

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	OPERATIN	NG SYSTEMS				
Course Code	AITB04					
Programme	B.Tech					
Semester	IV CSE	IT				
Course Type	Core	Core				
Regulation	IARE - R18	IARE - R18				
		Theory Practical				
	Lectures	Tutorials	Credits	Laboratory	Credits	
Course Structure	3	1	4	-	-	
Chief Coordinator	Dr. D Kisho	re Babu, Associa	te Professor			
Course Faculty	Dr.Ch Santa Ms. Y Deep Mr. S Laxma Ms. B Prava	chala, Associate iah, Associate Pr chi, Assistant Pro an Kumar, Assist Ilika, Assistant Profe a, Assistant Profe	ofessor fessor ant Professor rofessor			

I. COURSE OVERVIEW:

This course provides a comprehensive introduction to operating system design concepts, data structures and algorithms. The course is designed to provide in-depth critique on the problems of resource management and scheduling, concurrency and synchronization, memory management, file management, peripheral management, protection and security. This course is intended to discuss the topics in a general setting not tied to any one particular operating system. Throughout the course, the study of practical aspects that pertain to the most popular operating systems such as Unix/Linux and Windows are considered as case studies

II. COURSE PRE-REQUISITES:

Ι	Level	Course Code	Semester	Prerequisites	Credits
	UG	ACS002	II	Data Structures	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Operating Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	•	Assignments	×	MOOCs
<	LCD / PPT	'	Seminars	×	Mini Project	>	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five module and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Manles		
Type of Assessment	CIE Exam	Quiz	AAT Total Mark	
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT):

AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex Engineering problems.	3	Presentation on real-world problems
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Assignment
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with Appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Assignment
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Seminar
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering Activities with an understanding of the limitations.	1	Seminar

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	1	Seminar
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality Product for business success.	-	-
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an Entrepreneur and a zest for higher studies.	-	-

³ = **High**; **2** = **Medium**; **1** = **Low**

VIII. COURSE OBJECTIVES:

The course s	The course should enable the students to:				
Ţ	Understand the fundamental principles of the operating system, its services and				
Functionalities.					
II	Illustrate the concepts of processes, inter-process communication,				
11	synchronization and scheduling.				
III	Understand different types of memory management viz. virtual memory, paging and				
111	segmentation.				
IV	Identify the reasons for deadlock and understand the techniques for deadlock detection,				
1 V	prevention and recovery.				
V	Understand the need of protection and security mechanisms in computer systems.				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe the concept operating system and	CLO 1	Describe the structure of operating system and basic architectural components involved in operating system design.
	operating system design	CLO 2	Describe how the computing resources are
			managed by the operating system.
	design	CLO 3	Understand the objectives and functions of
			modern operating systems.
		CLO 4	Analyze and design the applications to run in parallel
			either using process or thread
			models of different operating system
CO 2	Determine	CLO 5	Understand and analyze implementation of
	Process And CPU		virtual memory
	Scheduling,	CLO 6	Understand the various resource management
	Process		techniques for timesharing and distributed
	Coordination		systems.
		CLO 7	Describe the mutual exclusion, deadlock
			detection in operating system
		CLO 8	Describe the common algorithms used for both pre-
			emptive and non-pre-emptive scheduling of tasks in
			operating systems,
			such a priority and performance comparison
CO 3	An ability to	CLO 9	Understand the difference between a process
	identify and		and a thread
	evaluate Memory	CLO 10	Explain the state diagram that describes the states
	Management And		and state transitions during the whole lifetime of a
	Virtual Memory		process; likewise,
			interpret such a state transition diagram
		CLO 11	Identify the mapping between virtual
			memory address into a physical address
		CLO 12	Explain how a shared memory area can be
			implemented using virtual memory
			addresses in different processes
CO 4	To describe the	CLO 13	Identify the need of memory management in
	File System		operating systems and understand the
	Interface, Mass-		limits of fixed memory allocation schemes
	Storage Structure	CLO 14	Understand the fragmentation in dynamic memory
			allocation, and identify dynamic
			allocation approaches
		CLO 15	Understand how program memory addresses relate to

COs	Course Outcome	CLOs	Course Learning Outcome
			physical memory addresses, memory management in
			base-limit machines, and swapping
		CLO 16	Understand the mechanisms adopted for file
			distribution in applications
CO 5	Understand	CLO 17	Describe different Mass storage structure and I/O
	Deadlocks,		systems
	Protection	CLO 18	Understand issues related to file system interface and
			implementation, disk
			management
		CLO 19	Identify the mechanisms adopted for file
			sharing in distributed applications
		CLO 20	Understand the concepts of Storage
			Management, disk management and disk
			scheduling

X. COURSE LEARNING OUTCOMES (CLOs):

of
ıg
-

		_		,
AITB04.13	CLO 13	Identify the need of memory management in	PO 3	1
		operating systems and understand the		
		limits of fixed memory allocation schemes		
AITB04.14	CLO 14	Understand the fragmentation in dynamic	PO 1,	2
		memory allocation, and identify dynamic	PO 5	
		allocation approaches		
AITB04.15	CLO 15	Understand how program memory addresses	PO 1,	2
		relate to physical memory addresses,	PO 2	
		memory management in base-limit machines,		
		and swapping		
AITB04.16	CLO 16	Understand the mechanisms adopted for file	PO 2	2
		distribution in applications		
AITB04.17	CLO 17	Describe different Mass storage structure and	PO 2,	1
		I/O systems	PO 4	
AITB04.18	CLO 18	Understand issues related to file system	PO 2,	1
		interface and implementation, disk	PO 3	
		management		
AITB04.19	CLO 19	Identify the mechanisms adopted for file	PO 1,	1
		sharing in distributed applications	PO 5	
AITB04.20	CLO 20	Understand the concepts of Storage	PO 1,	2
		Management, disk management and disk	PO 3	
		scheduling		

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)										
Outcomes (COs)	PO 1	PO 2	PO 3	PO4	PO5	PSO1					
CO 1	2	2				2					
CO 2		2			2						
CO 3	2	2		1		1					
CO 4		2	2								
CO 5	2	2	2			2					

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)		Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2	2											1		
CLO 2	2			1									1		
CLO 3			2												

(CLOs)	Program Outcomes (POs)								Program Specific Outcomes (PSOs)				
CLO 4	2										1		
CLO 5		2											
CLO 6			2								1		
CLO 7			2								1		
CLO 8		1		1									
CLO 9	2										1		
CLO 10	2		1								1		
CLO 11		2		1									
CLO 12					1						1		
CLO 13			1										
CLO 14	2				1						1		
CLO 15	2	2											
CLO 16	2												
CLO 17		2		1							1		
CLO 18		2	1										
CLO 19	2				1						1		
CLO 20	2		2								1		

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2, PO3, PO 4, PO5	SEE Exams	PO 1,PO 2, PO 3, PO 4, PO5	Assignments	PO 2, PO 3	Seminars	PO 4, PO 5
Laboratory Practices	PO 1	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

IVX. ASSESSMENT METHODOLOGIES - INDIRECT

•	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Module-I INTRODUCTION

Operating systems objectives and functions: Computer system architecture, operating systems structure, operating systems operations; Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer, parallel distributed systems, real time systems, special purpose systems, operating system services, user operating systems interface; Systems calls: Types of systems calls, system programs, protection and security, operating system design and implementation, operating systems structure, virtual machines

Module -II PROCESS AND CPU SCHEDULING, PROCESS COORDINATION

Process concepts: The process, process state, process control block, threads; Process scheduling: Scheduling queues, schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple processor scheduling; Real time scheduling; Thread scheduling; Case studies Linux windows; Process synchronization, the critical section problem; Peterson's solution, synchronization hardware, semaphores and classic problems of synchronization, monitors.

Module -III MEMORY MANAGEMENT AND VIRTUAL MEMORY

Logical and physical address space: Swapping, contiguous memory allocation, paging, structure of page table.

Segmentation: Segmentation with paging, virtual memory, demand paging; Performance of demand paging: Page replacement, page replacement algorithms, allocation of frames, thrashing.

Module -IV FILE SYSTEM INTERFACE, MASS-STORAGE STRUCTURE

The concept of a file, access methods, directory structure, file system mounting, file sharing, protection, file system structure, file system implementation, allocation methods, free space management, directory implementation, efficiency and performance; Overview of mass storage structure: Disk structure, disk attachment, disk scheduling, disk management, swap space management; Dynamic memory allocation: Basic concepts; Library functions.

Module -V DEADLOCKS, PROTECTION

System model: Deadlock characterization, methods of handling deadlocks, deadlock prevention, dead lock avoidance, dead lock detection and recovery form deadlock system protection, goals of protection, principles of protection, domain of protection, access matrix, implementation of access matrix, access Control, revocation of access rights, capability based systems, language based protection.

Text Books:

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles", Wiley Student Edition, 8th Edition, 2010.
- William Stallings, "Operating System- Internals and Design Principles", Pearson Education, 6th Edition, 2002.

Reference Books:

- 1. Andrew S Tanenbaum, "Modern Operating Systems", PHI, 3rd Edition, 2007.
- 2. D. M. Dhamdhere, "Operating Systems a Concept based Approach", Tata McGraw-Hill, 2nd Edition, 2006

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1 - 2	Computer system architecture, operating systems structure,	CLO 1	T2: 2.1
	operating systems operations.		T1: 1.1 - 1.5
3 - 4	Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer, parallel	CLO 6	T2: 2.2
	distributed systems, real time systems, special purpose systems.		
5 - 6	Operating system services, user operating systems interface. Systems calls: Types of systems calls, system programs.	CLO 2	T1: 2.1 - 2.5

7 - 8	Protection and security, operating system design and implementation, operating systems structure, virtual machines.	CLO 5	T1: 2.6 - 2.8
9 - 10	The process, process state, process control block, threads.	CLO 10	T1: 3.1 -3.4 T2: 3.1 -3.4
11 - 14	Process scheduling: Scheduling queues, schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple processor scheduling.	CLO 8	T1: 5.2 - 5.3
15	Real time scheduling; Thread scheduling.	CLO 8	T1: 5.4 -5.5
16	Case studies - Linux, Windows;	CLO 10	T1:5.6,21.4 T2: 8.3 -8.5
17 - 19	Process synchronization, the critical section problem, Peterson's solution, synchronization hardware.	CLO 7	T1: 6.1 - 6.4
20 - 21	Semaphores and classic problems of synchronization, monitors.	CLO 7	T1: 6.5 -6.7 T2: 6.7 -6.8, 6.10
22 - 24	Swapping, contiguous memory allocation, paging, structureof page table, Segmentation with paging.	CLO 11	T1: 8.1 - 8.3
25 - 26	Virtual memory, demand paging, performance of demand paging.	CLO 13	T1: 8.4 -8.6 T1: 9.1 -9.2
27 - 29	Page replacement: Page replacement algorithms, allocation of frames, thrashing.	CLO 15	T1: 9.4 - 9.6
30- 31	The concept of a file, access methods, directory structure.	CLO 18	T1:10.1-10.3
32 - 35	File system mounting, file sharing, protection, file system structure, file system implementation.	CLO 18	T1:10.4-10.6 T1:11.1-11.2
36 - 38	Allocation methods, free space management, directory implementation, efficiency and performance.	CLO 19	T1: 11.3- 11.6
39 - 40	Overview of mass storage structure: Disk structure, disk attachment, disk scheduling, disk management, swap space management.	CLO 20	T1:12.1 - 12.6
41 - 42	Dynamic memory allocation: Basic concepts; Library functions.	CLO 19	T1:12.7 - 12.8
43 - 45	Deadlock characterization, methods of handling deadlocks.	CLO 21	T1: 7.1 - 7.2
46 - 50	Deadlock prevention, dead lock avoidance, dead lock detection and recovery form deadlock system protection.	CLO 22	T1: 7.3 - 7.7
51 - 52	Goals of protection, principles of protection, domain of protection.	CLO 23	T1:14.1 - 14.3
53 - 55	Access matrix, implementation of access matrix, access control, revocation of access rights.	CLO 25	T1:14.4 - 14.7
56 - 58	Capability based systems, language based protection.	CLO 25	T1:14.8 - 14.9

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Interrupts, Exceptions, and System Calls.	Assignments	PO 2, PO 3	PSO 1
2	Multicore Programming, Multithreading Models	Seminars / Guest Lectures / NPTEL	PO 2, PO 3	PSO 1
3	Free Space Management, I/O Systems	Seminars / NPTEL	PO 1, PO 3	PSO 1

Prepared by:

Dr.D Kishore Babu, Associate Professor

HOD, CSE