg/meter) with one end fixed and the
second end subjected to tensile force p is given by
d2y

. 1 .z
Elﬁ= py -~ wX

d - W
Show that the elastic curve for the beam with conditions y=0= d—l at x=0is given by y = —
x nep

(1-coshnx) + WX




Sol:The given differential equation can be written as

The auxiliary equation is ('iﬁ‘rlE — 'hLE) =0=>m=nand m=-n

S CF=y, = CIE;:}; +c2€_nx

1
Pl

= (.1{: +,1_2)

2EIm®
»'» The general solution of equation (1) is given by y= C.F + P.|

nx —nx 2 2
y=€  +c,E + (X7+ —)
n

2EI.n°

12. A condenser of capacity ‘C’ discharged through an inductance L and resistance R in series and the charge q

at time t satisfies the equation Ld =

d _
+R d—f +% = 0. Given that L=0.25H, R = 2500hms, c=2 * 10~ °farads, and

d
that when t =0, change q is 0.002 coulombs and the current d—a =0, obtain the value of ‘q’ in terms of t.

Sol:

Given differential equation is




Substituting the given values in (1), we get

(D* 4+ 1000D + 2 * 10%)q=0

lts A.Eism” + 1000m+ 2 = 10%=0

*, o —1000+V10° —8x10° _ ~1000+10007i

2 2

=-500 = 1323i

Thus the solutionisq= € 3 l::''::'ﬁ(clcosl_°>23t+czsin1323t)

When t=0, g=0.002 since ¢;= 0.002

Now ‘;—? = -500e " (c, cos1323t + ¢, sin1323t )+ e °°* x1323(~ ¢, sin1323t + ¢, cos1323t)

When t:O,d—qzo
dt

There fore ¢,=0.0008
Hence the required solution is ( = e >"" (0.002C031323t +0.0008sin 13231’)

13. A particle is executing S.H.M, with amplitude 5 meters and time 4 seconds. Find the time required by the
particle in passing between points which are at distances 4 and 2 meters from the Centre of force and are on
the same side of it.

d2x

Sol:  The equation of S.H.M is dj =-

Give time period = =4
i,

We have the solution of (1) is x=acos [{t




Let the times when the particle is at distances of 4 meters and 2 meters from the centre of motion

respectively be t; sec and t, sec
*® 2 -1 &4 . T
St =—cos (o) since [4= 5cos(Z [1)]
T =’ &
2 _q1 2 . T
and t,==cos ™’ (=) since [2= 5cos(= T3)]
T =’ s

time required in passing through these points

tyt, =—[cos™? (%)- cos™t (%)] = 0.33sec
T = =

7

differentiating (2) w.r.to ‘t

When x=4 meters v = :L V5% — 42-471 m/sec

When x=2 meters v=;—l V21 m/sec

14. A body weighing 10kgs is hung from a spring. A pull of 20kgs will stretch the spring to 10cms. The body is
pulled down to 20cms below the static equilibrium position and then released. Find the displacement of the

body from its equilibrium position at time t seconds the maximum velocity and the period of oscillation.

Sol:Let 0 be the fixed end and A be the other end of the spring. Since load of 20kg attached to A stretches the

spring by 0.1m.

Let e(AB) be the elongation produced by the mass ‘m’ hanging in equilibrium.

If ’k’ be the restoring force per unit stretch of the spring due to elasticity, then for the equilibrium at B
Mg =T =ke
20=To=k*0.1

K =200kg/m




Let B be the equilibrium position when 10kg weight is

4]
10=Te=k * AB=>AB = D=0.05m

-
“

Now the weight is pulled down to ¢, where BC=0.2. After any time t of its release from c, let the weight be at

p, where BP=x.
Then the tension T = k *AP

= 200(0.05+x) = 10 + 200x

+s The equation of motion of the body is

where g =9.8m/sec’

10 d?x
T9a8dt2

=10 - (10+200x)

dZx -
= T - uX where p¢ = 14

d t?
This shows that the motion of the body in simple harmonic about B as centre and the period of oscillation =

A
Fa

- 0.45sec
I

Also the amplitude of motion being B C=0.2m, the displacement of the body from B at time t is given by x =

0.2cosect

X =0.2cosect =0.2cosl4t m.

Maximum velocity = [ (amplitude) = 14 * 0.2 = 2.8m/sec
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Multiple Integrals




Multiple Integrals

Double Integral :

l. When y1,y» are functions of x and X, and x, are constants. f(X,y)is first integrated w.r.t y

keeping ‘x’ fixed between limits y1,y> and then the resulting expression is integrated w.r.t ‘x’ with in
the limits x1,xz i.e.,

X=Xp Y=g (x)

ﬂ f(x,y)dxdy = f j f (x, y)dydx

X% y=h(0
. When x3,X; are functions of y and y; Y- are constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits x;,X, and then resulting expression is integrated w.r.t ‘y’
between the limits y1,y» i.e.,

(v)
f(x,y)dx dy
)

J

y=Y,  X=g(y
=4 (y

” f(x, y)dxdy =

Y=% X
II. When x31,X2, y1,Y2 are all constants. Then

Y2 Xy Xy Y2

ﬂf(x, y )dxdy = j J.f(x, y)dx dy =J jf(x,y)dy dx

Y1 X X Y1

Problems

23
1. Evaluate J'J- xy®dx dy
11




Evaluate ﬂ' y dy dx
00

Sol. i Jx. ydydx = JZ[I ydy |dx

x=0y=0 x=0| y=0

2% 2 1
_ldxzjz( 2

x=0

3. Evaluate | [ x(x*+y*)dxdy

Sol.

5 x° 5 3¢
j '[ x(x2+y2)dydx: j [x3y+%} dx
Toys o

x=0

Evaluate j I
0

LS Gy ‘ 1
SOI.E[ '([ 1+x2+y? :X:() o (1+x2)+y2 dy | dx

1+x2

1| \1+x? 1
1

=[| [ ——=—dy|ix=]

y=0

Tan‘ll—Tan*O]dx or %(sinh‘lx)}J :%(sinh‘ll)

I
g I \/1+_x [Iog(x+\fx7+1)}

x=0

= TlogL++2)

1 a_ Y 1 1,
—|Tan 1 dx [ | 5—=dx==tan"(¥/)]
X=0| y=0 (x/1+ X’ )2+y2 co N1+ X { 1+ xz} Ixz +a° a A




Answer: 3e*-7

1x
6. Evaluate I I (x* + y*)dxdy
0 x

Answer: 3/35
2 X

. Evaluate He(“y)dydx
00

4 2

e

—e
Ans:

2

1
8. Evaluate jx y2dxdy
a1

3
T

Ans: —
36

9. Evaluate ”e‘(xz+y2)dxdy
00

Sol: ﬁe‘(xz+yz)dxdy = Te‘yz ﬁ e dx} dy
00 0 0

¥

3w
e Y dxdy = J' I e rdrde (X2 +y2=r?)

6=0r=0

(changing to polar coordinates taking X = C0S 6, y= rsin@ )




10. Evaluate | | xy(x+ y)dxdy over the region R bounded by y=x* and y=x
y y Yy

Sol: y= X% is a parabola through (0, 0) symmetric about y-axis y=x is a straight line through (0,0) with slopel.

Let us find their points of intersection solving y= X , Y=x we get X2 =x = x=0,1Hence y=0, 1
.. The point of intersection of the curves are (0,0), (1,1)

Consider ” xy(X + y)dxdy
R

For the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x’ to y=x and then w.r.t. X’ from x=0 to x=1

J-10|: yX:XZ xy(X + y) dy }dx = Xl:O D;Xz (Xzy +xy? )dy }dx

X

)

1 28-12-7 28-19 9 3

168 168 168 56

11. Evaluate J.Ixydxdy where R is the region bounded by x-axis and x=2a and the curve x’=4ay.
R

Sol. The line x=2a and the parabola x’=4ay intersect at B(2a,a)

~The given integral = .”Xy dx dy
R

Let us fix ‘y’

For a fixed ‘y’, x varies from 24/ay to 2a. Then y varies from 0 to a.




ence the given integral can also be written as

I ya:O J' :_22;5 xy dx dy = .[;:o U:_;;@ xdx}ydy

2a

XZ

} ydy
x:ZM

]

W

(2a,3)

12. Evaluate IO J rsingdédr
0

Sol. ' rU% sin ede}dr
r=0 6=0

- r(—cose);yjodr

r=0

= Ll:o—r(cos% —cosO)dr

1

2 1
= —r(0—1)dr:Ilrdr: r :1—0:1
=0 0 2) 2 "2

14. Evaluate ”(XZ +y? )dx dy in the positive quadrant

For

Which XtY <1

sol. [[(x +y?)dxdy = [*_dx[”"" " (x* +y*)dy
R

3 1-x
x2y+y— dx
0 3 0




X
14. Evaluate ”(XZ +y? )dxdy over the area bounded by the ellipse — +
a

Yy

Sol. Given ellipse is ——|——2 =
a® b

%(a2 -x*)(or) y? :z—z(az -x)

a
b
Ly=+—+a’-x?
a
Hence the region of integration R can be expressed as

—b b
—a<x<a,—+al-x* < yé—\!az—x2
a

.'.H(x2+y2)dxdy=j aj/ﬁ% (x*+y?)dxdy

/\/a:x 2 _ a( 2, Y j%\/ﬁ
=2 dxdy =2
L6y oxay=2f [y Vg |
ZZIfa{xz.A»\/az—xz +3b—;(a2—x2)%}dx
a b*
:4.[0 [%xza\/az—xz +Q(az—x2)%}dx

Changing to polar coordinates
putting X =asiné
dx=acos@dé

X . o
Z=sind=0=sint=
a

x—>0,6—>0

x—>a,6?—>z
2

2




Double integrals in polar co-ordinates:

asing rdrd @
Jai-r?

N magm@ ity M 77{ T dr} y

:%Ifz(\/ﬁ)asmg dH:(—l)IO 42[\/a2 —a’sin2@ —+a —OJdG

0

5. Evaluate I/J'

T,

a)fo%(cos 0-1)do=(-a)(sin0-0) '

—a)[[sin %—%}—(0—0)}

=(—a)[yﬁ‘%} = 2[%_}/«/5}

6. Evaluate IO” I:SM rdrdo

7. Evaluate I:.[O% e rdodr

a(l+cos0)

8. Evaluatej _[ r drdé

Change of order of Integration:
. da p2:fax
4. Change the order of Integration and evaluate J' Oj ./ dy dx
X=09Y="/4a

2
X
Sol. In the given integral for a fixed x, y varies from 4— to 24/ax and then x varies from 0 to 4a. Let us draw
a

2

X
the curves y:4— and y = 2+/ax
a




the region of integration is the shaded region in diagram.
4a p2Jax
The given integral is = , , dydx
[

2

Changing the order of integration, we must fix y first, for a fixed y, x varies from Z— to «/4ay and theny
a

varies from 0 to 4a.

Hence the integral is equal to
4a p2.fay 4a | p2fay
.[y=o.“ J%a dxdy = Iy=0|:-[x=y%a dx:|dy

4a & 4a 2
= y:O[ ]2\/_3/ dy:jy_o{Z\/@_yﬁa}dy

2
Yy
*="/4a

82, 16, 16 .

3 3 3

5. Change the order of integration and evaluate = J'Oa J';K(x2 +y?)dxdy

. . . . X X .
Sol. In the given integral for a fixed x, y varies from —to ’— and then x varies from 0 to a
a a

X X
Hence we shall draw the curves y=— and y = ;—
a a

i.e.

ay=x and ay’=x




we get ay = ay’
=ay—-ay’=0
=ay(1-y)=0
=y=0y=1

If y=0, x=0 if y=1, x=a

X,
The shaded region is the region of integration. The given integral is Ia on iz(x2 +y? )dx dy
x=0Jy=%7

Changing the order of integration, we must fix y first. For a fixed y, x varies from ay” to ay and then y varies

from O to 1.

Hence the given integral, after change of the order of integration becomes

[ J7 (¢ + v Jaxdy

_Ij_yayz (x*+ yz)dx} dy

ay

dy

2—x
j xydxdy and hence evaluate the double integral.

1
3. Change the order of integration in I
0

XZ

Sol.In the given integral for a fixed x,y varies from x> to 2-x and then x varies from 0 to 1. Hence we shall draw
the curves y=x’ and y=2-x

The line y=2-x passes through (0,2), (2,0

Solving y=x* ,y=2-x

Then we get X* =2—X

= x2+x-2=0
=X +2Xx-x-2=0

= X(x+2)-1(x+2)=0




= (x-1)(x+2)=0

=>x=1-2

If x=1y=1

If x=-2,y=4

Hence the points of intersection of the curves are  (-2,4) (1,1)

The Shaded region in the diagram is the region of intersection.

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies from
Oto \ﬁ
Then y varies from 0 to 1

For the region within CABC, for a fixed y, x varies from 0 to 2-y ,then y varies from 1 to 2

Hence J‘:'[;—Xxydydx: ” xy dx dy + ﬂ xy dx dy

OACO CABC

. [ [ fz xdx} ydy + jyil[fioy X dx}y dy

2 3 472
a’ Ay Ly
2 3 4

1

%[24 21-44(8-1)+ ¥ (16- 1}

28 15 1 1172-112+45 l
b——+— |==+=| ———— +
3 4 6 2 12

2a-x

4. Changing the order oflntegratlonj J-/ xy “dy dx

5. Change of the order of integration I:joﬁ y?dxdy  Ans: %

Hint : Now limits are y = 0toland x =0to1-y?
puty=siné

J1-y? =cos@

dy = cos@dé




- Io%sin2 6cos’ 6dO = J"O%sin2 ede—jo%sin“ odo

AR AR

(-1.0) *

~
N

v

Change of variables:

The variables x,y in ” f(x, y)dx dy are changed to u,v with the help of the relations X = fl(u,v), y=f, (u,v)
R

then the double integral is transferred into

u,v u,v oxy) udv
| RO e

Where R'is the region in the uv plane, corresponding to the region R in the xy-plane.

Changing from Cartesian to polar co-ordinates

X=rcosé,y=rsinéd

o

8(()(’ y)]: or 00|_|cosd —rsing

(r,0) ) |0y oy| |sin@ rcosé
o 00

=r(cos® 6+sin’g) = J'J'f (x, y)dxdy = ﬂ (rcosé,rsin@)rdr do

R

Note : In polar form dx dy is replaced by rdr dé&

Problems:
1. Evaluate the integral by changing to polar co-ordinates Jj J:O ef(X i )dX dy
Sol.The limits of x and y are both from 0 to o

.. The region is in the first quadrant where r varies from 0 to % and @ varies from 0 to %

Substituting X=rcosd,y=rsin@ and dxdy =rdrdé

Hence J:O j: e )y dy = Jjﬁ Jio e"rdrde




Wherer=0=t=0and r=co=t=w

I: I: e Y axdy = j:/z L Z’O%etdt do
- J"O%%l(et ): do
=‘?1j0%(0—1)d9:%(9)? =%% =/

a ?a27 2
2. Evaluate the integral by changing to polar co-ordinates IO IO ’ (X2 + y2 )dx dy

X = faz_yz

=>x+y*=a’

Sol.The limits for x are x=0 to

.. The given region is the first quadrant of the circle.
By changing to polar co-ordinates

X=rcosé,y=rsing,dxdy=rdrdéd

Here ‘r’ varies from O to a and '@ 'varies from 0 to %

T

“Jo Jo

xX* + yz)dxdy =.|.::20'[i0

2 \2
6. Show that _[04 Iyyz %dxdyzga{%_gj
4a X™+Y

2
Sol. The region of integration is given by X = yﬁa, X =Y andy=0, y=4a




i.e., The region is bounded by the parabola y>=4ax and the straight line x=y.
Let X=rcosd,y=rsind.Thendxdy =rdrdéd
The limits for r are r=0 at O and for P on the parabola

4acosd

r’sin’@=4a(rcosf)=r=—-,
sin“ @

For the line y=x, slope m=1i.e.,, Tand =1,0 = %

The limits for % - %

Also X2 —y? =2 (cos2 0—sin’ @)and x* +y* =r?
JAafy/ N dxdy —j j4/ ?(cos® 0—sin’ O)rdrd@

4ac057
2 sin @

=j§7(cosze—sin29)[%J do

0

)cos o

_8aj/ cos@ sin’ @ Yy
Si

do =8a> j/ cos* @ —cot? 9)d9 8a’ { 12_




Triple integrals:
If x1,X, are constants. y,,y, are functions of x and z,,z, are functions of x and y, then f(x,y,z) is first integrated

w.r.t. ‘2’ between the limits z; and z, keeping x and y fixed. The resulting expression is integrated w.r.t ‘y’

between the limits y; and y, keeping x constant. The resulting expression is integrated w.r.t. ’x’ from x; to x,

HI (x,y,z)dxdydz = L . J'y o2() J'szZ(x'y) f(x,y,z)dz dy dx

y=g(x) Jz=fi(xy)

Problems

l—XZ— 2

3. Evaluate J' I I xyz dx dy dz

Sol. L OJ'y J'lxzjxyzdxdydz

_ 1 dX lexdyj-ilox -y

x=0 y=0

o (2
o)

dxjﬁ

y=0

Xyz dz

2

Xy (1—




1111)1
+

4. Evaluate .f,ll.foz j:fzz(x+ y +z)dxdy dz

X+Z

j j x+y+y dxdydz
0

X-=Z

- .[_llj'oz [(xy + y% + zyjX+Z }dx dz

K L 4xz fixd
:LIO z(x+z)+§4xz x dz

277 73 3
X e X dz—ZI —+z Lz
12 2 |, 2
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Vector Calculus and Vector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts of
differential calculus, such as, continuity and differentiability to vector functions in a simple and natural way.
Also, the new concepts of gradient, divergence and curl are introduced.

DIFFERENTIATION OF A VECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalart € S, let there be associated a unique

vector f . Then f is said to be a vector (vector valued) function. S is called the domain of f . We write f

= f (t).

Lett, j, k be three mutually perpendicular unit vectors in three dimensional space. We can write

f = f(t)= f @) + f,(t) j+ f,(t)k , where fu(t), foft), f(t) are real valued functions (which are called

components of f ). (we shall assume that i, j,k are constant vectors).

1. Derivative:
f(t)- f(a)

t—-a

Let f be a vector function on an interval /and a € /. Then Lt , if exists, is called

t—a

_ _ df _
the derivative of f ataand is denoted by f '(a) or (a att=a. We also say that f is differentiable at t

=aif f '(a) exists.

2. Higher order derivatives
fr (1) - f'(a)
t—-a

. ;q df :
Let f be differentiable on aninterval /and f '= pre be the derivative of f.If Lt,_,, exists

.
for everya €, | . Itis denoted by f *'= -

.F 111

Similarly we can define (t) etc.

We now state some properties of differentiable functions (without proof)
(1) Derivative of a constant vector is a .
If @ and b are differentiable vector functions, then
dt dt




(4). i(éxﬁ)zd—ax5+§x@
dt dt dt

(5). If f is a differentiable vector function and ¢ is a scalar differential function, then
L d¢
— — f
(¢ f)= ¢ o
(6). If f =, () + f,(t) j+ f,(t)k where fy(t), fo(t), fs(t) are cartesian components of the vector
df df; .-+£ . df

3k

f , then =—1 J+
dt dt dt dt

_ af  —
(7). The necessary and sufficient condition for f (t) to be constant vector functionis —= 0.

3. Partial Derivatives

Partial differentiation for vector valued functions can be introduced as was done in the case of
functions of real variables. Let f be a vector function of scalar variables p, g, t. Then we write f = f (p,q,t).

Treating t as a variable and p,q as constants, we define

a—0 &

of
if exists, as partial derivative of f w.r.t. t and is denote by —

of of
Similarly, we can define 8_ '3_ also. The following are some useful results on partial
p oq

differentiation.

4. Properties

)—(¢a)—a¢— ¢—

2). If N is a constant, then a(ﬁa) ﬂé—a

ot

_ 0 o¢p
3).If C isaconstant vector, then — c—
) p (4C) = P

)
~
|
H
o
N—r
I
2|8
H
D
2|

jo))
Q|

—~
|
|

N—r

|
ol
+
|

Qo /o ]|
2|

2|

o
—~~
8]
X
o
N
Il
()
S | o
X
O
+
|
X
2|

7). Let f= f I+ f j+ f3 k , Where fy, f,, fsare differential scalar functions of more than one variable,

Then — =1 i j—% _%(treating i,],k asfixed directions)
ot ot ot




5. Higher order partial derivatives

6.Scalar and vector point functions: Consider a region in three dimensional space. To each point p(x,y,z),
suppose we associate a unique real number (called scalar) say ¢. This ¢(x,y,z) is called a scalar point

function. Scalar point function defined on the region. Similarly if to each point p(x,y,z)we associate a unique

vector f (xy,2), f is called a vector point function.

Examples:

For example take a heated solid. At each point p(x,y,z)of the solid, there will be temperature
T(x,y,z). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a position
p(x,y,2) in space, it will be having some speed, say, v. This speedyv is a scalar point function.

Consider a particle moving in space. At each point P on its path, the particle will be having a velocity

V which is vector point function. Similarly, the acceleration of the particle is also a vector point function.
In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,z). This is called

magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.
Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a<t <b.
Then the set of all points (x(t),y(t),z(t)) is called a curve in a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the curve. If A =B, the
curve in said to be a closed curve.
Let P and Q be two neighbouring points on the curve.
let OF =7(t), 00 =7(t +8t) =7+ 6F.Then 6T =00 — OP = PQ

r — —_ P
Then % is along the vector PQ. As Q->P, PQ and hence ? tends to be along the tangent to the

curve at P.

or dr dr
Hence It — = — will be a tangent vector to the curve at P. (This — may not be a unit vector)
a-0 8t dt dt

Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can observe

ar . .
that d_ is unit tangent vector at P to the curve.
S

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator V(read as del) is defined as




differentiation operator. We will define now some quantities known as “gradient”, “divergence” and “curl”

involving this operator V. We must note that this operator has no meaning by itself unless it operates on

some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION
Let d(x,y,z) be a scalar point function of position defined in some region of space. Then the vector

0, 500 O
x oy

function 1 — is known as the gradient of ¢ or V¢

0,70 0. 09 -0¢ 09
Vo= (i +Jay+k )b = Iax Jay+kaz

Properties:

(1) If fand g are two scalar functions then grad(f +g)=grad f £ grad g

(2) The necessary and sufficient condition for a scalar point function to be constant is that Vf= 0
(3) grad(fg) = f(grad g)+g(grad f)
(4) If cisa constant, grad (cf) = c(grad f)

%) grad Gj: g(grad f)-f(gradg)

2

g

(6) Let F=xi+ y j+ zk. Then dr = dxi+ dy j+ dzk if ¢ is any scalar point function, then

OX

dg = 8¢dx+a¢dy+a¢dz—( oP %D "%q’j.(idx+]dy+Rdz)=ch.dF
/A

0 oy

DIRECTIONAL DERIVATIVE
Let ¢(x,y,z) be a scalar function defined throughout some region of space. Let this function have a value ¢ at

a point P whose position vector referred to the origin O is OP = F . Let ¢+Ad be the value of the function

at neighboring point Q. If 00 =+ + AT . Let Ar be the length of A7

A

~ gives a measure of the rate at which ¢ change when we move from P to Q. The limiting value of

AY

—'I' as Ar — 0 is called the derivative of ¢ in the direction of PQ or simply directional derivative of ¢ at P

and is denoted by d¢/dr.

Theorem 1: The directional derivative of a scalar point function ¢ at a point P(x,y,z) in the direction of a unit

vectore is equal to e. grad (I)=(_E . Vo.

Level Surface




If a surface ¢(x,y,z)= c be drawn through any point P( F ), such that at each point on it, function has the same
value as at P, then such a surface is called a level surface of the function ¢ through P.

e.g. : equipotential or isothermal surface.

Theorem 2: V¢ at any point is a vector normal to the level surface ¢(x,y,z)=c through that point, where cis
a constant.
The physical interpretation of Vo

The gradient of a scalar function ¢(x,y,z) at a point P(x,y,z) is a vector along the normal to the level

surface ¢(x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase

of ¢. Greatest value of directional derivative of ® ata point P = |grad ¢| at that point.

SOLVED PROBLEMS

1: If a=x+y+z, b= x’+y’+2°, ¢ = xy+yz+zx, prove that [grad a, grad b, grad c] =
Sol:- Given a=x+y+z

There fore @zl, @zl —=1

OX oy oz
Grada=Va= 8a =i+j+k
ax

Given b= x*+y’+7’
Therefore?&b = 2X, o _ =2y,— ab =22

oy 0z

Grad b = Vb—la—b+16—b ‘5—b=2xi'+2y]+22|2
x oy oz
Again ¢ = xy+yz+zx
oc oc oc
Thereforea—:y+2,—:Z+X,—:y+X
X

oy oz

-0Cc -0C oc
Gradc= 1 &+ 154— a—_(y+z)| +(Z+X)]+(x+yk
1 1 1
[grad a, grad b,gradc]=|2x 2y 2z |=0,(onsimplification)
Y+Z Z+XX+Y

[grad a, grad b, grad c] =0

2: Show that V/[f(r)] = I where F= Xi +yj + 7k .

fi(r)
r

Sol:- Since T = Xi + yj + zk , we have r’= X’+y*+7°

Differentiating w.r.t. ‘X’ partially, we get




Zlf (r)—

S
r2

Note : From the above result, V(logr) = r
3: Prove that V(r")= nr"*F .

Sol:-Let = Xi + yj + zk andr= |F| . Then we have r? = x’+y’+2° Differentiating w.r.t. x partially, we have
or or or 1z

2r—:2x:>—:E.Similarlyzq—y nd —=—
OX oX r oy r oz r

V()= Zi%(r“) :zi'nr"ﬂ% =Zi_nr“‘1§ =nr"?> ix=nr"?(r)

Note : From the above result, we can have

1 r r
(1). V(—j =——7, takingn=-1(2)grad r = L, takingn=1
r r r

4: Find the directional derivative of f = xy+yz+zx in the direction of vector i + 2 + 2k at the point (1,2,0).
Sol:- Given f = xy+yz+zx.
- af - af — af = - r
Gradf=1—+ ] —+Z—=(Y+2)I +(z+X) ]+ (X+ Yy)k
OX oy 0z

If € is the unit vector in the direction of the vector I + 2 + 2k , then

gt t2it2k =%(i_+2]+2IZ)

V12 + 2% + 22

Directional derivative of f along the given direction =&.Vf

:%(i+2]+2E)[(y+ 2)i+(z+x)] + (x+ yk)Jat (1.2,0)
[(v+2)+2(z+x) +2(x +v)](1,2,0) =

5: Find the directional derivative of the function xy’+yz’+zx* along the tangent to the curve x=t, y =t>, z = t*
at the point (1,1,1).
Sol: - Here f = xy*+yz’+zx*
.—af = 8f o 8f 2 - 2 wi 2 \,
Vfi=l—+ |]—+k—= +2XZ f+\z2°+2 +X“+2
o oy TR ezl 2 )i+ (¢ 2y
At(1,1,1), VFf=3i +3]+3k

Let I be the position vector of any point on the curve x =t , y = t?, z = t>. Then
r=xi+yj+zk=ti +t2 j+t°k

x’ i 2t +3t%k = (i + 2] +3k) at (1,1,1)




or .
We know that — is the vector along the tangent to the curve.

. . i+2]+3R i+2]+3E
Unit vector along the tangent=e e — =
Vi+27+3 V14

Directional derivative along the tangent = Vf e

= ﬁ (T+2]+3k).3(+j+k)

i(1+2+3):£
14

V14 V14

6: Find the directional derivative of the function f = x>-y*+22” at the point P =(1,2,3) in the direction of the

line PQ where Q = (5,0,4).

Sol:- The position vectors of P and Q with respect to the origin are OP =i+ 2] +3k and
0Q= 57 + 4k
PQ=0Q -OP = 4i—2j+k

4i-2j+k
J21

Let € be the unit vector in the direction of % .Then € =

grad f= i_i-l- j_i+|2§: 2xi —2yj + 4zk
x oy o

The directional derivative of f at P (1,2,3) in the direction of % =8.Vf
1 1
J21

1 _ o _ _ _
= —— (4 —2]+K).(2xi — 2yj + 4zk
JZ( J+k).( y) )\/2—1

(BX+4Y+42) 4023 = (28)

7: Find the greatest value of the directional derivative of the function f = x’yz* at (2,1,-1).
Sol: we have

of

grad f = i_i+ ]iHZ—: 2xyz°i +x%2% ] +3x?yz?k =—4i — 4] +12k at (2,1,-1).
OX oy oz

Greatest value of the directional derivative of f= |Vf| =+/16+16 +144 = 411.

8: Find the directional derivative of xyz’+xz at (1, 1,1) in a direction of the normal to the surface 3xy*+y=z
at (0,1,1).
Sol:- Let f(x, v, z) = 3xy*+y-z =0

Let us find the unit normal e to this surface at (0,1,1). Then

i:gyz, i:GXy +1’g:_l.
OX ay oz

V£ = 3y%i+(6xy+1)j-k

(VAo = 3i+j-k= ﬁ

oM _8itj-k_3i+j-k

Il Jo+1+1 V11

Let g(x,y,z) = xyz*+xz,then




Vg=(yz*+z)i+xz’j+(2xyz+x)k

And [Vg] (1,1,1) = 2i+j+3k

Directional derivative of the given function in the direction of € at (1,1,1) = Vg.€
3i + j—kj_6+1—3_ 4

Vi1 NERRNT

=(2i+j+3k). [

9: Find the directional derivative of 2xy+z” at (1,-1,3) in the direction of i + 2] + 3k .

Sol: Let f= 2xy+z’then ? =2y, ﬂ = 2X, i =21.
X

oy oz

grad f= Zf% =2yi + 2Xj + 2zk and (grad f)at (1,-1,3)= — 2i + 2] + 6k

given vectoris a =1 + 2]7+3|Z:>|§| =\V1+4+9=414

Directional derivative of f in the direction of @ is

avfi (i+2]+3K)(-2i +2j+6k). —2+4+18 20
] V14 TN 7]

10: Find the directional derivative of ¢ = x’yz+4xz” at (1,-2,-1) in the direction 2i-j-2k.

Sol:- Given ¢ = X’yz+4xz’
%:nyz +4z7°, %:xzz,%:x2y+8xz.
OX oy oz

Hence V¢ = Zf?:i'Qxyz +42%) + X2z +k(x?y +8x2)
X

Vo at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k.
The unit vector in the direction 2i-j-2k is

_ 2i—j—-2k. 1,.. .
a=————=-(2i—-j-2k
V4a+1+4 3( : )

Required directional derivative along the given direction = V. a
= (8i-j-10k). 1/3 (2i-j-2k)
=1/3(16+1+20) = 37/3.
11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in which temperature

changes most rapidly with distance from the point (1,1,1) and determine the maximum rate of change.

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by Vt.

We have Vt = i_QJr]gHZﬁ (Xy + Yz + 2X)
e nave = ax ay az

=i(y+2)+ jz+X)+k(x+y)=2i +2]+ 2k at (1,1,1)
Magnitude of this vector is V2% + 2% + 22 =
Hence at the point (1,1,1) the temperature changes most rapidly in the direction given by the

vector 2i + 2] + 2k and greatest rate of increase = 2+/3.




12: Findthe directional derivative of ¢(x,y,z) = x’yz+4xz> at the point (1,-2,-1) in the direction of the normal

to the surface f(x,y,z) = x log z-y* at (-1,2,1).

Sol:- Given ¢(x,y,z) = xzyz+4xz2 at (1,-2,-1) and f(x,y,z) = x log z-y2 at (-1,2,1)

Now V¢ = —¢| +—¢j+ ¢k
OX oy 0z

= (2xyz +42%)i + (x?2) ] + (x*y +8xz)k

(Va2 = [RO2)(D +4(-D i +[D)* (<D j1+[A*)(-2) +8(-DIk ————()
=8 — j—10k

\4i

Vi

Unit normal to the surfacef(x,y,z)= x log z- y* is ——

~of cof -—of - - X—
NowVf=1|—+ j—+k—=1 -2 —k
ow Vf 6x+18y+ e ogzi+( y)J+Z

At (-1,2,1), V= log(D)i —-2(2) j +_T1IZ =—4j-k

Vi —4j-k. -4j-k.
Vi Jie+1 17

Directional derivative = V. ——
Vi

—4j-K._4+10 14
NN RN

13: Find a unit normal vector to the given surface x’y+2xz = 4 at the point (2,-2,3).

= (81 — j —10k ).

Sol:- Let the given surface be f = x’y+2xz — 4
On differentiating,

g:2xy+22,§:x ,— = 2X.
OX oy oz

grad f —ZI— = 2xy+22) X2 +2xk
(grad f) at (2,-2,3) =i(~8+6)+ 4 ] + 4k = 2i + 4] + 4k
grad (f) is the normal vector to the given surface at the given point.

Hence the required unit normal vector —— 2( i+ ZJ - Zk) _I +2)+2K

IVfI 241427 + 22 3

14: Evaluate the angle between the normal to the surface xy= 2% at the points (4,1,2) and (3,3,-3).

Sol:- Given surface is f(x,y,z) = xy- 7’

Let N, and N, be the normal to this surface at (4,1,2) and (3,3,-3) respectively.




Differentiating partially, we get

O 0
y’ ~ = X’_ = _22.
oy 01
grad f = yi + xj —2zk
n=(gradf) at(4,1,2) =i +4j— ak
n,=(grad f) at (3,3,-3) = 3 +3] + 6k

Let 6 be the angle between the two normal.

non, _(i+4j-4k) (3i+3j+6k)
nn,| v1+16+16 Vo+9+36

(B+12-24) -9
J33\54 /3354

15: Find a unit normal vector to the surface x*+y’+2z* = 26 at the point (2, 2 ,3).

Sol:- Let the given surface be f(x,y,z) = x’*+y*+2z* — 26=0. Then

ﬂ: 2X, i: 2y,i =4z,
OX oy oz

- of
df= ) I — =2xi+2yj+4zk
gra Z ™ Xi+2yj+4z
Normal vector at(2,2,3) = [Vf]223 = 4i+4] +12 E
VE 4@+ j+3k) T+ ]+3K
Vil 411 Vi1

16: Find the values of a and b so that the surfaces ax>-byz = (a+2)x and 4x’y+z’= 4 may intersect

Unit normal vector =

orthogonally at the point (1, -1,2).
(or) Find the constants a and b so that surface ax’-byz=(a+2)x will orthogonal to 4x’y+z°=4 at the point (1,-
1,2).
Sol:- Let the given surfaces be f(x,y,z) = ax*-byz - (a+2)x

And g(x,y,2) = 4X°y+2°- 4ommmmmeeeeev (2)

Given the two surfaces meet at the point (1,-1,2).

Substituting the point in (1), we get

a+2b-(a+2) = 0= b=1

Now a =2ax—(a+?2), a =—bzand a =—hy.
OX oy oz

Vf= Z i_% = [(2ax-(a+2)]i-bz+bk = (a-2)i-2bj+bk

= (a-2)i-2j+k = N, normal vector to surface 1.




-0 . .
Vg = Zl 8_?( = 8xyi+4x’j+32°k

(Vg) 1,12 = -8i+4j+12k = N, , normal vector to surface 2.

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2).
[Vt |[Vg]= 0= ((a-2)i-2j+K). (-8i+4j+12k)=0

=-8a+16-8+12 = a =5/2

Hence a =5/2 and b=1.

17: Find a unit normal vector to the surface z= x*+y* at (-1,-2,5)
Sol:- Let the given surface be f = x’+y*-z

of

— =-1.
y 0z

grad f=Vf=>" i';i = 2xi+2yj-k
X

(V) at (-1,-2,5)= -2i-4j-k
Vf is the normal vector to the given surface.

\%i

Hence the required unit normal vector = W =

-2i—-4j-k :—2I—4j—k:_ (2i+4]+K)
Ve + 2+ V2 V21
18: Find the angle of intersection of the spheres x*+y’+z* =29 and x’+y*+z> +4x-6y-8z-47 =0 at the point (4,-
3,2).

Sol:- Let f = x*+y*+z” -29 and g = X*+y*+z” +4x-6y-82-47

Then grad f= i_@jt ]qﬂzi: 2Xi +2yj +2zk and
OX oy oz

gradg= (2x+4)i +(2y—6) ]+ (22 —-8)k
The angle between two surfaces at a point is the angle between the normal to the surfaces at
that point.
Let fl,= (grad f) at (4,-3,2) =81 —6] + 4k
M, = (grad f) at (4,-3,2) = 12i —12 — 4k
The vectors N, and N, are along the normal to the two surfaces at (4,-3,2). Let 6 be the angle
between the surfaces. Then

n.n, 152
| it ios

Cos 6=




19: Find the angle between the surfaces x*+y*+z* =9, and z = x’+y*- 3 at point (2,-1,2).
Sol:- Let ¢, = x*+y*+2° -9=0 and ¢,= x’+y*-z- 3=0 be the given surfaces. Then
V= 2xi+2yj+2zk and V¢, = 2xi+2yj-k
Let N;= V¢, at(2,-1,2)= 4i-2j+4k and
M, =V, at (2,-1,2) = 4i-2j-k
The vectors N, and N, are along the normals to the two surfaces at the point (2,-1,2). Let © be the angle

between the surfaces. Then

M, (4i-2j+4k) (4i-2j-k) 16+4-4 16 8
| V16+4+16 V16+4+16  6v21  6J21 3J21

8
0 =cos —— |.
(3\/21j

20: If @ is constant vector then prove thatgrad (@ .7 )=a

Sol: Let @ = a,i +4a, ] +a,k , where aj,a,,a; are constants.

F=(ai+a,]+ak).(xi +yj+zK)=ax+a,y+a,z

0 s —a 2 (ap -
al,g(a.r)—az,az(a.r)_a3

grad(ﬁ.l’):ali_+a2]+a3lz=§
21:If Vo= yzi + zxj + xyk , find ¢.

Sol:- We know that V¢= i_i+ ]i + E@

OX oy oz
Given that Vo= yzi + zxj + xyk
o¢ op __ 09

Comparing the corresponding coefficients, we have — = yz, — = zX,— = Xy

ox oy oz
Integrating partially w.r.t. x,y,z, respectively, we get
¢= xyz + a constant independent of x.
= xyz + a constant independent of y.
¢= xyz + a constant independent of z.

Here a possible form of ¢ is ¢= xyz+a constant.

DIVERGENCE OF A VECTOR

Let f be any continuously differentiable vector point function. Then l.—+ j— +k.— is called

OX oy oz

the divergence of f and is written as div f .




Hence we can write div f as

This is a scalar point function.

= - = = _of of, of
Theorem 1: If the vector f = fi+ f, J+ f,k,thendiv f = L2, 3

oXx oy oz

Prof: Given f= fi+f, j+f,k

o _jofy oty oy
OX OX OX OX

i of, . .of o,
Also I.— =—.Similarly J.—=—an
OX OX

of
We have div f = ZI %.’_%4_%
x) ox oy oz

, of, of,

Note : If f is a constant vector then —,—= —are zZeros.
E)x oy 0oz

~.div f =0 for a constant vector f .

Theorem 2: div (f + ) = div f +divg

Proof: div (f + )= |—(f+g) =0 —( ) ZI —(g)=div f xdivg.

Note: If ¢ is a scalar function and f is a vector function, then

(i). (a.Vv)f =Z(§.i_)%. by proceeding as in (i) [simply replace ¢ by f in (i)].

SOLENOIDAL VECTOR

A vector point function f is said to be solenoidal if div f =0.

Physical interpretation of divergence:

Depending upon f in a physical problem, we can interpret div f (=V. f).




Suppose F (x,y,z,t) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though time has no role in
computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to measure
the rate per unit volume at which the fluid flows out at any given time. The divergence of F measures the
outward flow or expansions of the fluid from their point at any time. This gives a physical interpretation of
the divergence.

Similar meanings are to be understood with respect to divergence of vectors f from other
branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics, electricity

and magnetism etc.

SOLVED PROBLEMS

1:1f f= xy?i +2x?yzj —3yz?k finddiv f at(1,-1, 1).
Sol:- Given f = xy?I + 2x?yzj —3yz°k .
_of
Thendiv f = a—1+%+%=2(Xy2) +i(2x2yz) +2(—3y22) =y*+2x’z-6yz
ox oy o0 oX oy 0z

(div f)at(1,-1,1)=1+2+6 =9

2: Find div f when grad(x*+y*+z>-3xyz)
Sol:- Let h= x>+y>+2°-3xyz.

%
ox

op o9

Then =3x?—-3yz, —~ =3y® —3zx,—~ =32 -3
yz 2y y pe Xy

f% _%: 2_ = 2_ = 2_ I,
J8y+k82 3[(X* —yz2)i +(y* —2x) j+(z° —xy)K]

grad ¢= i_%+
OX

- of of, o, o
=4+ =+ ==
oXx oy 0Oz oX

= 3(2x)+3(2y)+3(22) = 6(x+y+2)

2 a 2 6 2
[3(x —yZ)]+5[3(y — 2]+ [3(2° = xy)]

3:1f f= (x+3y)i +(y—22)]+ (x+ pz)k is solenoid, find P.
Sol:-Let f = (x+3y) +(y—22)j+(x+ pz)k = f,i +f, j+ f,k

We have %:1,%21% p

x oy
div f_=%+%+%=l+l+p=2+p
Z

oXx oy

since f issolenoid, we havediv f =0 =>2+p=0=p=-2

4: Find div f = r"F. Find n if it is solenoid?

n

Sol: Given f = r"F. where 7 =xi +yj+zk and r =|r|




We have r* = x*+y*+z°

or
OX

Similarly g =
f=r"( xi +yj+zk)

: 0 0 0
d- f= . n n . n
iv 6x (r x)+—ay(r y)+aZ (r'z)

or 4 or 4 or
—X+r" "t =yt =z r
ox oy o

n-1 n

= nr

2 2 2 2
Ll x z - (r )
=nr" 1{7 +—yr +—r }Sr” =nr"t . +3r" = nr'+3r"= (n+3)r"

Let f=TI"T be solenoid. Thendiv f =0
(n+3)r"=0 = n=-3

r

5: Evaluate V.( 3

jwhere F=xi+yj+zkandr =|f| .

Sol:- We have

T = xi+yj+zk and r = /x> + y2 +2°

j:afl+i+%
ox oy oz

We have fi= r’x= ay =r>.1+ X(—3)r_4.q
OX OX

r2—3xr* S =r3-3x"°

V.(isj: > % =3r°-3r°) x?

r

=3r3-3r°r* =3r3-3r° =0

6: Find div F where F = Xxi + yj + zk

Sol:-We have F= xi +yj+zk = fi+f, j+ f,k




CURL OF A VECTOR

Def: Let f be any continuously differentiable vector point function. Then the vector function defined by

o o o o o
Ix —+ Jx—+K x—is called curl of f andis denoted by curl f or (Vx f ).
OX oy oz

curl f = fxi+jxq_+lzxi—z i_><i
TR Ty A ox

Theorem 1: If f is differentiable vector point function given by f = f.i + f, j+ f,k thencurl f =

(afs afzJ-‘ (81‘1 8f3]= [61:2 aflj—
— -+ =]+ —=-—
oy oz 0z  OX ox oy

- = a c - a - = [ af P af =
Proof : curl f = lea—x(f):ZIX&(fll+fzj+f3k):Z[a—;k—a—;Jj

(ﬁ_kaf_q Ay Oy [i,ﬁf_j
OX OX oy oy oz oz

i +j(i_%j+g A
oy oz 0z oX oX oy

Note: (1) the above expression for curl f can be remembered easily through the representation.

curl f = =Vx f

o 9
oX oy
f, 1,

Note (2) :If f isa constant vector thencurl f= 0.

Theorem 2: curl (é + lf_)): curla +curlb

Proof: curl (éi 5)= fo%(ﬁiB)

. (oa b . oa _ob
=) ix| =t =ik T ik
X(@x 8xj Ixax_ Ixax

= curla +curlb

1. Physical Interpretation of curl




If W is the angular velocity of a rigid body rotating about a fixed axis and V is the velocity of any point
P(x,y,z) on the body, then W =7 curl V. Thus the angular velocity of rotation at any point is equal to ha
the curl of velocity vector. This justifies the use of the word “curl of a vector”.

2. Irrotational Motion, Irrotational Vector

Any motion in which curl of the velocity vector is a null vector i.e curl V=0 is said to be

Irrotational.
Def: Avector f is said to be Irrotational if curl f = 0.
If fis Irrotational, there will always exist a scalar function ¢(x,y,z) such that f =grad ¢. This¢ is
called scalar potential of f .
It is easy to prove that, if f =grad ¢, then curl f=0.

Hence Vx f =0 < there exists a scalar function ¢ such that f = V¢.

This idea is useful when we study the “work done by a force” later.

SOLVED PROBLEMS

1:1f f= xy?i +2x%yz j—3yz? k find curl f at the point (1,-1,1).
Sol:- Let f = xy®I +2x%yz j—3yz?k . Then
k
curIf_:fo_:g Q 2
OX oy
xy? 2x°yz
A 0 0 < 0 0 —( 0 0
=i| — (-3yz?) ——=(2x?yz) |+ j| =— (xy?) ——(-3yz?) |+ k| = (2x*yz) — — (xy?
[W( yz°%) az( y)J J(aZ(XY) 8x( yz )) [8x( yz) ay(><y )j
=7(-322 —2x%2)+ j(0—0)+ k(4xyz — 2xy) = —(32% + 2x2y J + (4xyz — 2xy )k
=curl f at(1,-1,1)= —i —2k.

2:Find curl f where f = grad(x*+y*+z*-3xyz)

Sol:- Let ¢= x*+y*+z>-3xyz. Then

grad ¢= Zf% =3(x% —y2)i +3(y? —2x) j +3(z% — xy)k

] i
9
oy
x> —yz y*—zx z°—xy
=3i(—x+x)— j-y+y)+k(-z+2)]=0
seurl =0,

k
0
0z

curl grad ¢= Vx grad ¢=3 i
OX

Note: We can prove in general that curl (grad ¢)=6 .(i.e) grad ¢ is always irrotational.




3: Prove that if T is the position vector of an point in space, then r"F is Irrotational. (or) Show that
curl(¥*7) =0

Sol:-Let F= Xi +yj+2zk andr=|f| ..ri=x+y+z.
Differentiating partially w.r.t. ‘x’, we get

2r —r:2x:>

o _Xx
oX r

Similarly oa_ Y and o _z We have r"r =r"(xi + yj + k)
oy oz r

i
Vx(r"T )= 2 i
OX oy
yr’

(o, . 0. (0,0 0, Af6,.. 0,.
'(a(r Z)_E(r Y)]JFJ(E(V X)—&(" z)j+k£&(r Y)—a(r X)]
NOr n—lq_ n—lq et NS Y[ 2

_Z|{znr Y ynr az} nr Zl{z(r] y(rj}

=nr"2[(zy - yz)i + (x — 2x)j + (xy — yz K]

k
9
0z

n n

Xr r

=nr"?[0i +0j+0k]=nr"?[0]=0

Hence r"T is Irrotational.

4: Prove that curl T =0
Sol:- Let = Xi + yj + zk

curl £ = Y i x-2(F)= 3(10) = 040+ 0= 0

.. T is Irrotational vector.

_ axr
5:If A is a constant vector, prove that curl [

Sol:- We have F = i + yj + zk




|><(a><|) 3X|><(axr)

——[(| ra-—(.a)r]

Let A = aii_+a2]+a3k.Then i.a=a,etc.

O (axr (a- all) 3X
Ofar) e ey

0 (axr a-ajl
ax( - j_zr———Z(xa a,xr)

3a a 3a
= (r )+r—(ax+a2y+a32)

r ,_ _
r—s(r.a)

6: Show that the vector (x? — yz)i +(y? —zx) j+(z? —xy)k is irrotational and find its scalar potential.
Sol:let f=(x*—y2)i +(y*> —2x) j+(2? —xy)k

Then curl f =|—

=Xy

. f is Irrotational. Then there exists ¢ such that f =V¢.

108 00 09 (V20 T4 (2K
:Hax 8y+k = (X*—yO)i +(y* —z2x) j+ (z* —xy)k

Comparing components, we get

99 _
ox

3

:yZ_zx:>¢=y?—xyz+ f,(z,X)

3

Z
Zzzz—xy:¢=?—xy2+f3(x,y)

o¢
oy
o¢
o




3 3 3
From (1), (2),(3), ¢ = % — xyz

¢5=%(x3 +y® +2%) — xyz + cons tant

Which is the required scalar potential.

7: Find constants a,b and c if the vector f = (2x+ 3y +az)i + (bx + 2y +32) j + (2x+cy +32)k is

Irrotational.

Sol:- Given f =(2x+3y+az)i +(bx+2y+32) j+(2x+cy +32)k

j
Curl f= g 3 -
OX oy 0z

2X+3y+az bx+2y+3z 2x+cy+3z

=(c-3)i—(2-a) j+(b-3)k

If the vector is Irrotational then curl f = 0
s2-a=0=a=2b-3=0=b=3,c-3=0=c=3

8: If f(r) is differentiable, show that curl { T f(r)} = 0 where T = Xi + y] + 7k .

Solir=F=qx*+y? +2?

.2 2 2,2
S =Xy

or or x . . or
=2r — =2X=— = —, similarly —
OX oxX r

curl{F f(r)}= curl{f(r)( xi +yj+zk )}=curl (x.f (i +y.f(r)j+zf(r)k)

- 0 0
= ZI{E[Zf ) b (r)]}

= _e1on Y 170y £
Z{Zf (")?— yf (")F}

= 0.




9:If A is irrotational vector, evaluate div( A XT ) where F = Xi + yj + zk .
Sol:We have T = xi + yj + zk
Given A is an irrotational vector
VxA =0
div( AxF)=V.(AxXT)

=F.(VxA)-A .(VxT)

=7.(0)-A.(VxF) [using (1)]

A (2)

Hence div ( A xT )=0. [using (2) and (3)]

10: Find constants a,b,c so that the vector A = (X + 2y +az)i + (bx—3y —2z) j + (4x+cy + 22)K is
Irrotational. Also find ¢ such that A = V¢.

Sol: Given vectoris A =(x+ 2y +az)i + (bx—3y —2z) j+ (4x+cy +22)k

Vector A is Irrotational = curl A = 0

i j K

0 0 0

=|— — _
OX oy oz
X+2y+az bx-3y—-z 4x+cy+2z

=C+Di+@—4) j+bO-2)k=0

=>Cc+Di+(@-4)j+bm-2)k =0i +0j+0k

Comparing both sides,

c+1=0, a-4=0, b-2=0

c=-1, a=4,b=2

Now A =(X+2y+42)i +(2x—3y—2) j+ (4x—y+22)k , on substituting the values of a,b,c

we have A = V.

9, ]%HZ ¢

= A=(X+2y+42)i +(2x-3y—2) j+ (4x—y+22)k= |
OX 0z




Comparing both sides, we have

= x+2y+4z == X*/2+2xy+42x+f1(y,2)

OX

0¢

5 = 2x-3y-z =>¢= 2xy-3y*/2-yz+f5(2,x)

‘Z_‘b = Ax-y+22 == Axz-yz+z2+f5(x,y)
z

Hence ¢= x°/2 -3y*/2+2°+2xy+4zx-yz+C

11: If ® is a constant vector, evaluate curl V where V = oxT .

_ - 0 - | 0w _ or
Sol: curl = — =) I x| —xF+ -
ol: curl (oxT) leax(wxr) Z X|:8X X wxax}

=Zi_><[6+a)><i_] [..ax(bxT)=(ac)b—(ab)c]
=Y ix(wxi) =) [((No-({.0)i]=) o-> (i.v)i=30-0=20

Assignments
LIf f =™ +j+k) find curl f.

2. Provethat f = (y+2)i +(z+X) j + (x+ y)k is irrotational.

3. Prove that V.(ax f )=—a .curl f where @ is a constant vector.

4. Prove that curl (@ x I')=2@ where & is a constant vector.

5.0fF f = x?yi —2zx j+2yzk find (i) curl f (ii) curl curl f .

OPERATORS

Vector differential operator V

The operator V = i_i-i- J_g + Rg is defined such that V¢= i_%-i- ]% + IZ% where ¢ is a scalar
OX oz OX oy 0z
point function.
: . : .09
Note: If ¢ is a scalar point function then V¢= grad ¢= Z i 2
X

(2) Scalar differential operator a .V

The operator @ .V = (E.i_)% +(a. j)% + (ER)% is defined such that
OX oy 0z

2 V0@ + @) 4 @k) Y
(a.v)e=(au) p +(a.)) Y +(ak) p

And (3 .V) f = (a.i’)% +(a. J’)%Jr (E.E)%

(3). Vector differential operator a xV




The operator @ xV= (ax i_)i-l- (ax j)2 +(ax IZ)Q is defined such that
OX oy oz
(i). (& xV)o=(ax I_)%f +(ax ])%+ (ax E)%

(ii). (A xV). f =(@x i_).%Jr(Ex ]).%+(ﬁxl2).%

(iii). (A xV)x f = (ax i_)xﬂ+(§x ])><i+(§><|2)><i
oy oz

(4). Scalar differential operator V.

0 0 0
The operator V= i.—+ j.— + k.— is defined such that V

OX oy oz

Note: V. f is defined as div f It is a scalar point function.

(5). Vector differential operator V x

The operator V x = i_><£+ ]xg+ Exg is defined such that
x oy a

of of - o

— —+kx—

oy oz

Note : Vx f is defined as curl f . It is a vector point function.

Vxf=ix—+]x

(6). Laplacian Operator V?

i 0 _¢ _¢ _% _ 62¢: 82 82 82 _ )
v.ves 20 ax[' x Iyt azj 25 (6x2+6y2+622J¢ Vi

0? 0? 0°
Thus the operator V= >+ — +— is called Laplacian operator.
ox® oy® oz
Note : (i). V2p= V.(V¢) = div(grad ¢)
(ii). If V’$=0 then ¢ is said to satisfy Laplacian equation. This ¢ is called a harmonic function.

SOLVED PROBLEMS

1: Prove that div.(grad r")= m(m+1)r™? (or) V(r") = m(m+1)r™? (or) V*(r") = n(n+1)r"?
Sol: Let T = Xi + yj+zK and r= |F| then r* = X’+y*+2’.

r r x
Differentiating w.r.t. 'x’ partially, wet get ZrZ— =2x :>a— =—.

oX r

Y,

Similarly 8_=
oy r

- 0
N dir™ = > i—(r"
ow grad(r™) Z 8X(




-mZ[(m 2)r"*x? + ] [(m 2rmEy xE 4> rm™ 2]

= m[(m-2)r™*(r})+3r™?
= m[(m-2) r™%+3r™ 2= m[(m-2+3)r"?]= m(m+1)r™2.
Hence V(r™) = m(m+1)r™?

d*f 2 df
+

2: Show that V*[f(r)]= T ar =f(r )+ f*(r) wherer=|f|.

Sol: grad [f(r)] = Vf{r)= > i %[f MN1=Dif 1(r)% =>if 1(r)§

- div [grad f(r)] = V2[f(r)] = V.VAf(r)= Z%[ f 1(r)ﬂ

ra‘i[fl(r)x]— fl(r)xsxm

r.2

(f“(r) X+ f (r)j—f (r)x( j

r2

rf ”(r))r(x+ rF(r)— fl(r)x()r(j
=2 2

er“(r) X+ rfi(r)—x2 fl(r)

r

fn(r) ——Z ORI ONIS
_ f“(r)(rz)+§ ()L (e

r? r ri

- 1)+ 2 £(r)

3: If ¢ satisfies Laplacian equation, show that V¢ is both solenoidal and irrotational.

Sol: Given V*¢ = 0 =div(grad ¢)= 0 = grad ¢ is solenoidal

We know that curl (grad ¢) = 6:>grad ¢ is always irrotational.

2.Show that (i) (2.V)¢=2 .V (ii) (2 .V)F =7
Sol: (i). Let @ = a,i +a, ] +a,Kk . Then
0

_ - - - .0 -0 =0 0
a.v=(al +a k)(i—+]—+k—)=a, —+a +a
(@lrarak) (o i g Py Ty T8y




5: Prove that (i) ( f xV).F=0  (ii). (f xV)xF= —2f

Sol: (i) ( f_xV).F=Z(f_xlr).%= > (fxi)i=0

(n)(f'xV):(f'xi')%x(f'xj)%x(fxg)%

f F=(f xi x@ _x?x@ _x_xiz f xi)xi = fi)i—f
(FxV)r =(Fxi)x = +(xJ) 8y+(f )<= S (Fxi)xi =3 [(Fiyi-f]

= (fDI+(f.)j+(fFKk—-3f = f —3f =—2f
6: Find div F , where F = grad (x*+y*+z°-3xyz)
Sol: Let ¢= x>+y>*+2°-3xyz. Then

F =grad ¢

= ZI? =3(x? —yz2)i +3(y® —2x) j +3(x* —=xy)k =F,i + F, j + F.k (say)
X
... — OF oF, oF,
Sodiv F = + + = 6X+6y+62= 6(x+y+2)
ox oy oz

i.e div[grad(x*+y*+z>-3xyz)]= V2 (x’+y*+2°-3xyz)= 6(x+y+2).
7:If f= C+y*+z2°)" then find div grad f and determine n if div grad f= 0.
Sol: Let f= (X+y*+Z>)"and T = Xi + yj + zk

r=|F|=r’=x+y*+z’

=f(r) = ()" =r?

Sf(r)=-2n

FHr) = (-2n)(-2n-1)r>"*= 2n(2n+1)r>"?

We have div grad f = Vf(r)= f(r)+*/f(r)= (2n)(2n+1)r*"* -4n "
= r2?[2n(2n+1-2)]= (2n)(2n-1)r>">

If div grad f{(r) is zero, we getn=0o0r n=%.




Diff. (1) partially,

or o x . . or
2r — =2X=>—=—, similarly — =
OX oX r oy

AxT) .-Xg (AxT)
VX[ r" j_zl 6x( r" ]

r'i—rnr™ | or
X 2n P
OX

=B X(Ax)

n I,.n+2
i-xg((ﬂxr’)j:i_x(ﬂxi_)_ nx P (AxF)

ox\ " r" rm2’

_({DA-(.A)i

r':fz [(i.F)A—(i.A)F]

Let AT+ A, J+AK. Then i.A=A

T (A Ay A)

—rn”+2 [r?A]+

Hence the result.

VECTOR IDENTITIES

Theorem 1: If @ is a differentiable function and ¢ is a differentiable scalar function, then prove that div(¢p @

)=(grad ¢).a +¢ div a orV.(pa )= (Vd).a+p(V.a)




_Z( axjm(z' j¢ (V). 2 +(V.a)

Theorem 2:Prove that curl (p @ )= (grad ¢p)xa +¢ curl @

Proof : curl (p@ )=Vx(p @ )=Zi Xag(@)
X

af‘+¢ j Z(ig—fjx§+2[ixg—ij¢

=Véoxa +(Vxa )o=(grad ¢p)xa +¢ curl &

Theorem 3: Prove that grad (a . b )= (b.V)a+(a.V)b +b xcurla+axcurlb

Proof: Consider

axcurl (b) =ax(V xb) =ax (.%bj

saxcurlb :ZF(E'Z_?J —(@avb ...(1)

Similarly, b xcurlb ZI[ 6) (A2 - S

(1)+(2) gives

axcurlb +b xcurla Z{a—j (aV)b+Z( j (b.V)a




Theorem 4: Prove that div(axb) = b.curla —a.curlb

Proof: div (axb) =Y . —(axb) ZI(—X5+axg—2

= (Vxa)b—(Vxb)a=b.curla—a.curlb

Theorem 5 :Prove that curl (axb)=adivb —bdiva +(b.V)a—(a.v)b

Proof : curl (axb) = le—(axb) le{—_xb+ax@}
OoX

Zi_x[g—ixﬁj+2i_x[§x%]

OX

=(b.V)a-(va) +(Vb)a-(av)b
=(Vb)a—-(va) +(b.v)a-(av)b
=adivb —bdiva+(b.v)a—(a.v)b
Theorem 6: Prove that curl grad ¢ = 0.

Proof: Let ¢ be any scalar point function. Then

-0p -0p -0¢
grad g=1—+ ] —+k —
J ¢ |8x+J8yJr oz

i
curl(grad¢) = %
o¢

OX

¢ 2 82 R 82¢ ~ 82¢ _
8yaz 8zay axaz 026X OXo0y  OyoX

Note : Since Curl(grad¢) = 0, we have grad ¢ is always irrotational.

7. Prove that diveurl f =0

Proof : Let f =fi+f,]+ fk




N|Q) =

sourl f=Vxf=

j
Kl
oy
f

2
A AT afs_@j,u o, )
oy oz oX oz oX oy

div curl f =V.(Vx f_):i Ay M) 0 (%_ﬂ}rg o, o
ox\ oy oz oy\ox oz) oz\ ox oy

o*f, o%*f, o*f, o*f, o°f, 0o°f,
OX0y OX0Z ©Oyox oyoz 010X 0ozoy

Note : Since diV(Curl?) =0, we havecurl  is always solenoidal.

Theorem 8: If f and g are two scalar point functions, prove that div(fVg)= fV’g+Vf. Vg

Sol: Let fand g be two scalar point functions. Then

Vg=i— % jag—l—k g
OX oy oz

<0 00 — Og
N =if =+ jf =+kf =
ow fve =if = S

_0(¢99),0(;99), 9%
Vvl ( axj+ay[fayj+az( azj

f[azg 0%g  0%g (afé‘_g of og of agj
&)

+ +| —.
] OX OX 6‘y8y oz oz

ox* oy’
sl i_a—g+]a—g+lza—g .
oz OX oy 0z

ox?
g7, i
_ng+(laX+jay

= _fVZg+Vf. Vg

Theorem 9: Prove that Vx(Vxa )= V(V.a)-V*a
Proof: Vx(Vxa@) = > T x § (Vxa)
X

0 da ~ oa - oa
Now i x—(an)—Ix— Ix—+jx—+kx—
OX OX X oy 0z

0‘a
X +

Page



.a{._
+ ] .— |+
oyl oy

oa
N1 x—(an) VT P

S Vx(Vxa)=V(v.a)-Via

i.e., curlcurla= grad diva—V2a

SOLVED PROBLEMS

1: Prove that (Vf xVg)is solenoidal.

Sol: We know that div(a xb )= b.cur
Take a=Vfand b= Vg
Then div (Vf x Vg) = Vg. curl (Vf) - Vf. curl (Vg)=0 [ curl (Vf) =0= Curl(vQ)]

. VI xV(Qis solenoidal.

2.Prove that (i) div{(?xé)ﬁ} =—2(b.a) (ii) curl {(Fé) xb} =bxawhere a and b are constant vectors.
Sol: (i)

div{(Fxa)xb} =div[(rb)a—(a.b)r]
=div(rb)a—(a.b)

_ [(F.B)diva +a.grad (F.E)} —[(a.ﬁ)divf +F.grad (5.5)]
Wehavediv @ = 0,divF = 3,grad (ab) =0




=curl (F.B)a—curl (5.5)?

= (F.k_))curla_l +grad (F.E)x a
0+V(rb)xa(-curla=0)

=bxa since grad(rb)=b

-2,

v
3: Prove that V{V.—} =—
r r

r . o0(T
Sol: We h Vi—|=>1L—| —
ol: We have ( j 3 ax[rj

flor
=20 = —+T
> {r@x

gy lp 31
r r r

2502

4: Find (AxV)¢, if A= yzzi— 3xz’ ] +2xyz K and ¢ = xyz.
Sol : We have

a

- {% (-3xz?) —% (2xyz)} —][%(yzz) —% (2xyz)}+R{% (yz?) —% (—3X22)}
=i (-6xz—2xz)—] (2yz-2y2)+ K (22+32%)= -8xz i -0 ] +42°k

" (AXV)d, = (-8xz i +427 K )xyz = -8y 1 +axy2 k

Vector Integration

Line integral:- (i)J.F.d I is called Line integral of F along c

C

Note : Work done by F along a curve cis IF.d r
C

PROBLEMS




Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).

Solution: Given F = (x*27)i -6yz j +8xz2>K

Now 1= Xi+Yj+zk = dr = dxi+dyj+dzk
F.dr = (x*-27)dx — (6yz)dy +8xz°dz

(i) Along the straight line from O = (0,0,0) to A = (1,0,0)
Here y =0 =z and dy=dz=0. Also x changes from 0 to 1.

— X’ L 80
J F.dr=J (x2—27)dx:|:§—27X} :5_27:‘_

A 0 0 3

Along the straight line from A =(1,0,0) to B = (1,1,0)
Here x =1, z=0 = dx=0, dz=0. y changes from 0 to 1.
-1
.[ F.dr= '[(—6yz)dy:0
AB y=0
Along the straight line from B=(1,1,0) to C=(1,1,1)

x=1=y _ dx=dy=0 and z changes from 0 to 1.

j F.dr- j8x22dz: jSXZZdzz
=0

BC 7=0

i)+ (i) + (i) = [ F .o = &

2.1f F =(5xy-6x2)i +(2y-4x) |, evaluate [ F.dr Along the curve C in xy-plane y=x*from (1,1) to (2,8).

N

Solution : Given F —(5xy-6x?)1 +(2y-4x) |,

Along the curve y=x’, dy =3x* dx

|E =(5x*6x7) ; +(2x3-4x) ] , [Putting y=x’ in (1)]

dr= dxi+dyj=dxi +3x%dx ]
IE .dr = [(5x*6x%) I +(2x%-4x) ] ]. { dx i+ 3x2dx]}

= (5x* — 6x%) dx+(2x® — 4x)3x°dx
= (6x°+5x"-12x° -6x°)dx

-2
Hence J. F .dr:j(6x5+5x4—12x3—6x2)dx

3




= 16(4+2-3-1) — (1+1-3-2) = 3243 = 35

3. Find the work done by the force F = Zi+ X]+ yE, when it moves a particle along the arc of the curve I =
cost | +sint ]-t kfromt=0tot=27

Solution : Given force F = zi+x] +y k and the arcis [ = cost | +sint ]tE

i.e., x=cost,y=sint,z=-t
sodr=(-sint i +cost j-Kk)dt

" F.df=(-t | +cost ]+sint E). (-sin t | + cost ]- E)dt=(tsint+coszt—sint)dt

i Vi

Hence work done = I F.dr = J (tsint+cos’t—sint)dt
0 0

= [t- cost) j( sint)dt + jw

2r
dt—jsintdt
0

1(, sin2t\”
= — 21— (cost)?” +§(t+Tj +(cost )"
0

=—27z'—(1—1)+%(27z')+(1—1) =2r+mw=—

PROBLEMS

1. Evaluate jF.ndS where F =zi + xj— 3y’zk and S is the surface x* + y* = 16 included in the first octant
betweenz=0and z=>5.

Sol. The surface Sis x* +y* = 16 included in the first octant between z=0and z = 5.

Let d=x"+y*=16
Then Vo = I@+j—¢+ % = 2Xi +2Vj
oXx "oy oz

unit normal N = Vo = X1+Y] (-
Vel 4

Let R be the projection of S on yz-plane
—dydz
i

Then IF nds = _U F.n

F =z +xj— 3y’zk




_1
4

- X

and n.l=—
4

Inyz-plane, x=0,y=4

In first octant, y varies from 0 to 4 and z varies from 0 to 5.

= 4 5( XZ+Xy \dydz
fFads - | j( ; jx

4

[ jo (y +2)dz dy

y=0

2. If F = zi + xj — 3y’zk, evaluate jF.ndS where S is the surface of the cube bounded by x =0, x=a, y =0,
S
y=a,z=0,z=a.

Sol. Given that S is the surface of thex=0,x=a,y=0,y=a,z=0,z=a, and F=zi+ Xj— 3y22k we

need to evaluate Il_:.ﬁds.
S

(i) For OABC
Egnis z=0and dS = dxdy

jl_:.ﬁdS [ " (v2) dxdy = 0
Sl 0 0

y:

(ii) For PQRS



Egnis z=aand dS = dxdy

[°( _j:y(a)dy)dx=—

x=0
For OCQR

Egnisx=0, and ﬁ =—i, dS = dydz

ja ja4xzdydz =0

For ABPS

Egnisx=a, and ﬁ =—i,d5=dydz

ja( ja4azdz)dy =2a*

y=0
For OASR
Egnisy=0, and ﬁ = —], dS = dxdz
a a 9
[ [ y'dzdx=0
y=0 z=0
For PBCQ

Egnisy=a, and ﬁ =—],d5=dxdz

a B
! ZL y*dzdx =0

From (i) — (vi) we get

4 4
J.l_:.ﬁdS=O+a? +0+ 2a4+0—a4=3%

VOLUME INTEGRALS

Let V be the volume bounded by a surface ; = 1: (u,v). Let F () be a vector point function define over V.

Divide V into m sub-regions of volumes &V,,dV,,....0V...0V,,




shrinks to a point,. The limit of |, if it exists, is called the volume integral of F (T )intheregionVis

denoted by jIE(I’_) dv orjlidv.
Vv

\Y

Cartesian form : Let F (r) =F, i+F, i+ F, K where F, F,, F; are functions of x,y,z. We know that

dv = dx dy dz. The volume integral given by

[Fav=[[[(Ri+Fi+FK)dcdydz=i[[[F dxdydz+ [ [ [F, dxaydz+k [ [ [ F, dxayet




M rv“y W FF1TR FIET 4 WM o TRE Ty

WIVFL Y L L ASRIYLE Bl

If F=2xzi-xj+yk evaluate’fdv where ¥ is the region bounded by the
v

surfaces x=0,x=2, y=0, y=6,z =x’ z=4.

Solution ; Given F = 2xzi - xj + y*k. .. The volume integral is
jf?du L]{Enf _xj+y R)dedyet
¥

2 4 1 6 4 * 2

=i j dxzdedyds -] j [ jnﬁr@dﬁﬁ j f Iy dedy ds
120 y=0 zof} x=0y=0z=+ x=0y=0z=x'

?Ij ﬁf[xz’]:?m@-jj ?{xz}:ldrdy-l-f yz{z}iza&dy

x=0 y=0 x=0 y=0

=fi ix{lﬁ-x‘}dr@-}'j }x{d—x’}dx@ X j

=0 y=l x=0 y=0 x=0y=

2 2 6
I{Iéx -X }(y gdx J{4x X }(y)ﬂtb: -k I(x —4)[%—]
={

1= =0, x=

3 pi
(Y SEN PN 4 [m‘l
{*‘ R Gy A
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Vector Integral Theorems

Introduction

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence theorem,

(i) Green’s theorem in plane and (iii) Stokes theorem. These theorems deal with conversion of

(i) I F .n ds into a volume integral where S is a closed surface.
S

(ii) J. F.d r into a double integral over a region in a plane when C is a closed curve in the
C

plane and.

(iii) J. (Vx A).Ndsinto a line integral around the boundary of an open two sided surface.
S




I. GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If Fisa continuously differentiable vector point
function, then

jdidev:jﬁ.ﬁ ds
V S

When N is the outward drawn normal vector at any point of S.
SOLVED PROBLEMS
1) Verify Gauss Divergence theorem for F = (x3 —yz)I— 2 %7 yi—+ zk taken over the surface of the

cube bounded by the planes x =y = z = a and coordinate planes.

Sol: By Gauss Divergence theorem we have
[ Fonds = [ divFav
S \
2 T 3 a
.
RHE—J . . : - dy dz [3 —x) dv dz
o \ Lo o

iﬂ—m}d - Z ja'dzz(%3+a

0

Verification: We will calculate the value of jE.ﬁdS over the six faces of the cube.
S

(1) For S; = PQAS; unit outward drawn normal 1 = 1

x=a; ds=dy dz; 0<y<a, 0<z<a

~Fn=x—yz=a’—yzsincex=a

”F nds = I j (a®- yz)dydz

z=0 y=0

For S, = OCRB; unit outward drawn normal # = —i

x=0; ds=dy dz; 0<y<a, y<z<a




For S; = RBQP; Z=a; ds = dxdy; 1 = k
0<x<a, 0<y<a

Fn=z=ua sincez=n

For S, = OASC; z = 0; il = —k, ds = dxdy;

y=0 x=0

0<x<a, 0<y<a

Fii=—z=0 sincez=10

’ J F.idS=0..(5)

.
For Ss = PSCR; y =a; 1 = J, ds = dzdx;
0<x<a, 0<z<a
F.ii=—-2x%y=—-2ax? sincev=a

] ]

J J F.idS = J J:ﬁj—zaxf}a‘zdx
Sg

x=0z=0

'[ (—2ax’z)2_,dx

x=0

s ['1'*")': —2a® 6
= —2a°|— = wen
3 . 3 L9

For S¢ = OBQA,; y =0; i1 = —J, ds = dzdx;
0<x<a, 0<y<a
F.ii=2x%y =0sincey =0

SJEJ F.7dS = GJ J F.ﬁd5=i J+5J J+5J J+5J4 J+5J J+5JE J




Hence Gauss Divergence theorem is verified
2.Compute [(ax® + by* + cz)dS over the surface of the sphere x’*+y’+z* = 1
Sol: By divergence theorem IE.ﬁdS =( V.F dv
S

Given F.i=ax®+byvi +eziletgp=x+vy  +z7 -1

- Normal vector 7 to the surface ¢ is

v =[i§+]§+ﬁ%j(x2+yz+zz—1)=2(xi+y]+zR)

. Unit vector =11 2(xi+y]+ zE)
. NIt normal vector =11 =
2,\/x2 +y 478

S FNn=F.(Xi+Y]j+zk) = (ax? +by? +cz?) = (axi + by j + czk).(Xi + Y j + k)

=Xi+Y]j+2zK Since x* +y?+2%=1

ie, F=axi+byj+czk V.F =a+b+c

Hence by Gauss Divergence theorem,

- ) ) . i
J (ax=+by" +cz")dS = J (a+b+cldv = (a—b—c)b’=?(ﬂ—b—c]
5

4m
[Efﬂce V= 5 is the volume of the sphere of unit radius

By transforming into triple integral, evaluate [ [ x® dy dz + x*y dz dx + x*dx dy where Sis the
closed surface consisting of the cylinder x*+y” = a® and the circular discs z=0, z= b.

Sol:Here F}, = x*,F, =x"v,F;, =x"zand F=FRT1+FJ+FRk

oF, 32 oF, _ @: :

OX oy oz

X

By Gauss Divergence theorem,




o ai Us] dxdydz
oy oz

I I (x*dydz +x*ydzdx + x*zdxdy = jjjSXdedydz

[ | Fidydz +F,dzdx + F,dxdy = .”.[[

2_,2

:5.? ) .[ _T x*dxdydz

b
I x?dxdydz [Integrand is even function]
z=0

—p—

LR ¢

=20 J J x?(z)5dxdy = 20b J J xidxdy
X o =0 o

fird
2 (y :I,: x = EIDbJ vy a? — x? dx

|:.
a’ sin* 8 y/a? — a?sin?8 (acosHd0)

[Put x=asin@==>dx=acos&dd when x:azezgand x=0=6=0]

20a*h fgsiﬂ: 6 cos?8dd =5a*b [2(2sinf cosd)* df =5a’h fgi_ETS;’E dé

1+ 1, 2

Sa*h [E sin481™%  5a*b [;r] 5
2

2
3: Applying Gauss divergence theorem, Prove that f-F .ndS§ = 3V or f—F .ds = 3V
Sol: Let ¥ = xT + ¥j + zk we know that div 7 = 3

By Gauss divergence theorem, IE.ﬁdS = I divFdv

. hds = J 3 dl = 3V, Hence the result

- - N — 4n
4: Show that fs [.ﬂﬂ + by + fzk)- nds = 3 (@+ b + ¢}, where Sis the surface of the sphere
X4y +2°=1.
Sol: Take F = axT+ bvj+ czk
_ oF, oF, oF
divF=—2+—2+—2=a+b+c

6x8y oz




By Gauss divergence theorem, fs F.ads = f P.FdV=(a+b+c) f V=(a+b+c)V
4
We have IV = Em’“" forthe sphere.Herer =1
—— 4
.'.'[F.nds =(a+b+c)?
S

5: Using Divergence theorem, evaluate
I _J; (xdydz+yvdzdx +zdxdy).where sxC+y*+z’=a’

Sol: We have by Gauss divergence theorem, IE.ﬁdS = IdiVEdV

L.H.S can be written as [(F, dvdz + F,dzdx + Fydxdv) in Cartesian form
Comparing with the given expression, we have Fi=x, F,=y, F3=z
of OF,  OF
ox oy oz
. [divFdv = [adv =3v

\ Vv

Then divF = =3

Here V is the volume of the sphere with radius a.

SV = i7z'a3
3

Hence | [(x dv dz + v dz dx + z dx dy) = 4ma’®

1: Apply divergence theorem to evaluate .” (X+z)dydz + (y + z)dzdx + (x + y)dxdy S is the surface of
S

the sphere x*+y*+z’=4

Sol: Given ”(x+ z)dydz + (y + z)dzdx + (X + y)dxdy

Here F, = x+z, F, = y+z, F3= x+y
oF, oF, ok, oF, 8F oF,

—1=1-—-2=1-—"3=0and — +—2=1+1+0=2
OX oy oz 8x 8y oz

By Gauss Divergence theorem,

o, E s dxdydz
ox oy oz

”dedz+Fdzdx+Fdxdy j”(

J J J 2dxdydz = EJ v =2V

? [for the sphere, radius = 2]




2: Evaluate [ F.7ds, if F = xy1+ z°J + 2yzk over the tetrahedron bounded by x=0, y=0, z=0 and
the plane x+y+z=1.
Sol: Given F = x¥I + z7J + 2vzk, then div. F = y+2y = 3y

1 1-x1-x-y

IF nds = Idldev_I j J. 3ydxdydz

x=0y=0 z=0

1 1-x 1 1—-x

3 J J _‘r'[:]é_;_}-dl’d}'=3 J J v(l—x— v)dcdy

(l _ ::_':I: ~ x(l _ :L':I: ~ (l _ ::_':IE ;
2 2 3

(1—x)° (l—x) 3] (1—1) [—(l—xll*l _1
2 6 4 o 8

3: Use divergence theorem to evaluate IIEdg where E =x’i+y’j+z°k and S is the surface of the sphere

S
X2+y2+22 — rZ

Sol: We have
\7E:—(x)+ (y)+ (z) 3(xX*+y*+172%)

~By divergence theorem,

= [f, [P.Fav =.|._”3(x2 +y? +2%)dxdydz

T

J J J r*(r’ sin B dr df d ¢)
r=0 6=0 $=0

[Changing into spherical polar coordinates x = rsinfcosg,y =rsinfsing,z = rcosf]

lird T 113

JJF.&.’S=3 J Ji";'sinﬂ J de | dr d8
5 r=086=0 $=0

a

=3_[ jr sind(2z —0)drdd = 67zj ﬁsin@d@}dr

r=06=0 r=0
= .

=67 J r*(—cos@)F dr = —EHJ r*(cosw —cos Q) dr
0

r=0
z

T e
12w J ridr = 121'?[?
B 0

_ 121wa®
5

4: Use divergence theorem to evaluate | . F.ds where F = 4xi — 2y%j + z2k and S is the surface

bounded by the region x*+y?=4, z=0 and z=3.




Sol: We have

divF =V.F =2 @+ L2y L@t =a-ay+2z
OX oy 0z

Bv divergence theorm,

[[ra=f]fore

5

J (4 — 4y + 2z)dx dv dz

[(4—4y)z+ z?]3 dx dy
[12(1—v) + 9] dx dvy

(21 —12y)dx dv

—p

&

J vdy | dx

—_—

==X

21dv —12

21x2 j dy —12(0) [dx
0

[Since the integrans in forst integral is even and in 2" integral it is on add function]

=42 J (1),_: dx

-

2 2
= 42I V4—xPdx = 42><2J.»\/4—x2dx
-2 0
x 4
2

=84 [— f4—x2+
2 W

T
=34 [-:::—2.——-:::] =
2




5: Verify divergence theorem for F = x“1 + y~ over the surface S of the solio

x+y+z=a in the first octant.

Sol: By Gauss theorem, IE.ﬁdS = IdiVEdV

Letgp = x+ v+ z—a bethe given plane then

106 _1 06,
82

S gradg=S1% 2144k
gradg }jé% j
gradg T+j+
|grad¢u| V3

Unit normal =

Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a = y=a-x

Also when y=0, x=a

F.ndxdy
IF nds = ” i

o o—x

= J J J:_'V__" = f I]Tx[x:—_v:—(a—x—_v]:]a'x dy [ since x + v +z = a]

x=0 =0 "'?—a’x dy

1/4/3
= cha f;_x[Exz +2y? —2ax + 2xv— 2av + a’]dx dy
(v

o—x

" . 2y* ﬂ ﬂ i
= J 2xTv + 3 +xy- —2axy—ayv-+ay dx

x=0

[2x(a—x) + EEH —x)P +xla—x)—2ax(a—x)—ala—x)* +a’(a—x)dx
- a 4
.'..[F.ndS =I(—§ X3+ 3ax? —2a2x+ga3jdx=a—, on simplification...(1)
! 5 3 3 4
Given E:x2i+y2]+ 2%k
~divF ——(x )+ (y? )+ (z )=2(X+Yy+2)

a a-xa—x-y

Now.m‘dldev 2'|.J‘ I (x+ y+ z)dxdydz

x=0y=0 z=0




(a® —x? — v —2xv)dx dy

Hence from (1) and (2), the Gauss Divergence theorem is verified.

6: Verify divergence theorem for 2x2yi -y ] +4x2% K taken over the region of first octant of the cylinder

y*+2°=9 and x=2.

(or) Evaluate ”E.ﬁds, where E =2x2yi—y2 ] +4x22K and S is the closed surface of the region in the first
S

octant bounded by the cylinder y*+z* = 9 and the planes x=0, x=2, y=0, z=0
Sol: Let F =2y -y j +4xz® k
0

= 0 5.2 2y, O 2
V. F==—0@2X)+—(y)+—(4xz°) =4xy -2y +8xz
o P+ (Y )+ — () =y =2y




R

[ f J (4xy — 2y + 8xz)dz dy dx

x=0y=0 =z=0

(4xy — 2v)z + 8x _? dy dx

- J (1— 2082207

J{ (1= 2x)[0 = 27] + 4x[27 — 9]} dx = J1[—18(l—2x]—?2x]dx

[ 18(x—x )+7272} =-18(2—-4)+36(4) =36+144 =180...(2)

0

Now we sall calculate J F.7i ds for all the five faces.

)

jE. dsj ndS+andS+ +jE.ﬁds

S S2 S5

Where S; is the face OAB, S, is the face CED, S; is the face OBDE, S, is the face OACE and Ss is the curved
surface ABDC.

(i) on S,:x=0,n=—i .. F.n=0 Hence jf.ﬁds

OnS,:x=2,n=i . Fn=8y

2

3 yz 9-2
8ydydz ZJS(—j dz
0 2 0




r ]
f —_

=4 J‘[g— z3)dz = [_9_— —'?) =4(27—-9) =72

&3 |:

(i) OnS,:y=0,n=—j. . F.n=0 Hence [F.nds

(iv)On S,:z = 0,71 = —k.

V(y*+2%)  2yj+2zk _yj+zk yj+zk
‘V(yzﬂz)‘ Jay? +42°  N4x9 3

(v) On 85:y2+22:9,ﬁ:

Where R is the projection of S, on xy — plane.

" 4xz? — 8 T . . N
————dx dy = J J [4x(9—y7) — ¥ (9 —v7) f] dy dx
VI x=0 y=0

2% ,.
J 72x dx — 18 J dx = ?2[?) —18(x 7= 144 —36 =108
bS |:.

|:.
Thus [ F.ids=0+72+0+0+108=180

Hence the Divergence theorem is verified from the equality of (1) and (2).

7: Use Divergence theorem to evaluate IJ(XE + y] + 22R>.ﬁdS.Where Sis the surface bounded by the cone

x*+y’=z in the plane z = 4.
Sol: Given | JF[:IT— vy + I:E}- fi.ds Where S is the surface bounded by the cone x*+y’=z’ in the plane z

=4.

Jp—

T

letF = x1+ vj +z°k

Bv Gauss Divergence theorem, we have

J1 J1[::¢I—_‘-'f—:::‘?}-ﬁ-d5 - J J J‘Fllﬁdﬁ

— 0 0 0
Now V.F = —(X)+—(y) +—(z2}) =1+1+2z=2(1+z
ow ax() 8y(y) az( ) (1+2)




On the cone, X“ +y“ =z"and z=4 = X“ + y° =16

The limits arez=0tod,v=0oto+16—x?,x =0teo 4

Fyle—x* =

v = J J JE[l—:)dl‘ dy dz

[ putx = 4sin @ = dx = 4cos 6d6. Also x=0=> =0 and x:4:>49:%]

/4

HIVde 96x4[ 41 sin29c039d9=96x4J%c0520d0
0

cos 8 dé

8: Use Gauss Divergence theorem to evaluate [ [ (yzT+ zx?J+ 22z°k).ds, whereSis the closed

surface bounded by the xy-plane and the upper half of the sphere x*+y*+z*=a*
above this plane.

Sol: Divergence theorem states that

J' J ms=f J J 7.F dv

5 v

Here V.F ——(yz )+8y(zx )+ (22 )=4z

j!f.ds = J’\'/”4zdxdydz

Introducing spherical polar coordinates X =rSin&cos¢, y =rsingsin ¢,




z=rcosé@ then dxdydz =r-drddd¢

”E.ds =4 i ]E T (r cos 8)(r?sin &drd 6d ¢)

r=0 6=0 $=0

J 72 ginf cos @ dep | dr df

r=08=0 H=0

: J J r3sinBcosf (27— 0)dr df

r=0d&d=0

[ird T i

S T cos 2647
= 45 J’r“" U gin 28 d@ | dr = 4w J’r‘"(— J dr
2 o
r=0 H r=0

= (—2m) Jrcc ri(1—1)dr=10

9: Verify Gauss divergence theorem for F = x1 + v*J + 23k taken over the cube bounded by
x=0,x=2a,y=0,y=2a,z=0,z=a.

Sol: We have F = x? viT+

(y)+ (z) 3x% +3y* +37°

J1 J J1(3x: +3y? +3z0dx dy

J1 J (x* +v* +z8dx dv dz

'_".'=|:' .'4'=|:'

[ird

KIE

— 4+ xy-+ :::a.') dv dz

|:.

)n’u dz




0 evaluate the surrace integral divide the closec

i.e., S;:The face DEFA ;S,: The face OBDC

S, : The face AGCO ;Ss:The face GCDE
S; : The face AGEF ; Sg: The face AFBO

OnS,wehaven=TLx=a

a

”Fnds_j j(a|+y j+z k)|dydz

z=0 y=0

i} @

Jands_ 'f j(y j+z k) (—I)dydz_

z=0y=0

S2

F ra Maaro 7 — T o5 —
OnS,wehaven=J],yv=

”Fnds_j J'(X|+a j+z k) jdxdz =a’® I J.dxdz_aj'adz_ ( )

S3 z=0 x=0 120 =0

:a5

OnS.,wehaven=—j,vy=20

|:.

a
0




OnS,we haven=—k,z=10
[l [ird

J. J F.nds = J J (;,_-EI—}-EI:II[:_E}E{I dy= 0

Se y=0x=0

Thusj JF_.ﬁn’5= a® L0 +a" L0+ a®+0=3a°

5

Hence J J F.nds = J J V.F dv

5 v

.. The Gauss divergence theorem is verified.

Il. GREEN’S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S].
If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous functions
of x and y having continuous derivatives in R, then

oN oM
@de+ Ndyz_g(a—a xdy.

Where C is traversed in the positive(anti clock-wise) direction

s

Xx=Db
—p X

SOLVED PROBLEMS

1.Verify Green’s theorem in plane for 95(3 x?— 8v?)dx + (4v — 6xv)dyv where Cis the region bounded
by y=yx andy=x" .
Solution: Let M=3:x>-8v* and N=4y-6xy. Then




We have by Green’s theorem,

fimac Ny - ﬂ(@_“'_aﬂ

ON oM

Now H(— ——dedy = _[J(16y 6y )dxdy

_10” ydxdy = 10[ j ydydx = 10J'

X=0 y=x2
=5 j:'[x —x¥)dx =5 (A?— =
Verification:
We can write the line integral along c
=[line integral along y=x~(from O to A) + [line integral along ¥~ =x(from A to O)]
=l;+1;(say)

Now fi:jj:.;.{[S:'-': —8(x?) ]dx + [4x7 — 6x(x?)]2xdx} [vy =x7 = T =2x

dx

=_jF:|:3x3 +8x%— 20xF)dx = —1

And [(3x —8x)dx+(4\/_ 6’ )Fdx}T 3X° —11x+2) dx =

P Pl ol PR

=3

From(1) and (2), we have deX+ Ndy = H(a—N —a—deXdy.

oy

hence the verification of the Green’s theorem.

2.Evaluate by Green’s theorem fc (v —sinx)dx + cosx dv where C is the triangle enclosed by the lines
y=0, x=2=, Ty = 2x.

Solution: Let M=y-sin x and N = cos x Then




aM anN -,
~—=land ——=-sinx

.".By Green'’s theorem deX+ Ndy = ”(

= I(y —sin x)dx + cos xdy = H (—1—sin x)dxdy
c R

=" =0 f (1+ sinx) dxdy

=- .J:T:f,_ ESiI‘L x4+ j_:| [1’] EA T dx

=_1_—:_J'-::; x(sinx + 1)dx

-2 T %
=7[x(—cosx+ X)| - ! 1(—cos X + x)dx

=__—'[x(— cosx + x) +sinx — AT]
L - [:

=:[—xc:c:rsx—i—=—sinx]. ) =i[i— l] =—(i—l]

™ 2 o m LB 2 s
3. Evaluate by Green’s theorem for 95': (x? — coshy)dx + (v + sin x)dy where Cis the rectangle with
vertices(0,0), (m, 0}, (. 1), (0,1).

Solution; Let M=x~ — coshv , N =y + sinx

M \ aN OI
- = —sinh v and o, - cosx

x

By Green’s theorem, dex+Ndy ”(@—% xdy.

— []j(x2 —cosh y)dx + (y +sin x)dy = ”(cos X +sinh y)dxdy
c R

= 95,; (x? —coshy)dx + (y +sinx)dy = [ [(cosx + sinh y)dxdy

=J’:=|:- J:zc_(ccrs x + sinh v)dydx = f:zc_(_vcos x + coshy)jdx

= I (cos x +cosh1—-1)dx

x=0

=(cosh1l — 1)

4.A Vector field is given by F = (sin y)i + X(1+ cos y)]




Evaluate the line integral over the circular path xi+v? = a?, z=0
(i) Directly (ii) By using Green’s theorem
Solution: (i) Using the line integral

9%; F.dr = _qsc Fidx + F,dy = gﬁc sin vdx + x(1 + cosy)dy

=msin ydx + x cos ydy + xdy = [ﬁd(xsin y) + xdy

Given Circle is x*+v? = a”. Take x=a cos @ and y=a sin & so that dx=-a sin & d8 and

dy=acosfdf andd =0 = 27
5}5?.{1’?= fc_zxd[a cos @ sin(a sinf)] —fc_:xa[ cosf)a cosf df

=[a cosf sin(a sin 8)]7* + 4a’ J’CF * cos? 0 db

=0+4a2.%.% = 7a’

(ii)Using Green’s theorem
Let M=sin v and N=x(1 + casv). Then

M cosy (1 )
.:";.-_CDS ¥ and P COS Y

By Green’s theorem,

(aN oM
— ——— (dxdy
OX

oy

[]jsin ydx + X(1+ cos y)dy = ” (—cos y+1+cos y)dxdy == ” dxdy
Cc R

= deAz A=ra®(. area of circle= ra®)

R

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is verified.

5.Show that area bounded by a simple closed curve Cis given by }95 xdv — vdx and hence find the area of
. X2 y2
(i)The ellipse x=ac0s 4, y =hsing (i.e)—2+F =1
a
(i )The Circle x=acos 8, v = asin8 (i.e)x” + v = a’

Solution: We have by Green’s theorem deX+ Ndy = Ij[a—N—aﬂJdXdy
A =7 ox oy

éM an
Here M=-y and N=x so that —— = -1 ﬂﬂﬂr? =1

X

[]jxdy —ydx = ZI dxdy = 2Awhere A is the area of the surface.
c R

%J’ xdy— yvdx = A
(i)For the ellipse x=acoes 8 and y=bsin & and & = 0 = 2m

- Area, -’4=%95 xdv — vdx = %J’E:F[I:a cos@)(bcosd) — [b sinf (—a sin Ej}]d &




=%alr:- _Jrc_:x[coszﬂ + sint@) dé =

(ii)Put a=b to get area of the circle A=ma’

6: Verify Green’s theorem for fc[[l'_u' + v¥)dx + x*dy], where Cis bounded by y=x and

Solution: By Green’s theorem, we have deXJr Ndy = II(%—@ xdy
C R

oy

Here M=xy +v~ and N=x >

The line y=x and the parabola y=x" intersect at 0(0,0) and A(1,1)

Now dex+ Ndy=fde+ Ndy+Ide+ Ndy......(1)
c o

C2

Along Cy (i.e.v = x7), the line integral is

1
j Mdx + Ndy = j [X(x) + x*Jdx + X%d (x?) j (3 +x* +2x%)dx = j (3x% + x*)dx
G G c 0

=, 1
£ -'-t'] _3 1 _

g 5 20

Along C, (i.e.v = x) from (1,1) to (0,0), the line integral is
j Mdx + Ndy = I (XX +X2)dx + x%dx [+ dv = dx]

L5y 0 .
=f 3xdx =3 _Jf xidx =3 ( %] = [:L'“")E' =0-1=-1  ...(3)
Cg L3S

From (1), (2) and (3), we have

15
20

Jrc Mdx + Ndy =

oN oM xdy =“’(gx_x—Zy)dXdy
R

[ = 2 = (¥ =) = [ (= 2% dx




_ -1
20

From(4)and(5),We have deX+Ndy ‘”[a_N_%VI

Hence the verification of the Green’s theorem.
13. Using Green’s theorem evaluate fE[E v — x°)dx + (x° + v )dy, Where “C” is the closed curve

of the region bounded by y=x~ and ¥* = x

Solution:

The two parabolas v = x and v = x~ are intersecting at 0{0,0), and P(1,1)

Here M=2xy-x~ and N=x +°

M_ W _ .,
.:"_ E:L.r[r.:.ﬂ.’Ia 2x

&

an aM
———=2x-2x=0
Hence e By

By Green’s theorem I Mdx + Ndy = J.J.[a—N - Mj dxdy

oy

R

ie. J(ny x2)dx + (x* + y*)dy = j f(O)dXdy 0

Xny

8.Verify Green’s theorem for fc[(S x> — 8v3)dx + (4v — 6xv)dv] where ¢ is the region bounded by
x=0, y=0 and x+y=1.
Solution : By Green’s theorem, we have

N oM
oy

Here M=3x~ — 8_1.': and N=4y-6xy

xdy




.M

oy

Now Ide+Ndy: j de+Ndy+Ide+Ndy+Ide+Ndy...(1)
c OA AB BC

8
=-16 =—6
ya o y

Along OA,y=0 .~ dy =10
Mdx + Ny = [} 3x2dx =(2) =
fGA; x4+ _1.—_ch_ X l—\?zﬁ—l

Along AB, x+y=1 . dy = —dx and x=1-y and y varies from 0 to 1.
1

| Mdx+Ndy = [[3(y ~1)> ~8y*](~dy) +[4y + 6y(y ~1)]dy

AB 0

:J:' (=5v? —6v + 3)(—dv) + (6v? — 2v)dy
:jc_i[ll_u': +4y—3dy = (11 T +4 T — 3_1.']1
S z /s

:%-2—3:

o

Along BO, x=0 .. dx = 0 and limits of y are from 1to 0
0. O

Mdx + Ndy = [ 4ydy = (4%
IEG * } -in yey [ "Ji

from (1), we have f Mdx+Ndy=1+=-—-2=

3

Now H(@—N —aﬂ]dxdy = j T (—6y +16Yy)dxdy

x=0y=0
24 1—x

=10 -Jj:c- [fiz_;udu] dx =10 f; (T] dx

5 [0 =5[22

=S[(1-1)° - (1 - 0]

From (2) and (3), we have J.de+ Ndy = _”(

Hence the verification of the Green’s Theorem.




9.Apply Green’s theorem to evaluate ¢ 2xT —vTlax : V. where cis

the boundary of the area enclosed by the x-axis and upper half of the circle x= + v* = a”

Solution : Let M=2x> — v~ and N=x~ + v~ Then

aM an
— = —2yand — = 2x
8y ; dx

&

¢
N

O

Figure

ox oy

By Green'sTheorem, Ide+ Ndy = ”[@—@jdxdy
c R

fIl@x® = y*)dx+ (¢ + y*)dy] = [ [ (2x+2y)dxdy

=2 [ [ (x+y)dy

=2_Jf; Jrc‘_ r(cos8 + sin&).rd Bdr

[Changing to polar coordinates (r,&], r varies from 0 to a and & varies from 0 to 7]

= [JI@X* - y*)dx+ (" + y*)dy] = 2[ r*dr [ (cos 6 +sin 6)d o)
c 0 0

& ;.I::

2.7 (1+1) =3
10.Find the area of the Folium of Descartes x* + v® = 3axv(a = 0)using Green's

Theorem.

Solution: from Green’s theorem, we have

o oofB@ BB L
I Pdx+Qdy = || (E_ E,Jm‘a-l

By Green’s theorem, Area = %[ﬁ(xdy — ydx)

Considering the loop of folium Descartes(a>0)




2
Let x= sat y=3at Then

1+t377 1+t

3a
The point of intersection of the loop is (? — =

Along OA, t varies from 0 to1.
—tﬁ(m’u—m’l = f (

3at 3at(2 t*) | 3at®| 3a(l-2t%)
1+t3 ) 1+t (1+t3)2

En: 1288 ¢

- 0

S 9a% [ P+t _9a2J1-t2(1+t3)
2 3 @1+t%)° 2 3 @+t%)®

o 1 :_: i )
jc- f1=r%72 dt [Put 1+t° = x = 3t~ dt = dx

L.L :x=1, U.L.:x=2]

9a22t2 dx 9a 1 3a? _
IT dx = ——s(q. units(a>0).
2 1% 32 6 1 X 4

11: Verify Green’s theorem in the plane forf xt —xv¥)de + (v? = 2xy)dy
Where C is square with vertices (0,0), (2,0), (2,2), (0,2).
Solution: The Cartesian form of Green’s theorem in the plane is

oN oM xdly

oy

Here M=x* — xv® and N=v* — 2xv




Evaluation of ff(de + Ndy)

To Evaluate fc[.‘c: — xv¥)dx + (v* — 2xv)dy, we shall take C in four different segments viz (i) along
OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).
(i)Along OA(y=0)

fl_,(x: —xvdx + (v? = 2xy)dy = _Jf xidx = 'f ]

(ii)Along AB(x=2)
fc(.'a.': —xv¥de + (v? — 2xv)dv = Jrl_: (vi—4av)dy [vx=2,dx=0]

:(—— 2y?) =(2-8)=

o fc.

(iii)Along BC(y=2)
J(x? —xy®)de + (v? — 2xy)dy = vlr:':'[:.'a.': —8x)dx [v¥y=

(iv)Along CO(x=0)
Je? —xv®)de + (¥7 — 2xy)dy = J’:':' vidx [vx=0,dx=0]=
Adding(1),(2),(3) and (4), we get

8 16 40 8 24

I(xz _xy3)dx+(y —2xy)dy—§_€+?_§:?

c

Evaluation of _”[@ —%]d dy

Here x ranges from 0 to 2 and y ranges from 0 to 2.

22
jdxdy = ” (—2y +3xy?)dxdy
0

=_J'C_: [:—2.1'_1.' + % Ve ] ) dy

2
=£(—4y+6y2)dy =(-2y* +2y*),

=-8+16=8

From (5) and (6), we have

xdy

Hence the Green’s theorem is verified.




Ill. STOKE’S THEOREM

(Transformation between Line Integral and Surface Integral) [JNTU 2000]
Let S be a open surface bounded by a closed, non intersecting curve C. If F is any differentieable
vector point function then 95{ F.d ’F:fs curl F.nds where c is traversed in the positive direction

and 1 is unit outward drawn normal at any point of the surface.

Prove by Stokes theorem, Curl grad ¢=0

Solution: Let S be the surface enclosed by a simple closed curve C.

~ Bv Stokes theorem

fs[m:’rf grandg).n ds = L["Fx"?:p].ﬁ dS = Eﬁ: Vo.dr = 95:: V. dr

(108,726 299 sy o
_Uj[ ~ Y +k az].(ldx+ de+kdz)

c

= % % % = = w i i
_Uj[@deJrayder@Zdzj J.d¢ [¢]p here P is any point on C.

o feurl grade.fi ds =0 = curl gradgp =0

C

prove that I(/ﬁcurl f.dS = j¢?.d?—jcurl gradgx fdS

Solution: Applying Stokes theorem to the function ¢ f
Igﬁ.d? - _[curl (¢T).ﬁds = j(grad¢x f+ ¢cur|?)ds

3: Prove that 95': fvf.dr = 0.
Solution: By Stokes Theorem,

f(fVf).dr=[curlfvf.nds= [ feurlVf +Vf xVf]n ds

C

= [Onds =0 curlVf =0and Vf xVf =0]

Prove thatm fvg.dr= I(Vf xVg ).ﬁds

Solution: By Stokes Theorem,

[ﬁ(ng.dF) :j[Vx( ng)]ﬁds :I[Vf x Vg + feurlg radg].ﬁds

- I[Vf xVg].nds [ curl(gradg) = 6]

1.Verify Stokes theorem for F = —v37 + x 37, Where S is the circular disc




Solution: Given that F = —v*T + x*J. The boundary of C of Sis a circle in xy plane.
x?+ y? = 1,z = 0. We use the parametric co-ordinates x=cosf, v = sinf,z = 0,0 = § < 2m;
dx=-sinf d& and dy =cost df
955 F.dr = J; Fidx + Fdy +Fdz = | —y dx +x dy
=_jfc_:"r [—sin®8(—sinf) + cos®Bcosfdf = fc_:x(cas;'ﬂ + sin*8)df

=f;7 (1 — 25in8 cos?6)d6=(]" do — 1 [ (2sinf cosB)?de

— 2 1 02w , 2 _ _ _l 27 _
—fc_ did —;_J::_ sin”2d8 = (2w — Q) ;_fc_ (1 — cos48)dE

— A _1 _l i _ 2w _ &m
=27 ;_5' " sindd ; =2g —Z =2

jf(v X F).fids =3 L[x: + vk fids

We have (Eﬁ)ds = dxdy and R is the region on xy-plane
2 JJ(Vx F)ads =3 [[(x* +v7) dx dy

Put x=r cosd, v = = sind.. dxdy = rdr dO

ris varying from0Oto 1 and 0= @ = 2.

S (VX F). fids = 3 jé:c_ j:zc_?:.rdr dp = 2=

L.H.S=R.H.S.Hence the theorem is verified.

2.1f F = yi+(X—2xz) j — Xyk, evaluate I(V x F) .nds . Where S is the surface of sphere
S

x?+ v?+ z? =a?, above the xv — plane.
Solution: GivenF = vi + (x — 2xz)j — xvk.
By Stokes Theorem,

J(vx F].ﬁds=IE.dF =J; Fidx + Fdy + Fdz = | ydx + (x — 2xz)dy — xvdz

Above the xy plane the sphere is x4+ yi+t=a’z=0

J F.dr = J_m’x + xdy.

Put x=a cos &,y=asinf so that dx = —a sinfdf, dy = acosfdf andf =0 — 2w

J F.dr = J ) (a sinf) (—a sinf) df + (acosf)(acasd)df
c o

=a® [* cos26 df = o’ [E] _




Verify Stokes theorem for F=(2x—v)i— vz :j— _v:::’? over the upper half surface of the sphere
x4+ v? + z% = 1bounded by the projection of the xy-plane.

Solution: The boundary C of S is a circle in xy plane i.e x* + v7=1, z=0

The parametric equations are x=cos8, v = sinfd, 8 = 0 — 27

dx = —sind df, dv = cos8 df

_[E.d? =.|.Eldx+€dy+fsdz =_[(2x— y)dx — yz2dy — y?zdz
=ch(21' — vidx(since z =0 and dz = 0)

2r 27 27
:—j (2c0s 6 —sin §)sin OdO = jsin2 ede—j sin20d@
0 0 0

I l1-cos2d

S [3T =R — [T sin26 df = EE — 15in26 +.cos26

|:.

=%(2.-T —Q)+0 —%. (cosdm — cos0) ==

T
— g - - T T
Again V x F=[ — = | = (—2vz+2vz)—jlo—0)+k(0+1)=k

-

2x—y —vz® —v'z
js[? X F]I.’r_t-:ﬁ:_j; k.fds = JFRJ’ dxdy
Where R is the projection of S on xy plane and k. fids = dxdy

—_—

i N . — 1
Now [ J’R dxdy = 4 J:_:':E_ fzi.; T odydx = 4 f__:':c_ Vi—xidr =4 ;—L*.{ 1—x2+ %sin_i x

|:.

1, _
=4 [;sm 1 l] =2E=mr

. The Stokes theorem is verified.

3.Verify Stokes theorem for the function F = x? T+ xv j integrated round the square in the plan z=0
whose sides are along the lines x=0, y=0, x=a, y=a.

Solution: Given F = x* T+ xvJ

7




By Stokes Theorem, fs["-? X F}.ﬁds:IE.dF
Cc

LH.S.=[ (V% F)ids= [ y(nk)ds = [ ydxdy
[.(Vx F).aids= [ y(nk)ds = [ ydxd

S k.ds = dxdy and R is the region bounded for the square.

js(v X F)nds = f; f; veydx =E—

RH.S. = IE.dF = _[ (x*dx + xydy)
C C

But [F.dF =[ F.df +[ _F.df+ [ F.dFf+[ F.dF

(i)Along OA:y=0, z=0, dy=0, dz=0
= - fied 2 EE
> fmf‘.n’r = fc_ X" dx =7

(ii)Along AB:x=a, z=0,dx=0,dz=0

(iii)Along BC: y=a,z=0,dy=0,dz=0

-Jr.'_-'.‘l‘_' £

(iv)Along CO: x=0, z=0, dx=0, dz=0

dF = f: Odx =Za®

3

« [ F.di=[ ody =0
Adding [ F.d7f =2a® +2
Hence the verification.

4. Apply Stokes theorem, to evaluate Dj(ydx + zdy + xdz) where c is the curve of intersection of the
C

sphere x® + ye -z = a® and x+z=a.
Solution : The intersection of the sphere x* + v + z? = a® and the plane x+z=a. is a circle in the plane
x+z=a. with AB as diameter.

=

Equation of the plane is x+z=a— < + £ =1
=

o

~.OA=0B=ai.e., A=(a,0,0) and B=(0,0,a)

. Length of the diameter AB=+/a” +a*+0 =ay2

Radius of the circle, r=%

let F.d7 = ydx + zdy + xdz = F.d7 = F. [ Idx + jdv + Ea’:} = vdx + zdy + xdz




~ curl F=

g
£ 2
x dy

Let 7t be the unit normal to this surface.?

Then s=x+z-a, VS =i+R L=

Hence § F.d7 = [ curl F.fids (by Stokes Theorem)

(747 E) (s -

—_—

=-'~.,E_Jf5 ds = —*.,'ES = —2 \

5. Apply the Stoke’s theorem and show that J;f curl F.7id5 = 0 where Fisanyvectorand S =
e ylizi=1
Solution: Cut the surface if the Sphere x4+ v?i+ 2z =1 byany plane, Let 5, and S,denotes its upper
and lower portions a C, be the common curve bounding both these portions.
v JeurlFds=[Fds+[Fds
s s s,
Applying Stoke’s theorem,
feurlFds=[FdR+[FdR=0
s s s

The 2" integral curl F.d 5 is negative because it is traversed in opposite direction to first integral.

The above result is true for any closed surface S.

6.Evaluate by Stokes theorem 95':(,1' +vldx + (2x — z)dy + (v + z)dz where Cis the boundary of the

triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Solution: Let F.d7 = F.( Tdx +jdy + kdz) = (x + y)dx + (2x —z)dy + (y + z)dz
ThenF=({x+v)I+(2x—z)f+ (v +2)k
By Stokes theorem, ¢_F.d7 = [ [ ecurl F.fids




B(1,1,0)

Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B
Are zero. Thereforefl = k. Equation of OA is y=0 and

that of OB, y=x in the xy plane.

~ curl F=

7
£
8y

X+VvV 2x—z v—+z
~ curl F.iids=curl F.K dx dy = dx dy
gscF. dr = | J; drx dy = | J; dA=A=areaofthed OAB

=20A X AB:1><1><1=1
: 2 2

7: Use Stoke’s theorem to evaluate [ _j; curl F.71dS over the surface of the paraboloid
z+x°+y?*=1z>0where F=yi+zj+xk
Solution : By Stoke’s theorem

jcurlE.dg = Djf.d? =I(yi+ z]+ xE).(i_dx+]dy+Edz)

Where C isthecircle x* + v* =1

The parametric equations of the circle are x=cos8, v = sinfl
Aodx = — sind df

Hence (1) becomes

2z 2z
jcurIF.ds: Isin@(—sin@)dez—j sin0do =4 Sin20d0:—4x%x%:—ﬂ
S 6=0 6=0




8: Verify Stoke’s theorem for F = (x* + v*)T — 2xvj taken round the rectangle bounded by the lines x=
ta,v=01v=b.
Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).
Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.
We have to prove that § F.d7 = [_curl F.fids
gﬁf. dr = 95':{[:(: + v = 2xvj ) { tdx + jdv)
=95c (x* +v?) dx — 2xydy

= AE—ISE_ICD_IDA (1)

(i) Along AB, x=a, dx=0
from (1), J’AS = f‘;c —2ay dy = —2a [T]
(ii)Along BC, y=b, dy=0

X=—a 3
from (1), j - j (x2+b2)dx={%+b2x}

BC x=a x=a

(iii) Along CD, x=-a, dx=0

0 270
from (1), I = _[ 2aydy = Za{y—} =—ab?
y=b

Z

CD y=b

(iv)Along DA, y=0, dy=0

from (1), I = X].a x2dx =

DA x=-a
(i)+(ii)+(iii)+(iv) gives

-,

. —2o - -
—ab?——2ab” —ab~;
3

= —4ab-

-
o




Consider [_curl F.dS

Vector Perpendicular to the xy-plane is = = k

Since the rectangle lies in the xy plane,
7 = k and ds =dx dy
fs curl F.idS = fs —4vk. kdx dv = JF::—.: fuzc —4vdx dy

a

b b
=[*_ J5 . —4vdxdy=4 [ y[x] dy=-4] 2aydy
: J

0 a y=0
=—4a[_1,':]_,'|"_:,:, = —4ab? we(3)
Hence from (2) and (3), the Stoke’s theorem is verified.
9: Verify Stoke’s theorem for F = (v —z + 2)T+ (vz + 4)] — xzk where S is the surface of the cube x
=0, y=0, z=0, x=2, y=2,z=2 above the xy plane.
Solution: Given F = (v —z + 2)T+ (yz + 4)J — xzk where S is the surface of the cube.
x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.

By Stoke’s theorem, we have | curl F.fids = [ F.dF

=10+y) —j(—z+ 1)+ k(0-1)=yvi—-(1—z)j—k

k
2
ES

Tofind [ F.dT

[{ly=—z+2)1+ (vz+4)j- x:EJ (dxT + dv] + dzk)
= [[(y—z+ 2)dx + (yz + 4)dy — (x2)dz]
Sis the surface of the cube above the xy-plane
nz=0=>dz=
o [Fudi= [(yv+ 2)dx+ [ 4dv
Along 04, v =0,z =0,dv = 0,dz = 0, x change from 0 to 2.
J2dx = 2[x]3= 4 ")
Along BC,v =2,z =0,dy = 0,dz = 0,x change from 2to 0.

E)




2

jF.d*F:J%4dy:[4y] =8

0
Along€O,x = 0,z = 0,dx = 0,dz = 0, v change from 2 to 0.
S 4dv=—8
Above the surface When z=2
Along 0'4’, jc_' Fdr=0 ....(6)

Along A'B',x =2,z = 2,dx = 0,dz = 0,y changes from 0 to 2

2 272
.dr:J(2y+4)dy=2{y?} +4[y[f =4+8=12
0

0

2,z=2,dv=10,dz =0, xchangesfrom2to 0

Along C'D',x = 0,z = 2,dx = 0,dz = 0, y changes from 2 to 0.

0 270

[y+a) :2{%} +4[y[ =-12

2 2

(2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives
[[Fd7=4-8+8-8+0+12+0-12=—4
By Stokes theorem, We have
[ F.d7=[ curl F.Ads=-4
Hence Stoke’s theorem is verified.

10.Verify the Stoke’s theorem for F = vi + zj + xk and surface is the part of the sphere

x4+ v-+ z= =1 above the xv plane.

Solution: Given F = vT + zJ + xk over the surface x~ + v~ + z* = 1 is xv plane.

We have to prove [ F.d 7=/ [ Curl F.Ads

F.dTr = (yf— :J?— AE) [d}cI— cfkf— ﬂrIE)=ydx+zdy+xdz
r Ll o= r L oy = Ty i3 xr ] e - —
fc(}rd_\ zdy + xdz) = [ ydx (inxyplanez=0,dz = 0)

Let x= caosf, v = sinf = dx = —sinf df,dy = cos8 df

- [Fd7= [ y.dx= [ ydx v x?4+y?=1,z=0]

=f, " siné (—sinf)df = —4 [T sin?6 db

-—4 fEF Plocest? g =4 [(l ] - [siﬂn]]

- .
& L

()] f=

.

B J
CurlF=|3/dx a/dv d/dz|=—(1+T+k)

v z x




Unit normal vector 1 =

Substituting the spherical polar coordinates, we get
fl = sinf cosg T+ sinf sing J+ cosfk
~ Curl F.in = —(sinf cos ¢ + sinf sin ¢ + cosf)

o % 2z
”curIF.nds: I j (sin@cos ¢ +sin Gsin ¢ +cos G)sin 0dHd ¢

6=0 $=0

=— _j:; * [sin@ sin ¢ — sinf cosg + ¢prosf|;™ sinfd8

=27 fEF * cosBsinfds = —HIEF ? sin26d6 = (—m) [_ET:E]E ]
L o

=S(-1-1)=-=

From (1) and (2), we have

=) = vl T oa = —
ch.dr vlffstf'unf'.n:dg T
. Stoke’s theorem is verified.
11: Verify Stoke’s theorem for F= (X2 -y )i+ 2xy] over the box bounded by the planes

x=0,x=a,y=0,y=b.

Solution :

(0,5)C

A(a,0)

Stokes theorem states that jEdF = ICurlE.ﬁdS
Cc S

Given F = (x? — v3)T+ 2xv]
i R
CurlF= %x %y %Z =i(0,0)— j(0,0) +K(2y +2y) = 4yk
2

2

-y 2xy O

R.H.S= j CurlF.nds = j 4y(E.ﬁ)ds

Let R be the region bounded by the rectangle




(k.#7)ds = dx dy

a 2 b

JS'CurIE.ﬁds = j j)' 4ydxdy = jopy?}

x=0 y=0

dx = 2b? j 1dx
x=0

0
=21":':I:.‘4.':I5 =2ah*
To Calculate L.H.S
F.d7¥ = (x* —vyHdx + 2xv dy
Let 0=(0,0),4 = (a,0),F = (a,b) and
C=(0,b) are the vertices of the rectangle.
(i)Along the line OA

y=0; dy=0, x ranges from 0 to a.

f,, Fdr=[" x*dx= [dr

o

(ii)Along the line AB
x=a; dx=0, y ranges from 0 to b.

Lis F.dr = _J;I{J:C_(Ex_v) dy = [2-:'{ %]i:ab:

L

(iii)Along the line BC

y=b; dy=0, x ranges from ato 0

_ _ 0 X 0 2
[Fdr=| (xz—yz)dx{——bzx} :0—[——b2aJ
BC X=a 3 3

a

(iv) Along the line CO

x=0,dx=0,y changes from b to 0

0
J.F.dF= j 2xydy =0
y:

b

Adding these four values

Hence the verification of the stoke’s theorem.

12: Verify Stoke’s theorem for F=v* I — 2xyj taken round the rectangle bounded by

x=1b, y=0,y=a.




Solution:

7
5' I a I _ i
I.-I 5-1'- I.II a: - '4yK
0

—2xv

For the given surface S, i= k

JACurl F)loin = —4y
Now [[ (Curl F).71dS = [ —4vdxdy

- j { i —4ydx}dy

y=0L x=—-b

ch_'dF =vr':m_ ae T e T jcg
[F.dF=y®dx — 2xydy

Along DA, y=0,dy=0 = IDA F.dr=0(-Fdr= 0)

Along AB, x=b,dx=0
- 1 i e
L‘S F.di= J;.-=|:- —2bydy= [_by :Io =-a‘b

Along BC,y=a,dy=0
ISCFIdT:jb ﬂ_dl':_zﬂ_ﬂ

Along CD, x=-b,dx=0
5 og=_ 0y o [ 202
fCDF.dr—fc 29_1.::1'_1.—[ by :'a_ a’b.

_j:: F.df =0—a’*b—2a’bh —a’*b=—4a’b




From (1),(2) [_F.d7 =[[ (Curl F).7dS

Hence the theorem is verified.

13: Using Stroke’s theorem evaluate the integral _j:f F.d7 where

F=2v*i+3x7] —(2x+z)§ and C is the boundary of the triangle whose vertices are (0,0,0),(2,0,0),(2,2,0).

Solution:

= 2] + (6x-4y) k

O
(0,0)

Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane .
Soa=k

~ (Curl F). 7= 6x-4y

Consider the triangle in xy-plane .

Equation of the straight line OB is y=x.

By Stroke’s theorem

j Fdr= j j (curl F).nds

:L.::D _Jr:,;tﬁ:a_ — -=1-_1,r:| dxdy = Jf_x:=ll- [J-Az E_(EIJL' - "-1-1,)(1[1, dx

j. [GXy_ZyZ}: dx = .Jr,:.:EGl': — 2x%)dx
x=0
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