
OBJECT ORIENTED PROGRAMMING THROUGH PYHTON

 CSE

III SEMESTER ​
​

Prepared by:
Dr. R Obulakonda Reddy, Associate Professor
Ms. M Ashoka Deepthi, Assistant Professor
 Ms. B Tejaswi, Assistant Professor
Mr. P Ravinder, Assistant Professor

MODULE -I
Introduction to Python: Features of Python, Data types,
Operators, Input and output, Control Statements.
Introduction to Object Oriented Concepts: Features of
Object oriented programming system (OOPS) – Classes
and Objects, Encapsulation, Abstraction, Inheritance,
Polymorphism.

1

Guido Van Rossum

 2

Brief History of Python Language

• Python is a general-purpose, dynamic, interpreted high-level
 programming language.
• Conceptualized in the late 1980’s.
• Created by Guido van Rossum (Netherlands) and first released in

1991.
• A descendant of ABC language.
• Open sourced from the beginning, managed by Python Software
 Foundation.
• Scalable, Object oriented and functional from the beginning.
• Python versions
First version 0.9.0 in February 1991
Version 1.0 in January 1994
 Version 2.0 in October 2000
Version 3.0 in 2008

 3

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum

Best Programming Language

 4

 Features of Python Language

• Simple

• Easy to learn

• Open source

• High level language

• Dynamically typed

• Platform independent

• Portable

• Procedure and object oriented

 5

Python Interactive Shell

• Python provides an interactive shell, which is used in between

the user and operating system

• In other words, Python provides a command line interface with

the Python shell known as Python interactive shell.

• Python commands are run using the Python interactive shell.

• User can work with Python shell in two modes: interactive

mode and script mode.

• Interactive mode allows the user to interact with the operating

system. When the user types any Python statement /

expression, the interpreter displays the results instantly.

• In script mode, user types a Python program in a file and then

uses the interpreter to execute the file. In interactive mode,

user can’t save the statements / expressions and need to retype

once again to re-run them.
 6

Interactive Mode

• When the user starts the Python IDLE the following
window will appear and it shows the interactive shell. This
window shows the primary prompt ‘>>>’ where the user
types commands to run by the interpreter.

 7

Script Mode

• In this mode, user types a set of statements called a
program in a file and then save the program with
‘filename.py’ as extension. Then the interpreter is used to
execute the file contents. This mode is convenient when
the user wants to write and save multiple lines of code, so
that it can be easily modifiable and reusable.

 8

Python Shell as a Simple Calculator

 9

Flavors of Python

• Flavors of Python are nothing but different types of
Python compilers available, which are useful to integrate
various programming languages into Python. The
following are some of the important and popularly used
flavors of Python.

Cpython

 Jython

 IronPython

Pypy

Pythonxy

RubyPython

 StacklessPython

ActivePython
 10

Built-in Data Types in Python

• Every programming language has the ability to create and
manipulate object / variable. In a program variables are
used to store values so that it can be used later. Every
object / variable has an identity, type and a value which it
refers. Identity of an object is nothing but its address in
memory when it is created. Type or data type indicates is a
range of values and operations allowed on those values.

 11

Keywords in Python

• Keywords are reserved words with predefined meaning in
any programming languages and these words can’t be
used as normal variables. One can check the number of
keywords using help() command -> keywords in Python.

 12

Assigning values to variables

>>> a = 100 # a is integer

>>> height = 50.5 #height is float

>>> player = "Sachin" #player is string

>>> x = y = z = 10 # This statement assign 10 to x, y, z

>>> x = 5

>>> x #assigns 5 to x

>>> 5 = x #SyntaxError: can't assign to literal

 13

Multiple Assignments

• Consider an example where multiple values are assigned
to the same variable and when the program runs, it prints
different results.

 14

Standard Data Types in Python

• Python has five standard data types, named Numbers,
None, Sequences, Sets and Mappings. Python sets the
type of variable based on the type of value assigned to it
and it will automatically change the variable type if the
variable is set to some other value.

 15

Numbers

Python supports the following numeric types.

• int - integers of unlimited length in Python 3.x .

• long - long integers of unlimited length, but exists only in
Python 2.x.

• float - floating point numbers.

• complex - complex numbers.

 16

Boolean

• True and False are Boolean literals used in Python and
these are used to represent the truth / falsity of any
condition / expression.

 17

None

• In Python None keyword is an object which is equivalent
to Null. A None can be assigned to a variable during
declaration or while evaluating an expression.

 18

Strings

• Strings are identified as group of characters represented in
quotation marks. Python allows both a pair of single and
double quotes for writing strings. Strings written in triple
quotes can span multiple lines of text. Strings in Python
are immutable data type i.e. each time a new string object
is created when one makes any changes to a string.

 19

Strings

Python can also manipulate strings. They can be
enclosed in single quotes (‘abc’) or double quotes
(“abc”) with the same result.

 20

Tuple

• A tuple contains a list of items enclosed in parentheses
and none of the items cannot be updated. Hence tuples
are immutable.

 21

List

• A list contains items separated by commas and enclosed
within square brackets. A list in Python can contain
heterogeneous data types.

 22

Sets

• In Python sets are unordered collection of objects
enclosed in parenthesis and there are basically two types
of sets:

 Sets - These are mutable and can be updated with new
elements once sets are defined.

 23

Dictionary

• In Python dictionary data type consists of key-value pairs
and it is enclosed by curly braces. Values can be assigned
and accessed using square brackets.

 24

Mutable and Immutable Data Types

• The following table gives examples of mutable and
immutable data types in Python.

Mutable Data Types Immutable Data Types

list int, long

set float, complex

dict str

tuple

frozenset

 25

Operators in Python

All the operators in Python are classified according to their
nature and type and they are:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Assignment Operators

• Bitwise Operators

• Boolean Operators

• Membership Operators

• Identity Operators

 26

Arithmetic Operators

• These operators perform basic arithmetic operations like
addition, subtraction, multiplication, division etc.

Operator Meaning Example Result

+ Addition 10 + 7 12

- Subtraction 10.0 - 1.5 8.5

* Multiplication 30 * 3 900

/ Float Division 5 / 2 2.5

// Integer

Division

5 // 2 2

** Exponentiatio

n

3 ** 2 9

% Remainder 10 % 3 1

 27

Arithmetic Operators(Contd..)

Operators precedence

Operator Priority

Parenthesis ((), []) First

Exponentiation (**) Second

Multiplication (*), Division (/, //),

Modulus (%)

Third

Addition (+), Subtraction (-) Fourth

Assignment Fifth

 28

Relational Operators

• Relational operators are used for comparison and the
output is either True or False depending on the values we
compare. The following table shows the list of relational
operators with example.

Operator Meaning Example Result

< Less than 5 < 7 True

> Greater than 9 > 5 True

<= Less than equal to 8 <= 8 True

>= Greater than equal

to

7 >= 9 False

== Equal to 10 == 20 False

!= Not equal to 9 != 6 True

 29

Logical Operators

• Logical operators are used to form compound conditions
which are a combination of more than one simple
condition. Each of the simple conditions are evaluated first
and based on the result compound condition is evaluated.
The result of the expression is either True or False based
on the result of simple conditions.

Operator Meaning Example Result

and Logical AND (5 > 7) and (3 <

5)

False

or Logical OR (7 == 7) or (5 !=

5)

True

not Logical NOT not(3 <= 2) True

 30

Assignment Operators

• These operators are used to store a value into a variable
and also useful to perform simple arithmetic operations.

Operator Meaning Example Result

= Simple assignment a = 10 10

+= Addition assignment a = 5

a += 8

13

-= Subtraction assignment b = 5

b -= 8

-3

*= Multiplication assignment a =10

a *= 8

80

/= Float Division assignment a = 10

a /= 8

1.25

//= Integer Division assignment b = 10

b //= 10

1

**= Exponentiation assignment a = 10

a %= 5

0

%= Remainder assignment b = 10

b ** = 8

100000000

 31

Bitwise Operators

• Bitwise Operators acts on individual bits of the operands.
Operator Meaning Example Result

& Bitwise AND a = 10 = 0000 1010
b = 11 = 0000 1011
a & b = 0000 1010 = 10

a & b = 10

| Bitwise OR a = 10 = 0000 1010
b = 11 = 0000 1011
a | b = 0000 1011 = 11

a | b = 11

^ Bitwise XOR a = 10 = 0000 1010
b = 11 = 0000 1011
a ^ b = 0000 0001 = 1

a ^ b = 1

~ Bitwise Complement a = 10 = 0000 1010
~a = 1111 0101 = -11

~a = -11

<< Bitwise Left Shift a = 10
 a << 2 = 40

a << 2 = 40

>> Bitwise Right Shift a = 10
 a >> 2 = 2

a >> 2 = 2

 32

Boolean Operators

• There are three boolean operators that act on bool type
literals and provide bool type output. The result of the
boolean operators are either True or False.

Operator Meaning Example Result

and Boolean

AND

a = True, b = False

a and b = True and

False

a and b = False

or Boolean OR a = True, b = False

a or b = True or

False

a or b = True

not Boolean

NOT

a = True

not a = not True

not a = False

 33

Membership Operators

There are two membership operators in Python that are
useful to test for membership in a sequence.

• in: This operator returns True if an element is found in the
specified sequence, otherwise it returns False.

• not in: This operator returns True if any element is not
found in the sequence, otherwise it returns True.

 34

Identity Operators

These operators are used to compare the memory locations
of two objects. Therefore it is possible to verify whether the
two objects are same or not.

• is: This operator is used to compare the memory location
of two objects. If they are same then it returns True,
otherwise returns False.

• is not: This operator returns True if the memory locations
of two objects are not same.If they are same then it
returns False.

 35

Operator Precedence and Associativity

Operator Name Precedence

() Parenthesis 1st

** Exponentiation 2nd

-, ~ Unary minus, bitwise complement 3rd

*, /, //, % Multiplication, Division, Floor Division,

Modulus

4th

+, - Addition, Subtraction 5th

<<, >> Bitwise left shift, bitwise right shift 6th

& Bitwise AND 7th

^ Bitwise XOR 8th

| Bitwise OR 9th

>, >=, <, <=, = =, != Relational Operators 10th

=, %=, /=, //=, -=, +=, *=, **= Assignment Operators 11th

is, is not Identity Operators 12th

in, not in Membership Operators 13th

not Logical NOT 14th

or Logical OR 15th

and Logical AND 16th

 36

Single Line and Multiline Comments

• There are two types of comments used in Python:

• Single Line Comments: These are created simply by starting a line
with the hash character (#), and they are automatically terminated
by the end of line. If a line using the hash character (#) is written
after the Python statement, then it is known as inline comment.

• Multiline Comments: When multiple lines are used as comment
lines, then writing hash character (#) in the beginning of every line is
a tedious task. So instead of writing # character in the beginning of
every line, we can enclose multiple comment lines within ''' (triple
single quotes) or """ (triple double quotes). Multi line comments are
also known as block comments.

 37

INPUT AND OUTPUT

• The purpose of a computer is to process data and return
results.The data given to the computer is called input. The
results returned by the computer are called output. So, we
can say that a computer takes input, processes that input and
produces the output.

 38

Control Structures

• A control structure is a block of programming that analyzes
variables and decides which statement to execute next,
based on the given parameters. The term ‘control’ denotes
the direction in which the program flows. Usually, loops are
used to execute a control statement, a certain number of
times.

• Basically, control structures determine the flow of events in
the program.

• If statement: This is used to check a condition and executes
the operations/statements within the if block only when the
given condition is true.

Syntax:

if condition:

 True Statements

 39

If…else statements

If…else statements: These statements are used to check a
condition and executes the operations/statements within
the if block only when the given condition is true. If the
given condition is false, the statements in the else block
will be executed.

Syntax:

if condition:

 True Statements

else:

 False Statements

 40

If …elif… else statements

If …elif… else statements: If we want to check more than one
condition we can use the elif statements. If a condition is true then
the statements within the if block will be executed. If the condition
is false, we can provide an elif statement with a second condition
and the statements within the elif block will be executed only when
the condition is true.

Syntax:

if condition:

 True Statements

elif condition2:

 True Statements

…….

else:

 False Statements

 41

Loops in Python

• Loops are used to repeat a set of statements/single statement, a
certain number of times. In Python, there are two loops, for loop
and while loop. The Python for loop also works as an iterator to
iterate over items in list/dictionary or characters in strings.

for Loop: It can be used to iterate over a list/string/dictionary or
iterate over a range of numbers.

Syntax:

for variable in range(starting number , ending number + 1 , step
size):

 statements

 (or)

 for element in sequence:

 statements

 42

While Loop

While Loop: This is used, whenever a set of statements
should be repeated based on a condition. The control comes
out of the loop when the condition is false. In while loop we
must explicitly increment/decrement the loop variable (if
any) whereas in for, the range function would automatically
increment the loop variable.

Syntax:

while condition:

 statement(s)

 increment/decrement

 43

Break Statement

break statement: This statement is used to terminate the
loop it is present in. Control goes outside the loop it is
present in. If a break statement is present in a nested loop, it
only comes out of the innermost loop.

 Syntax:

while condition:

 statments

 if condition:

 break

 statements

 44

Continue Statement

Continue statement: This statement is used to skip the current
iteration. The loop will not be terminated, it just won’t execute
the statements below the continue statement. The incrementing
will be done in for loop. If the increment statement is written
below continue, it won’t be executed in while loop.

 Syntax:

while condition:

 statement(s)

 if condition:

 continue

 statements

 45

Pass Statement

Pass statement: This statement is used as placeholder. For
example, we want to create a function but are not sure of its
content. If we create a function and leave it, an error will
occur. To counter this error, we use pass statement.

 Syntax:

def function(parameters):

 pass

(or)

 for elements in sequence:

 pass

 46

Object Oriented Concepts

• Object oriented programming concept is associated with
the concept of class, objects and various other concepts
like abstraction, inheritance, polymorphism, encapsulation
etc.

• Class: - Class is a user defined data type. It is a set of
attributes (variables) and methods (functions).

• Object: - Object is a unique instance of a class. We can
use the same class as blueprint for creating number of
different objects.

• Attributes: - Attributes are the member variables defined
inside a class and can be accessed by the objects by using
dot operator.

• Method: - Methods are functions defined inside a class.
They can be accessed by the objects by using dot operator.
All the methods in class have self as first parameter.

 47

Example

 48

__init__ method

• __init__: The method init is the most important method in
the class. This is called when an instance (object) of the
class is created, using the class name as a function. The
init method is called as constructor.

• self: In class, all methods have self as their first parameter
(python adds self as argument which is well known to us) ,
although it isn’t explicitly passed(passed by users). We
can’t use self while we call the method in a class. Within a
method definition, self refers to the instance calling the
method.

• In an init method, attributes can be used to set the
initial value of instance’s attributes in a class.

 49

Features of Object Oriented Programming

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

• Encapsulation: Encapsulation refers to binding data and
methods together inside a class. It keeps the data and
methods safe from outside interference and misuse.
Encapsulation prevents accessing data accidentally.

 50

Inheritance

• Inheritance: It refers to creating a child class such that the
child class would inherit all the properties (variables and
methods) of the parent class. The parent class is called
super class while the child class is called subclass.

• We have 3 types of inheritance mainly:

• Single inheritance: Only one sub class from super
class.(superclass->subclass)

• Hierarchical inheritance: Inheriting from super class to as
many subclasses.

• Multilevel inheritance: Inheriting properties from super
class to sub class and then other sub classes.

 51

Abstraction and Polymorphism

• Abstraction: It refers to creating structure classes that are
not implemented. Abstract classes are like a base class
and many other classes inherit the properties of abstract
class but the abstract class itself is not implemented.

• Polymorphism: It is derived from two Greek words, poly
(many) and morph (form). Polymorphism allows us to
define methods with the same name in two different
classes. If the two different classes are parent class and
child class then the parent class’s method will be
overwritten by the child class’s method. This is known as
Method Overriding.

 52

MODULE-II

 53

Classes and Objects: Creating a class, The Self variable,
Constructor, Types of Variable, Namespaces, Types of Methods,
Inheritance and Polymorphism – Constructors in inheritance, the
super() method, types of inheritance, polymorphism, abstract
classes and interfaces.

Creating A Class

CLASS

• we write a class with the attributes and actions of objects.
Attributes are represented by variables and actions are performed
by methods. So, a class contains variable and methods.

• A function written inside a class is called a method. Generally, a
method is called using one of the following two ways:

• class name.methodname()

• instancename.methodname()

• The general format of a class is given as follows:

 Class Classname(object):

 """ docstring describing the class """

 attributes def __init__(self):

 def method1():

 def method2():

 54

Creating A CLASS(Contd..)

• A class is created with the keyword class and then writing the
Classname. After the Classname, ‘object’ is written inside the
Classname.

• This ‘object’ represents the base class name from where all classes
in Python are derived.

• Even our own classes are also derived from ‘object’ class. Hence,
we should mention ‘object’ in the parentheses.

 class Student: #another way is:

 class Student(object): #the below block defines attributes

 def __init__(self):

 self.name = ‘Vishnu’

 self.age = 20

 self.marks = 900 #the below block defines a method

 55

Creating A CLASS(Contd..)

 def talk(self):

 print(‘Hi, I am ‘, self.name)

 print(‘My age is’, self.age)

 print(‘My marks are’, self.marks)

• To create an instance, the following syntax is used:

 instancename = Classname()

So, to create an instance (or object) to the Student class, we can write
as:

 s1 = Student()

When we create an instance like this, the following steps will take
place internally:

 56

Creating A CLASS(Contd..)

Program

Program 1: A Python program to define Student class and create
an object to it. Also, we will call the method and display the
student’s details.

 #instance variables and instance method

 class Student:

 #this is a special method called constructor.

 def __init__(self):

 self.name = 'Vishnu'

 self.age = 20

 self.marks = 900

 #this is an instance method.

 def talk(self):

 print('Hi, I am', self.name)

 57

Creating A CLASS(Contd..)

 print('My age is', self.age)

 print('My marks are', self.marks)

 #create an instance to Student class.

 s1 = Student()

 #call the method using the instance.

 s1.talk()

 Output:

 C:\>python cl.py

 Hi, I am Vishnu

 My age is 20

 My marks are 900

 58

The Self Variable

• ‘self’ is a default variable that contains the memory address of
the instance of the current class.

• For example, we create an instance to Student class as:

 s1 = Student()

We use ‘self’ in two ways:

1. The ‘self’ variable is used as first parameter in the constructor
as:

 def __init__(self):

In this case, ‘self’ can be used to refer to the instance variables
inside the constructor.

2. ‘self’ can be used as first parameter in the instance methods as:

 def talk(self):

 Here, talk() is instance method as it acts on the instance
variables.

 59

Constructor

• A constructor is a special method that is used to initialize the
instance variables of a class.

 def __init__(self):

 self.name = ‘Vishnu’

 self.marks = 900

Program 2: A Python program to create Student class with a
constructor having more than one parameter.

 #instance vars and instance method - v.20

 class Student: #this is constructor.

 def __init__(self, n ='', m=0):

 self.name = n

 self.marks = m #this is an instance method.

 def display(self):

 60 1

Constructor(Contd..)

 print('Hi', self.name)

 print('Your marks', self.marks)

 s = Student()

 s.display()

 s1 = Student('Lakshmi Roy', 880)

 s1.display()

 Output: C:\>python cl.py

Hi

Your marks 0

Hi Lakshmi Roy

Your marks 880

 61

Types of Variables

The variables which are written inside a class are of 2 types:

1. Instance variables 2. Class variables or Static variables

Program 3: A Python program to understand instance variables.

 #instance vars example

 class Sample: #this is a constructor.

 def __init__(self):

 self.x = 10 #this is an instance method.

 def modify(self):

 self.x+=1 #create 2 instances

 s1 = Sample()

 s2 = Sample()

 print(‘x in s1= ‘, s1.x)

 print(‘x in s2= ‘, s2.x) 62

Types of Variables (Contd..)

 print(‘x in s1= ‘, s1.x)

 print(‘x in s2= ‘, s2.x)

Output: C:\>python cl.py

x in s1= 10

x in s2= 10

x in s1= 11

x in s2= 10

 63

Namespaces (Contd..)

Namespaces

A namespace represents a memory block where names are
mapped (or linked) to objects. Suppose we write:

 n = 10

 #understanding class namespace

class Student: #this is a class var

 n=10 #access class var in the class namespace

 print(Student.n) #displays 10

 Student.n+=1 #modify it in class namespace

 print(Student.n) #displays 11

 64

Types of Methods

• The purpose of a method is to process the variables provided
in the class or in the method.

• We can classify the methods in the following 3 types:

Instance Methods

• Instance methods are the methods which act upon the
instance variables of the class. Instance methods are bound
to instances (or objects) and hence called as:
instancename.method().

• Program: A Python program to store data into instances using
mutator methods and to retrieve data from the instances
using accessor methods.

 Student: #mutator method

 def setName(self, name):

 self.name = name #accessor method

 65

Types of Methods (Contd...)

 def getName(self):

 return self.name #mutator method

 def setMarks(self, marks):

 self.marks = marks #accessor method

 def getMarks(self):

 return self.marks #create instances with some data from
keyboard

 n = int(input(‘How many students? ‘))

 i=0

 while(i<n): #create Student class instance

 s = Student()

 name = input(‘Enter name: ‘)

 s.setName(name)

 66

Types of Methods (Contd...)

 marks = int(input(‘Enter marks: ‘))

 s.setMarks(marks) #retrieve data from Student class
instance

 print(‘Hi’, s.getName())

print(‘Your marks’, s.getMarks())

 i+=1

Output: C:\>python cl.py

How many students? 1

Enter name: Vinay Krishna

Enter marks: 890

Hi Vinay Krishna

Your marks 890

 67

Types of Methods (Contd...)

Class Methods

• These methods act on class level. Class methods are the methods
which act on the class variables or static variables.

• Program 7: A Python program to use class method to handle the
common feature of all the instances of Bird class.

 #understanding class methods class Bird: #this is a class var

 wings = 2 #this is a class method

 @classmethod

 def fly(cls, name):

print(‘{} flies with {} wings’.format(name, cls.wings)) #display
information for 2 birds

 Bird.fly(‘Sparrow’)

 Bird.fly(‘Pigeon’)

 68

Types of Methods (Contd...)

Static Methods

• We need static methods when the processing is at the class
level but we need not involve the class or instances.

Program : A Python program to create a static method that
counts the number of instances created for a class.

class Myclass:

n=0

def __init__(self): Myclass.n = Myclass.n+1

@staticmethod def noObjects():

print(‘No. of instances created: ‘, Myclass.n)

obj2 = Myclass() obj3 = Myclass()

Myclass.noObjects()

Output: C:\>python cl.py

No. of instances created: 3

 69

Inheritance

A programmer in the software development is creating Teacher
class with setter() and getter() methods as shown in Program 1.
A Python program to create Teacher class and store it into
teacher.py module.

 class Teacher:

 def setid(self, id):

 self.id = id

 def getid(self):

 return self.id

 def setname(self, name):

 self.name = name

 def getname(self):

 return self.name

 70

Inheritance(Contd..)

 def setaddress(self, address):

 self.address = address

 def getaddress(self):

 return self.address

 def setsalary(self, salary):

 self.salary = salary

 def getsalary(self):

 return self.salary

 71

Constructors in Inheritance

Program : A Python program to access the base class constructor
from sub class.

class Father:

 def __init__(self):

 self.property = 800000.00

 def display_property(self):

 print('Father\'s property=', self.property)

 class Son(Father):

 pass

 s = Son()

 s.display_property()

 Output: C:\>python inh.py

 Father's property= 800000.0

 72

 Super() Method

• super() is a built-in method which is useful to call the super
class constructor or methods from the sub class

Program : A Python program to call the super class constructor in
the sub class using super().

 class Father:

 def __init__(self, property=0):

 self.property = property

 def display_property(self):

print('Father\'s property=', self.property)

 class Son(Father):

def __init__(self, property1=0, property=0):

 super().__init__(property)

 self.property1= property1

 73

Super() Method (Contd...)

def display_property(self):

 print('Total property of child=', self.property1 + self.property)

 s = Son(200000.00, 800000.00)

 s.display_property()

Output:

C:\>python inh.py

Total property of child= 1000000.0

 74

Types of Inheritance

There are mainly 2 types of inheritance available. They are:

1. Single inheritance

2. Multiple inheritance

Single Inheritance

 Deriving one or more sub classes from a single base class is
called ‘single inheritance’. In single inheritance, we always have
only one base class, but there can be n number of sub classes
derived from it. For example,

 75

Types of Inheritance (Contd..)

Multiple Inheritance

• Deriving sub classes from multiple (or more than one) base
classes is called ‘multiple inheritance’. In this type of
inheritance, there will be more than one super class and there
may be one or more sub classes.

 76

Polymorphism

Polymorphism

• Polymorphism is a word that came from two Greek words,
poly means many and morphos means forms. If something
exhibits various forms, it is called polymorphism. Let’s take a
simple example in our daily life. Assume that we have wheat
flour. Using this wheat flour, we can make burgers, rotis, or
loaves of bread. Consider Figure:

 77

Polymorphism(Contd..)

The following topics are examples for polymorphism in
Python:

• Duck typing philosophy of Python

• Operator overloading

• Method overloading

• Method overriding

 78

Abstract classes and interfaces

• An abstract method is a method whose action is redefined
in the sub classes as per the requirement of the objects.
To mark a method as abstract, we should use the
decorator @abstractmethod.

• An abstract class is a class that generally contains some
abstract methods.

Program : A Python program to create abstract class and sub
classes which implement the abstract method of the abstract
class.

 from abc import ABC, abstractmethod

 class Myclass(ABC):

 def calculate(self, x):

 pass

 class Sub1(Myclass): 79

Abstract classes and interfaces(Contd...)

 def calculate(self, x):

 print('Square value=', x*x)

 #this is another sub class for Myclass

 import math

 class Sub2(Myclass):

 def calculate(self, x):

 print('Square root=', math.sqrt(x))

 class Sub3(Myclass):

 def calculate(self, x):

 print('Cube value=', x**3)

 obj1 = Sub1()

 obj1.calculate(16)

 obj2 = Sub2()

 80

Abstract classes and interfaces(Contd...)

 obj2.calculate(16)

 obj3 = Sub3()

 obj3.calculate(16)

Output:

C:\>python abs.py

Square value= 256

Square root= 4.0

Cube value= 4096

Interfaces in Python

• An interface can be defined as a specification of method
headers. Since, we write only abstract methods in the interface,
there is possibility for providing different implementations
(body) for those abstract methods depending on the
requirements of objects.

 81

Abstract classes and interfaces(Contd..)

 #an interface to connect to any database
 class Myclass(ABC):
 @abstractmethod
 def connect(self):
 pass
 @abstractmethod
 def disconnect(self):
 pass 82

Abstract classes and interfaces(Contd..)

Abstract Classes vs. Interfaces

• Python does not provide interface concept explicitly. It
provides abstract classes which can be used as either
abstract classes or interfaces.

• It is the discretion of the programmer to decide when to
use an abstract class and when to go for an interface.

• For example,

 class WholeSaler(ABC):

 @abstractmethod

 def text_books(self):

 pass

 @abstractmethod

 def stationery(self):

 pass 83

MODULE-III

 84

Strings: Creating strings and basic operations on strings, string
testing methods.
Functions: Defining a function, Calling a function, returning
multiple values from a function, functions are first class objects,
formal and actual arguments, positional arguments, recursive
functions.

Creating Strings

String

• String is group of characters. We can create a string in Python
by assigning a group of characters to a variable. The group of
characters should be enclosed inside single quotes or double
quotes as:

s1 = 'Welcome to Core Python learning'

s2 = "Welcome to Core Python learning“

• There is no difference between the single quotes and double
quotes while creating the strings. Both will work in the same
manner.

• It is possible to display quotation marks to mark a sub string in
a string.

s1 = 'Welcome to "Core Python" learning'

 print(s1)

 85

Creating Strings(Contd..)

• It is possible to use escape characters like \t or \n inside
the strings.

• The escape character \t releases tab space of 6 or 8
spaces and the escape character \n throws cursor into a
new line.

Escape Character Meaning

\a Bell or alert

\b Backspace

\n New line

\t Horizontal tab space

\v Vertical tab space

\r Enter button

\x Character x

\\ Displays single\ 86

Basic operations on strings

The following are the basic operations we can perform on
strings

1.Length of string

• Length of a string represents the number of characters in a
string.

• To know the length of a string, we can use the len() function.

• This function gives the number of characters including
spaces in the string.

str = 'Core Python'

n = len(str)

 print(n)

• The preceding lines of code will display the following output:

11

 87

Basic operations on strings(Contd..)

2.Indexing in Strings

• Index represents the position number. Index is written using
square braces [].

• By specifying the position number through an index, we can
refer to the individual elements (or characters) of a string.

• For example, str[0] refers to the 0th element of the string and
str[1] refers to the 1st element of the string. Thus, str[i] can be
used to refer to ith element of the string.

• Here, ‘i’ is called the string index because it is specifying the
position number of the element in the string.

• When we use index as a negative number, it refers to elements
in the reverse order. Thus, str[-1] refers to the last element and
str[-2] refers to second element from last.

 88

Basic operations on strings(Contd..)

3.Slicing the Strings

• A slice represents a part or piece of a string. The format of
slicing is:

stringname[start: stop: stepsize]

• If ‘start’ and ‘stop’ are not specified, then slicing is done from
0th to n-1th elements. If ‘stepsize’ is not written, then it is
taken to be 1

• str = 'Core Python'

 str[0:9:1]

Output: Core Pyth

str = 'Core Python‘

 89

Basic operations on strings(Contd..)

4.Concatenation of Strings

• We can use ‘+’ on strings to attach a string at the end of
another string.

• This operator ‘+’ is called addition operator when used on
numbers. But, when used on strings, it is called ‘concatenation’
operator since it joins or concatenates the strings.

• For example:

s1='Core'

s2="Python"

s3=s1+s2 #concatenate s1 and s2

print(s3) #display the total string s3

• The output of the preceding statement is as follows:

CorePython

 90

Basic operations on strings(Contd..)

5.Comparing Strings

• We can use the relational operators like >, >=, <, <=, == or !=
operators to compare two strings.

• They return Boolean value, i.e. either True or False depending
on the strings being compared.

• For example:

• s1='Box'

• s2='Boy'

• if(s1==s2):

• print('Both are same')

• else:

• print('Not same')

• This code returns ‘Not same’ as the strings are not same.
 91

Basic operations on strings(Contd..)

6.Removing Spaces from a String

• A space is also considered as a character inside a string.

• Sometimes, the unnecessary spaces in a string will lead to
wrong results.

• For example, a person typed his name ‘Mukesh‘ (observe
two spaces at the end of the string) instead of typing
‘Mukesh’.

• If we compare these two strings using ‘==’ operator as:

if 'Mukesh '=='Mukesh':

print('Welcome')

else: print('Name not found')

• The output will be ‘Name not found’.

 92

Basic operations on strings(Contd..)

• Hence such spaces should be removed from the strings before
they are compared.

• This is possible using rstrip(), lstrip() and strip() methods.

• The rstrip() method removes the spaces which are at the right
side of the string.

• The lstrip() method removes spaces which are at the left side
of the string.

• strip() method removes spaces from both the sides of the
strings.

• These methods do not remove spaces which are in the middle
of the string.

 93

Basic operations on strings(Contd..)

7.Finding Sub Strings

• The find(), rfind(), index() and rindex() methods are useful to
locate sub strings in a string. These methods return the location
of the first occurrence of the sub string in the main string.

• The find() and index() methods search for the sub string from
the beginning of the main string.

• The rfind() and rindex() methods search for the sub string from
right to left, i.e. in backward order.

• The find() method returns -1 if the sub string is not found in the
main string.

• The index() method returns ‘ValueError’ exception if the sub
string is not found. The format of find() method is:
mainstring.find(substring, beginning, ending)

 94

Basic operations on strings(Contd..)

8.Splitting and Joining Strings

• The split() method is used to brake a string into pieces. These
pieces are returned as a list.

• For example, to brake the string ‘str’ where a comma (,) is
found, we can write:

str.split(‘,’)

• In the following example, we are cutting the string ‘str’
wherever a comma is found. The resultant string is stored in
‘str1’ which is a list.

str = 'one,two,three,four'

str1 = str.split(',')

print(str1)

• The output of the preceding statements is as follows:

['one', 'two', 'three', 'four']

 95

Basic operations on strings(Contd..)

• In the following example, we are taking a list comprising 4
strings and we are joining them using a colon (:) between
them.

str = ['apple', 'guava', 'grapes', 'mango']

sep =':'

str1 = sep.join(str)

print(str1)

• The output of the preceding statements is as follows:

apple:guava:grapes:mango

 96

Basic operations on strings(Contd..)

9.Changing Case of a String

• Python offers 4 methods that are useful to change the case of
a string. They are upper(), lower(), swapcase(), title().

• The upper() method is used to convert all the characters of a
string into uppercase or capital letters.

• The lower() method converts the string into lowercase or into
small letters.

• The swapcase() method converts the capital letters into small
letters and vice versa.

• The title() method converts the string such that each word in
the string will start with a capital letter and remaining will be
small letters.

 97

String testing methods

• There are several methods to test the nature of characters in
a string. These methods return either True or False.

• For example, if a string has only numeric digits, then isdigit()
method returns True.

 Method Description

isalnum() This method returns True if all characters in the string are

alphanumeric (A to Z, a to z, 0 to 9) and there is at least one

character; otherwise it returns False.

isalpha() Returns True if the string has at least one character and all

characters are alphabetic (A to Z and a to z); otherwise, it

returns False.

isdigit() Returns True if the string contains only numeric digits (0 to

9) and False otherwise.

islower() Returns True if the string contains at least one letter and all

characters are in lower case; otherwise, it returns False.
 98

String testing methods(Contd..)

 Table: String and character testing methods

Method Description

isupper() Returns True if the string contains at least

one letter and all characters are in upper

case; otherwise, it returns False.

istitle() Returns True if each word of the string

starts with a capital letter and there is at

least one character in the string; otherwise,

it returns False.

isspace() Returns True if the string contains only

spaces; otherwise, it returns False.

 99

Functions

• A function is similar to a program that consists of a group of
statements that are intended to perform a specific task.

• The main purpose of a function is to perform a specific task
or work. Thus when there are several tasks to be performed,
the programmer will write several functions.

• There are several ‘built-in’ functions in Python to perform
various tasks.

• For example, to display output, Python has print() function.
Similarly, to calculate square root value, there is sqrt()
function and to calculate power value, there is power()
function

 100

Functions(Contd..)

Advantages

• Functions are important in programming because they are
used to process data

• Once a function is written, it can be reused as and when
required.

• Functions provide modularity for programming. A module
represents a part of the program.

• Code maintenance will become easy because of functions.

• When there is an error in the software, the corresponding
function can be modified without disturbing the other
functions in the software. Thus code debugging will become
easy.

• The use of functions in a program will reduce the length of
the program.

 101

Defining Functions

• We can define a function using the keyword def followed by
function name.

• After the function name, we should write parentheses ()
which may contain parameters.

Syntax:

def functionname(parameter1,parameter2,….):

“””function docstring”””

function statements

Example:

def add(a,b):

“””This function finds sum of two numbers”””

c=a+b

print(c)

 102

Calling a function

• A function cannot run on its own. It runs only when we call it.
So, the next step is to call the function using its name.

• While calling the function, we should pass the necessary
values to the function in the parentheses as:

• sum(10, 15)

• Here, we are calling the ‘sum’ function and passing two values
10 and 15 to that function.

• When this statement is executed, the Python interpreter
jumps to the function definition and copies the values 10 and
15 into the parameters ‘a’ and ‘b’ respectively.

 103

Calling a function(Contd..)

Example:

 A function that accepts two values and finds their sum.

def sum(a, b):

""" This function finds sum of two numbers """

c = a+b

print('Sum=', c)

sum(10, 15)

sum(1.5, 10.75) #call second time

Output:

C:\>python fun.py

Sum= 25

Sum= 12.25
•

 104

Returning Results from a Function

• We can return the result or output from the function using a

‘return’ statement in the body of the function.

• For example,

return c #returns c value out of function

return 100 #returns 100

return lst #return the list that contains values

return x, y, c #returns 3 values

• When a function does not return any result, we need not write
the return statement in the body of the function.

 105

Returning Multiple Values from a Function

 • A function returns a single value in the programming languages
like C or Java. But in Python, a function can return multiple
values.

• When a function calculates multiple results and wants to return
the results, we can use the return statement as:

return a, b, c

• we can use three variables at the time of calling the function
as:

x, y, z = function()

Example:

 def sum_sub(a, b):

 c = a + b

 d = a – b

return c, d

 106

Returning Multiple Values from a Function

Example: A Python program to understand how a function returns
two values.

def sum_sub(a, b):

" this function returns results of addition and subtraction of a, b"

c = a + b

d = a – b

 return c, d

x, y = sum_sub(10, 5)

print("Result of addition:", x)

print("Result of subtraction:", y)

 Output: C:\>python fun.py

 Result of addition: 15

Result of subtraction: 5

 107

Functions are First Class Objects

• In Python, functions are considered as first class objects. It
means we can use functions as perfect objects.

• In fact when we create a function, the Python interpreter
internally creates an object.

• Since functions are objects, we can pass a function to another
function just like we pass an object (or value) to a function.

• The following possibilities are noteworthy:

1. It is possible to assign a function to a variable.

2. It is possible to define one function inside another function.

3. It is possible to pass a function as parameter to another
function.

4. It is possible that a function can return another function.

 108

Functions are First Class Objects(Contd..)

1. Assign a function to variable

A Python program to see how to assign a function to a variable.

#assign a function to a variable

def display(str):

return 'Hai '+str

#assign function to variable x

 x = display("Krishna")

print(x)

Output: C:\>python fun.py

Hai Krishna

 109

Functions are First Class Objects(Contd..)

2.Defining one function inside another function

A Python program to know how to define a function inside
another function.

 #define a function inside another function

 def display(str):

def message():

 return 'How are U?'

 result = message()+str

 return result

 #call display() function

 print(display("Krishna"))

 Output: C:\>python fun.py

 How are U? Krishna

 110

Functions are First Class Objects(Contd..)

3.Pass a function as parameter to another function

A Python program to know how to pass a function as
parameter to another function.

#functions can be passed as parameters to other functions

def display(fun):

return 'Hai '+ fun

def message():

return 'How are U? '

#call display() function and pass message() function

 print(display(message()))

Output: C:\>python fun.py

Hai How are U?

 111

Functions are First Class Objects(Contd..)

4.A function can return another function

A Python program to know how a function can return
another function.

def display():

def message():

return 'How are U?'

return message

#call display() function and it returns message() function

#in the following code, fun refers to the name: message.

fun = display()

print(fun())

Output: C:\>python fun.py

How are U?

 112

Formal and Actual Arguments

• When a function is defined, it may have some parameters.
These parameters are useful to receive values from outside of
the function. They are called ‘formal arguments’.

• When we call the function, we should pass data or values to
the function. These values are called ‘actual arguments’.

• In the following code, ‘a’ and ‘b’ are formal arguments and ‘x’
and ‘y’ are actual arguments.

def sum(a, b):

#a, b are formal arguments

c = a+b

print(c)

#call the function x=10; y=15

sum(x, y)

#x, y are actual arguments

 113

Formal and Actual Arguments(Contd..)

The actual arguments used in a function call are of 4 types:

 1. Positional arguments

 2. Keyword arguments

 3. Default arguments

 4. Variable length arguments

1.Positional arguments

 These are the arguments passed to a function in correct
positional order. Here, the number of arguments and their
positions in the function definition should match exactly with the
number and position of the argument in the function call.

 114

Formal and Actual Arguments(Contd..)

2. Keyword arguments

 Keyword arguments are arguments that identify the
parameters by their names.

def grocery(item, price):

3.Default Arguments

 We can mention some default value for the function
parameters in the definition.

 def grocery(item, price=40.00):

• 4.Variable Length Arguments

 Sometimes, the programmer does not know how many values
a function may receive.

 The variable length argument is written with a ‘ * ’ symbol
before it in the function definition as:

 def add(farg, *args):

 115

Recursive Functions

 • A function that calls itself is known as ‘recursive function’.

• For example, we can write the factorial of 3 as:

factorial(3) = 3 * factorial(2)

 Here, factorial(2) = 2 * factorial(1)

And, factorial(1) = 1 * factorial(0)

• Now, if we know that the factorial(0) value is 1, all the
preceding statements will evaluate and give the result as:

factorial(3) = 3 * factorial(2)

 = 3 * 2 * factorial(1)

 = 3 * 2 * 1 * factorial(0)

 = 3 * 2 * 1 * 1 = 6

• From the above statements, we can write the formula to
calculate factorial of any number ‘n’ as: factorial(n) = n *
factorial(n-1)

 116

Recursive Functions (Contd..)

Example:

A Python program to calculate factorial values using
recursion.

def factorial(n):

 """ to find factorial of n """

if n==0:

result=1

else:

result=n*factorial(n-1)

 return result

 #find factorial values for first 10 numbers

for i in range(1, 11):

print('Factorial of {} is {}'.format(i, factorial(i)))

 117

MODULE-IV

 118

Exception: Errors in a Python program, exceptions, exception
handling, types of exceptions, the except block, the assert
statement, user-defined exceptions.

Errors in Python

• The error is something that goes wrong in the program, e.g.,
like a syntactical error.

• It occurs at compile time. Let’s see an example.

– if a<5

– File "<interactive input>", line 1

– if a < 5

– ^

• SyntaxError: invalid syntax

 119

Errors in Python(Contd..)

Syntax Errors

• Error caused by not following the proper structure (syntax)
of the language is called syntax error or parsing error.

– >>> if a < 3

– File "<interactive input>", line 1

– if a < 3

– ^

– SyntaxError: invalid syntax

• We can notice here that a colon is missing in
the if statement.

 120

Errors in Python(Contd..)

 Syntax errors, also known as parsing errors, are perhaps the most
common kind of error you encounter while you are still learning
Python.

 The parser repeats the offending line and displays a little ‘arrow’
pointing at the earliest point in the line where the error was
detected. The error is detected at the token preceding the arrow.
File name and line number are printed so you know where to look in
case the input came from a script.

 121

Exceptions

• Even if a statement or expression is syntactically correct, it may
cause an error when an attempt is made to execute it.

• Errors detected during execution are called exceptions and are
not unconditionally fatal.

• Most exceptions are not handled by programs, however, and
result in error messages like “cannot divide by zero” or “cannot
concatenate ‘str’ and ‘int’ objects”.

 122

Handling Exceptions

 It is possible to write programs that handle selected
exceptions.

 First the 'try' clause is executed until an exception occurs, in
which case the rest of 'try' clause is skipped and the 'except'
clause is executed (depending on type of exception), and
execution continues. If an exception occurs which does not
match the exception named in the except clause, it is passed
on to outer try statements; if no handler is found, it is an
unhandled exception and execution stops.

 123

Handling Exceptions(Contd…)

• The last except clause (when many are declared) may omit the
exception name(s), to serve as a wildcard. This makes it very
easy to mask a real programming error. It can also be used to
print an error message and then re-raise the exception.

• The try-except statement has an optional else clause, which,
when present, must follow all except clauses. It is useful for
code that must be executed if the try clause does not raise an
exception.

 124

Raising Exceptions

• The raise statement allows the programmer to force a
specified exception to occur.

• The sole argument to raise indicates the exception to be
raised.

• A simpler form of the raise statement allows one to re-raise
the exception (if you don’t want to handle it):

 125

Raising Exceptions(Contd..)

 A simpler form of the raise statement allows one to re-raise the
exception (if you don’t want to handle it):

 126

User-defined Exceptions

 Programs may name their own exceptions by creating a new
exception class. These are derived from the Exception class,
either directly or indirectly.

 Here, the def__init__() of Exception has been overridden. The
new behavior simply creates the value attribute.

 127

Defining Clean-up Actions

The try statement has another optional clause which is intended
to define clean-up actions that must be executed under all
circumstances.

A finally clause is executed before leaving the try statement,
whether an exception has occurred or not. When an exception
has occurred in the try clause and has not been handled by an
except clause, it is re-raised after the finally clause has been
executed. The finally clause is also executed “on the way out”
when any other clause of the try statement is exited using
break/continue/return.

 128

Predefined Clean-up Actions

• Some objects define standard clean-up actions to be
undertaken when the object is no longer needed, regardless
of whether or not the operation using the object succeeded
or failed.

• The problem with this code is that it leaves the file open for
an indefinite amount of time after the code has finished
executing.

 129

MODULE-V

 130

GUI in Python: The root window, fonts and colors, working with
containers, Canvas, Frames, Widgets – Button widget, Label
widget, message widget, text widget, radio button widget, entry
widget.

GUI offers the following advantages:

• It is user-friendly. The user need not worry about any commands.
Even a layman will be able to work with the application developed
using GUI.

• It adds attraction and beauty to any application by adding pictures,
colors, menus, animation, etc. For example, all websites on Internet
are developed using GUI to lure their visitors and improve their
business.

GUI IN PYTHON

 131

• It is possible to simulate the real life objects using GUI. For example, a
calculator program may actually display a real calculator on the
screen. The user feels that he is interacting with a real calculator and
he would be able to use it without any difficulty or special training.
So, GUI eliminates the need of user training.

• GUI helps to create graphical components like push buttons, radio
buttons, check buttons, menus, etc. and use them effectively.

GUI IN PYTHON

 134

• Python offers tkinter module to create graphics programs.

• The tkinter represents ‘toolkit interface’ for GUI. This is an interface
for Python programmers that enable them to use the classes of TK
module of TCL/TK language.

• Let’s see what this TCL/TK is. The TCL (Tool Command Language) is a
powerful dynamic programming language, suitable for web and
desktop applications, networking, administration, testing and many
more.

• It is open source and hence can be used by any one freely. TCL
language uses TK (Tool Kit) language to generate graphics.

GUI IN PYTHON

 133

• TK provides standard GUI not only for TCL but also for many other
dynamic programming languages like Python.

• Hence, this TK is used by Python programmers in developing GUI
applications through Python’s tkinter module.

The general steps involved in basic GUI programs:

• First of all, we should create the root window. The root window is the
top level window that Provides rectangular space on the screen
where we can display text, colors, images, components, etc.

GUI IN PYTHON

 134

• In the root window, we have to allocate space for our use. This is done
by creating a canvas or frame. So, canvas and frame are child windows
in the root window.

• Generally, we use canvas for displaying drawings like lines, arcs,
circles, shapes, etc. We use Frame for the purpose of displaying
components like push buttons, check buttons, menus, etc. These
components are also called ‘widgets’.

• When the user clicks on a widget like push button, we have to handle
that event. It means we have to respond to the events by performing
the desired tasks.

GUI IN PYTHON

 135

• To display the graphical output, we need space on the screen. This
space that is initially allocated to every GUI program is called ‘top
level window’ or ‘root window’.

• the root window is the highest level GUI component in any tkinter
application.

• Root window by creating an object to Tk class. The root window will
have a title bar that contains minimize, resize and close options.

• When you click on close ‘X’ option, the window will be destroyed.

THE ROOT WINDOW

 136

THE ROOT WINDOW

Program : A Python program to create root window or top level window.

 137

FONTS AND COLORS

• A font represents a type of displaying letters and
 numbers. In tkinter, fonts are mentioned using a tuple
 that contains font family name, size and font style as:

•Here, the font family name is ‘Times’ and font size is 40
 pixels. If the size is a positive number, it indicates size in
 points. If the size is a negative number, it indicates size in
 pixels. The style of the font can be ‘bold’, ‘italic’,
 ‘underline’, ‘overstrike’. We can mention any one or more
 styles as a string

 138

FONTS AND COLORS

Program: A Python program to know the available font families.

 139

FONTS AND COLORS

Colors in tkinter can be displayed directly by mentioning their
names as: blue, light blue, dark blue, red, light red, dark red,
black, white, yellow, magenta, cyan, etc. We can also specify
colors using the hexadecimal numbers in the format:

For example, #000000 represents black and #ff0000 represents
red. In the same way, #000fff000 represents pure green
and#00ffff is cyan (green plus blue).

 140

• A container is a component that is used as a place where drawings or
widgets can be displayed. In short, a container is a space that displays
the output to the user.

There are two important containers:

• Canvas: This is a container that is generally used to draw shapes like
lines, curves, arcs and circles.

• Frame: This is a container that is generally used to display widgets
like buttons, check buttons or menus. After creating the root
window, we have to create space, i.e. the container in the root
window so that we can use this space for displaying any drawings or
widgets.

WORKING WITH CONTAINERS

 141

CANVAS

A canvas is a rectangular area which can be used for drawing
pictures like lines, circles, polygons, arcs, etc. To create a canvas,
we should create an object to Canvas class as:

Here, ‘c’ is the Canvas class object. ‘root’ is the name of the
parent window. ‘bg’ represents background color, ‘height’ and
‘width’ represent the height and width of the canvas in pixels. A
pixel (picture element) is a minute dot with which all the text
and pictures on the monitor are composed

 142

CANVAS

Once the canvas is created, it should be added to the root
window. Then only it will be visible. This is done using the pack()
method, as follows:

After the canvas is created, we can draw any shapes on the
canvas. For example, to create a line, we can use create line ()
method, as:

To create an oval, we can use the create oval () method. An oval
is also called ellipse.

 143

CANVAS

A polygon represents several points connected by either straight
lines or smooth lines. To create a polygon, we can use the create
polygon () method as:

Similarly, to create a rectangle or square shaped box, we can use
the create rectangle() method as:

It is also possible to display some text in the canvas. For this
purpose, we should use the create text () method as:

 144

CANVAS

Program : A GUI program that demonstrates the creation of various
shapes in canvas.

 145

CANVAS

 146

CANVAS

Another important shape that we can draw in the canvas is an
arc. An arc represents a part of an ellipse or circle. Arcs can be
created using the create arc () method as:

Here, the arc is created in the rectangular space defined by the
coordinates (100, 100) and (400, 300). The width of the arc will
be 3 pixels. The arc will start at an angle 270 degrees and extend
for another 180 degrees (i.e. up to 450 degrees means 450 –
360 = 90 degrees).
The outline of the arc will be in red color. ‘style’ option can be
“arc” for drawing arcs. ‘style’ can be “pie slice” and “chord”.

 147

CANVAS

Another important shape that we can draw in the canvas is an
arc. An arc represents a part of an ellipse or circle. Arcs can be
created using the create arc () method as:

As mentioned, the option ‘start’ represents an angle of the arc
where it has to start and ‘extent’ represents the angle further
which the arc should extend. These angles should be taken in
counter clock-wise direction, taking the 3 O’ clock position as 0
degrees. Thus, the 12 O’ clock position will show 90 degrees, the
9 O’ clock will be 180 and the 6 O’ clock will represent 270
degrees.

 148

CANVAS

The value of the extent should be added to the starting angle so
that we can understand where the arc will stop. For example,

 149

CANVAS

To display an image in the canvas with the help of create image()
method. Using this method, we can display the images with the
formats .gif,.pgm,or.ppm. We should first load the image into a
file using Photo Image class as:

Now, the image is available in ‘file1’. This image can be displayed
in the canvas using create image() method as:

 150

CANVAS

Program: A Python program to display images in the canvas.

 151

CANVAS

 152

FRAME

A frame is similar to canvas that represents a rectangular area
where some text or widgets can be displayed. Our root window is
in fact a frame. To create a frame, we can create an object of Frame
class as:

Here, ‘f’ is the object of Frame class. The frame is created as a
child of ‘root’ window. The options ‘height’ and ‘width’ represent
the height and width of the frame in pixels. ‘bg’ represents the
back ground color to be displayed and ‘cursor’ indicates the type
of the cursor to be displayed in the frame.Once the frame is
created, it should be added to the root window using the pack ()
method as follows:

 153

FRAME

Program: A GUI program to display a frame in the root window.

 154

• A widget is a GUI component that is displayed on the screen and can
perform a task as desired by the user. We create widgets as objects.

• For example, a push button is a widget that is nothing but an object of
Button class. Similarly, label is a widget that is an object of Label class.
Once a widget is created, it should be added to canvas or frame.

• The following are important widgets in Python:

• 1 Button 4 Text 7 Radio button 10 List box

• 2 Label 5 Scrollbar 8 Entry 11 Menu

• 3 Message 6 Check button 9 Spin box

WIDGETS

 155

WIDGETS

In general, working with widgets takes the following four
steps:

1. Create the widgets that are needed in the program. A
widget is a GUI component that is represented as an object of
a class. For example, a push button is a widget that is
represented as Button class object. As an example, suppose
we want to create a push button, we can create an object to
Button class as:

Here, ‘f’ is Frame object to which the button is added. ‘My
Button’ is the text that is displayed on the button.

 156

WIDGETS

2. When the user interacts with a widget, he will generate an
event. For example, clicking on a push button is an event. Such
events should be handled by writing functions or routines.
These functions are called in response to the events. Hence
they are called ‘callback handlers’ or ‘event handlers’. Other
examples for events are pressing the Enter button, right
clicking the mouse button, etc. As an example, let’s write a
function that may be called in response to button click.

Here, ‘f’ is Frame object to which the button is added. ‘My
Button’ is the text that is displayed on the button.

 157

WIDGETS

3. When the user clicks on the push button, that ‘clicking’
event should be linked with the ‘callback handler’ function.
Then only the button widget will appear as if it is performing
some task. As an example, let’s bind the button click with the
function as:

Here, ‘b’ represents the push button. <Button-1> indicates
the left mouse button. When the user presses the left mouse
button, the ‘button Click’ function is called as these are linked
by bind () method in the preceding code.

 158

WIDGETS

4. The preceding 3 steps make the widgets ready for the user.
Now, the user has to interact with the widgets. This is done by
entering text from the keyboard or pressing mouse button.
These are called events. These events are continuously
monitored by our program with the help of a loop, called
‘event loop’. As an example, we can use the main loop()
method that waits and processes the events as:

Here, ‘root’ is the object of root window in Python GUI. The
events in root
window are continuously observed by the main loop()
method. It means clicking the mouse or pressing a button on
the keyboard are accepted by main loop() and then the main
loop() calls the corresponding even handler function.

 159

BUTTON WIDGET

A push button is a component that performs some action when
clicked. These buttons are created as objects of Button class as:

Here, ‘b’ is the object of Button class. ‘f’ represents the frame
for which the button is created as a child. It means the button is
shown in the frame. The ‘text’ option represents the text to be
displayed on the button. ‘width’ represents the width of the
button in characters. If an image is displayed on the button
instead of text, then ‘width’ represents the width in pixels.
‘height’ represents the height of the button in textual lines. If an
image is displayed on the button, then ‘height’ represents the
height of the button in pixels.

 160

BUTTON WIDGET

‘bg’ represents the foreground color and ‘fg’ represents the back
ground color of the button. ‘activebackground’ represents the
background color when the button is clicked. Similarly,
‘activeforeground’ represents the foreground color when the
button is clicked.
We can also display an image on the button as:

In the preceding statement, observe that the width and
height of the button are mentioned in pixels.

 161

BUTTON WIDGET

First Create a frame and then create a push button with some
options and add the button to the frame. Then we link the mouse
left button with the buttonClick () method using bind () method
as:

Here, <Button-1> represents the mouse left button that is
linked withbuttonClick() method. It means when the mouse
left button is clicked, the buttonClick() method is called. This
method is called event handler.

 162

BUTTON WIDGET

Program: A Python program to create a push button and bind it with an
event handler function.

 163

LABEL WIDGET

A label represents constant text that is displayed in the frame or
container. A label can display one or more lines of text that
cannot be modified. A label is created as an object of Label class
as:

Here, ‘f’ represents the frame object to which the label is
created as a child. ‘text’ represents the text to be displayed.
‘width’ represents the width of the label in number of
characters and ‘height’ represents the height of the label in
number of lines. ‘font’ represents a tuple that contains font
name, size and style. ‘fg’ and ‘bg’ represents the foreground
and background colors for the text.

 164

LABEL WIDGET

Program: A Python program to display a label upon clicking a push
button.

 165

MESSAGE WIDGET

A message is similar to a label. But messages are generally used
to display multiple lines of text where as a label is used to display
a single line of text. All the text in the message will be displayed
using the same font. To create a message, we need to create an
object of Message class as:

Here, ‘text’ represents the text to be displayed in the message.
The ‘width’ option specifies the message width in pixels. ‘font’
represents the font for the message. We can use options ‘fg’ for
specifying foreground color and ‘bg’ for specifying background
color for the message text.

 166

MESSAGE WIDGET

Program: A Python program to display a message in the frame.

 167

TEXT WIDGET

Text widget is same as a label or message. But Text widget has
several options and can display multiple lines of text in different
colors and fonts. It is possible to insert text into a Text widget,
modify it or delete it. We can also display images in the Text
widget. One can create a Text widget by creating an object to Text
class as:

Once the Text widget is created, we can insert any text using
the insert() method as:

 168

TEXT WIDGET

It is possible to display an image like a photo using the image
create() method as:

Here, the tag name is ‘start’. It contains characters (or text)
from 1st row 0th character till 1st row 11th character. Now, we
can apply colors and font to this tag text using the config()
method as:

It is possible to mark some part of the text as a tag and provide
different colors and font for that text. For this purpose, first we
should specify the tag using the tag add() method as:

 169

TEXT WIDGET

Program: A Python program to create a Text widget with a vertical
scroll bar attached to it.

 170

TEXT WIDGET

Program: A Python program to create a Text widget with a vertical
scroll bar attached to it. Also, highlight the first line of the text and
display an image in the Text widget.

 171

RADIO BUTTON WIDGET

A radio button is similar to a check button, but it is useful to
select only one option from a group of available options. A radio
button is displayed in the form of round shaped button. The user
cannot select more than one option in case of radio buttons.
When a radio button is selected, there appears a dot in the radio
button. We can create a radio button as an object of the Radio
button class as:

The option ‘text’ represents the string to be displayed after
the radio button. ‘variable’ represents the object of IntVar
class. ‘value’ represents a value that is set to this object when
the radio button is clicked. The object of IntVar class can be
created as:

 172

RADIO BUTTON WIDGET

Program: A Python program to create radio buttons and know which
button is selected by the user.

 173

RADIO BUTTON WIDGET

 174

ENTRY WIDGET

Entry widget is useful to create a rectangular box that can be
used to enter or display one line of text. For example, we can
display names, passwords or credit card numbers using Entry
widgets. An Entry widget can be created as an object of Entry
class as:

After typing text in the Entry widget, the user presses the Enter
button. Such an event should be linked with the Entry widget
using bind() method as:

When the user presses Enter (or Return) button, the event is
passed to display () method. Hence, we are supposed to catch the
event in the display method, using the following statement:

 175

ENTRY WIDGET

Program: A Python program to create Entry widgets for entering user
name and password and display the entered text.

 176

ENTRY WIDGET

 177

Thank You

 178

