
Course Code: AITB04

OPERATING SYSTEMS

Regulation: IARE-R18

B . TECH: IV SEM

Prepared by:
Dr. D.Kishore Babu, Associate. professor

Dr.K Suvarchala, Associate Professor, CSE

Dr. Ch Santaiah, Associate Professor, CSE

Mrs.Y.Deepthi, Assistant Professor, CSE

Mr. S.Laxman Kumar, Assistant Professor, CSE

Mrs. B Pravallika, Assistant Professor, CSE,

Mrs. T Navya, Assistant Professor, CSE

Course Objectives

The course should enable the students to:

CO 1 Understand the fundamental principles of the operating system,

its services and functionalities..

CO 2 Illustrate the concepts of processes, inter-process

communication, synchronization and scheduling.

CO 3 Understand different types of memory management viz. virtual

memory, paging and

segmentation

CO 4 Identify the reasons for deadlock and understand the techniques

for deadlock detection, prevention and recovery..

CO 5 Understand the need of protection and security mechanisms in

computer systems

Course Learning Outcomes

The course will enable the students to:

CLO 1 Describe the structure of operating system and basic

architectural components involved in operating system design.

CLO 2 Describe how the computing resources are managed by the

operating system.

CLO 3 Understand the objectives and functions of modern operating

systems.

CLO 4 Analyze and design the applications to run in parallel either

using process or thread models of different operating system

CLO 5 Understand and analyze implementation of virtual memory

CLO 6 Understand the various resource management techniques for
timesharing and distributed systems.

The course will enable the students to:

CLO 7 Describe the mutual exclusion, deadlock detection in operating

system

CLO 8 Describe the common algorithms used for both pre-emptive

and non-pre-emptive scheduling of tasks in operating systems,

such a priority and performance comparison

CLO 9 Understand the difference between a process and a thread

CLO 10 Explain the state diagram that describes the states and state

transitions during the whole lifetime of a process; likewise,

interpret such a state transition diagram

CLO 11 Identify the mapping between virtual memory address into a

physical address

CLO 12 Explain how a shared memory area can be implemented using

virtual memory addresses in different processes

Course Learning Outcomes cont.

5

The course will enable the students to:

CLO 13 Identify the need of memory management in operating systems

and understand the limits of fixed memory allocation schemes

CLO 14 Understand the fragmentation in dynamic memory allocation,

and identify dynamic allocation approaches

CLO 15 Understand how program memory addresses relate to physical

memory addresses, memory management in base-limit

machines, and swapping

CLO 16 Understand the mechanisms adopted for file distribution in

applications

CLO 17 Describe different Mass storage structure and I/O systems

CLO 18
Understand issues related to file system interface and

implementation, disk management

Course Learning Outcomes cont.

6

The course will enable the students to:

CLO 19 Identify the mechanisms adopted for file sharing in distributed

applications

CLO 20 Understand the concepts of Storage Management, disk

management and disk scheduling

Course Learning Outcomes cont.

MODULE –I:
INTRODUCTION

Contents

• Operating System Objectives and functions

• Computer System Architecture

• Operating System Structure

• Operating System Operations

• Evolution of Operating System

• System Calls

• Protection And Security

• Operating System Design and Implementation

• Virtual Machines

Operating System Objectives and functions

3

FEATURES
• An operating system is a program that acts as an interface between the

software and the computer hardware.
• It is an integrated set of specialized programs used to manage overall and

resources operations of the computer.
• It is a specialized software that controls and monitors the execution of all

other programs that reside in the computer, including application programs
and other system software

Objectives of Operating System

The objectives of the operating system are

• To make the computer system convenient to use in an efficient manner.

• To hide the details of the hardware resources from the users.

• To provide users a convenient interface to use the computer system.

• To act as an intermediary between the hardware and its users, making it easier for

the users to access and use other resources.

• To manage the resources of a computer system.

• To keep track of who is using which resource, granting resource requests, and

mediating conflicting requests from different programs and users.

• To provide efficient and fair sharing of resources among users and programs.

Functions of Operating System

An operating system includes all the programs of a computer system that
control and monitor the operations of the system. Operating systems typically
consist of a kernel that manages the hardware of the computer, as well as
basic system programs that are used to boot the operating system and
configure it. We are going to discuss main functions of operating system

1. Booting

Booting is a process of starting the computer operating system starts the
computer to work. It checks the computer and makes it ready to work.

2. Memory Management

It is also an important function of operating system. The memory cannot be
managed without operating system. Different programs and data execute in
memory at one time. if there is no operating system, the programs may mix
with each other. The system will not work properly.

https://stackoverflow.com/questions/2013937/what-is-an-os-kernel-how-does-it-differ-from-an-operating-system

3. Loading and Execution

A program is loaded in the memory before it can be executed. Operating
system provides the facility to load programs in memory easily and then
execute it.

4. Data Security

Data is an important part of computer system. The operating system
protects the data stored on the computer from illegal use, modification or
deletion.

5.Disk Management

Operating system manages the disk space. It manages the stored files and
folders in a proper way.

6.Process Management

CPU can perform one task at one time. if there are many tasks, operating
system decides which task should get the CPU.

7.Device Controlling

operating system also controls all devices attached to computer. The
hardware devices are controlled with the help of small software called
device drivers.

8.Printing Controlling

Operating system also controls printing function. It a user issues two print
commands at a time, it does not mix data of these files and prints them
separately

Computer System structure

Operating System operations

• An operating system is a construct that allows the user application
programs to interact with the system hardware.

• Operating system by itself does not provide any function but it provides an
atmosphere in which different applications and programs can do useful
work.

• The major operations of the operating system are process management,
memory management, device management and file management. These
are given in detail as follows:

Operating System operations

Process Management

• The operating system is responsible for managing the processes i.e
assigning the processor to a process at a time. This is known as process
scheduling.

• The different algorithms used for process scheduling are FCFS (first come
first served), SJF (shortest job first), priority scheduling, round robin
scheduling etc.

• There are many scheduling queues that are used to handle processes in
process management. When the processes enter the system, they are put
into the job queue.

• The processes that are ready to execute in the main memory are kept in
the ready queue. The processes that are waiting for the I/O device are
kept in the device queue.

Process Management

Memory Management

• Memory management plays an important part in operating system. It

deals with memory and the moving of processes from disk to primary
memory for execution and back again.

• The activities performed by the operating system for memory
management are:

• The operating system assigns memory to the processes as required. This
can be done using best fit, first fit and worst fit algorithms.

• All the memory is tracked by the operating system i.e. it nodes what
memory parts are in use by the processes and which are empty.

• The operating system deallocated memory from processes as required.
This may happen when a process has been terminated or if it no longer
needs the memory.

Memory Management

Device Management

There are many I/O devices handled by the operating system such as
mouse, keyboard, disk drive etc. There are different device drivers that can
be connected to the operating system to handle a specific device.

The device controller is an interface between the device and the device
driver. The user applications can access all the I/O devices using the device
drivers, which are device specific codes

• File Management

Files are used to provide a uniform view of data storage by the operating
system.

All the files are mapped onto physical devices that are usually non volatile

so data is safe in the case of system failure.

Contd..

The files can be accessed by the system in two ways i.e. sequential access
and direct access:

• Sequential Access The information in a file is processed in order using
sequential access.

• The files records are accessed on after another. Most of the file systems
such as editors, compilers etc. use sequential access.

• Direct Access In direct access or relative access, the files can be accessed
in random for read and write operations.

• The direct access model is based on the disk model of a file, since it allows
random accesses.

Contd..

Types of Operating Systems

Following are some of the most widely used types of Operating system.

• Simple Batch System

• Multiprogramming Batch System

• Multiprocessor System

• Desktop System

• Distributed Operating System

• Clustered System

• Realtime Operating System

• Handheld System

Simple Batch Systems
• In this type of system, there is no direct interaction between user and the

computer.

• The user has to submit a job (written on cards or tape) to a computer
operator.

• Then computer operator places a batch of several jobs on an input device.

• Jobs are batched together by type of languages and requirement.

• Then a special program, the monitor, manages the execution of each
program in the batch.

• The monitor is always in the main memory and available for execution.

Simple Batch Systems

Multiprocessor Systems

A Multiprocessor system consists of several processors that share a
common physical memory.

Multiprocessor system provides higher computing power and speed. In
multiprocessor system all processors operate under single operating
system.

Multiplicity of the processors and how they do act together are
transparent to the others.

Advantages of Multiprocessor Systems

• Enhanced performance

• Execution of several tasks by different processors concurrently, increases
the system's throughput without speeding up the execution of a single
task.

• Time Sharing Systems
It very similar to Multiprogramming batch systems. In fact time sharing
systems are an extension of multiprogramming systems.

In Time sharing systems the prime focus is on minimizing the response
time, while in multiprogramming the prime focus is to maximize the CPU
usage.

Time Sharing Systems

• Personal computer
An operating system is responsible for several tasks. These tasks fall into the
following broad categories:

Processor management -- breaks down the processor's work into manageable
chunks and prioritizes them before sending them to the CPU.
Memory management -- coordinates the flow of data in and out of RAM, and
determines when to use virtual memory on the hard disk to supplement an
insufficient amount of RAM.
Device management -- provides a software-based interface between the
computer's internal components and each device connected to the computer.
Storage management -- directs where data should be stored permanently on hard
drives, solid state drives, USB drives and other forms of storage. For example,
storage management tasks assist when creating, reading, editing, moving, copying
and deleting documents.

Personal computer

• Application interface -- provides data exchange between software
programs and the PC. An application must be programmed to work with
the application interface for the operating system you're using.

• Applications are often designed for specific versions of an OS, too. You'll
see this in the application's requirements with phrases like "Windows
Vista or later," or "only works on 64-bit operating systems.“

• User interface (UI) - provides a way for you to interact with the computer.

Personal computer

• Parallel and distributed systems

What is a parallel computer?

A collection of processing elements that communicate and coorperate to solve
large problems fast.

What is a distributed system?

A collection of independent computers that appear to its users as a single
coherent system.

A parallel computer is implicitly a distributed system

Parallel and distributed systems

Real time systems

• It is defined as an operating system known to give maximum time for each
of the critical operations that it performs, like OS calls and interrupt
handling.

• The Real-Time Operating system which guarantees the maximum time for
critical operations and complete them on time are referred to as Hard
Real-Time Operating Systems.

• While the real-time operating systems that can only guarantee a
maximum of the time, i.e.

• The critical task will get priority over other tasks, but no assurity of
completeing it in a defined time. These systems are referred to as Soft
Real-Time Operating Systems.

Real time systems

Clustered Systems

• Like parallel systems, clustered systems gather together multiple CPUs to
accomplish computational work.

• Clustered systems differ from parallel systems, however, in that they are
composed of two or more individual systems coupled together.

• The definition of the term clustered is not concrete; the general accepted
definition is that clustered computers share storage and are closely linked
via LAN networking.

• Clustering is usually performed to provide high availability.

• A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others.

• If the monitored machine fails, the monitoring machine can take
ownership of its storage, and restart the application(s) that were running
on the failed machine. The failed machine can remain down, but the users
and clients of the application would only see a brief interruption of

service.

Clustered Systems

• Asymmetric Clustering - In this, one machine is in hot standby mode while
the other is running the applications.

• The hot standby host (machine) does nothing but monitor the active
server. If that server fails, the hot standby host becomes the active server.

• Symmetric Clustering - In this, two or more hosts are running applications,
and they are monitoring each other.

• This mode is obviously more efficient, as it uses all of the available
hardware.

• Parallel Clustering - Parallel clusters allow multiple hosts to access the
same data on the shared storage.

• Because most operating systems lack support for this simultaneous data
access by multiple hosts, parallel clusters are usually accomplished by

special versions of software and special releases of applications.

Clustered Systems

System calls

• In computing, a system call is the programmatic way in which a computer
program requests a service from the kernel of the operating system it is
executed on. A system call is a way for programs to interact with the
operating system. A computer program makes a system call when it
makes a request to the operating system’s kernel. System call provides the
services of the operating system to the user programs via Application
Program Interface(API). It provides an interface between a process and
operating system to allow user-level processes to request services of the
operating system. System calls are the only entry points into the kernel
system. All programs needing resources must use system calls.

• Services Provided by System Calls :

1. Process creation and management

2. Main memory management

3. File Access, Directory and File system management

4. Device handling(I/O)

5. Protection

Types of System Calls

There are mainly five types of system calls. These are explained in detail as
follows:

Process Control

These system calls deal with processes such as process creation, process
termination etc.

File Management

These system calls are responsible for file manipulation such as creating a file
reading file, writing into a file etc.

Device Management

These system calls are responsible for device manipulation such as reading
from device buffers, writing into device buffers etc.

Information Maintenance

These system calls handle information and its transfer between the operating
system and the user program.

Communication

These system calls are useful for interprocess communication. They also deal
with creating and deleting a communication connection.

Operating System - Security

• Security refers to providing a protection system to computer system
resources such as CPU, memory, disk, software programs and most
importantly data/information stored in the computer system

• Authentication, One Time passwords, Program Threats, System Threats

• Computer Security Classifications

• Authentication

• Authentication refers to identifying each user of the system and
associating the executing programs with those users.

• Username / Password − User need to enter a registered username and
password with Operating system to login into the system.

• User card/key − User need to punch card in card slot, or enter key
generated by key generator in option provided by operating system to
login into the system.

• User attribute - fingerprint/ eye retina pattern/ signature − User need to
pass his/her attribute via designated input device used by operating
system to login into the system

Operating System Design and Implementation

An operating system is a construct that allows the user application programs to
interact with the system hardware. Operating system by itself does not provide
any function but it provides an atmosphere in which different applications and
programs can do useful work.
There are many problems that can occur while designing and implementing an
operating system. These are covered in operating system design and
implementation.

Operating System Design Goals

• It is quite complicated to define all the goals and specifications of the
operating system while designing it.The design changes depending on the
type of the operating system i.e if it is batch system, time shared system,
single user system, multi user system, distributed system etc.

• There are basically two types of goals while designing an operating
system. These are:

User Goals

• The operating system should be convenient, easy to use, reliable, safe and
fast according to the users. However, these specifications are not very
useful as there is no set method to achieve these goals.

System Goals

• The operating system should be easy to design, implement and maintain.
These are specifications required by those who create, maintain and
operate the operating system. But there is not specific method to achieve
these goals as well.

Operating System Design and Implementation

System programs

System programs provide an environment where programs can be developed
and executed. In the simplest sense, system programs also provide a
bridge between the user interface and system calls. In reality, they are
much more complex. For example, a compiler is a complex system
program.

System Programs Purpose

• The system program serves as a part of the operating system. It
traditionally lies between the user interface and the system calls. The user
view of the system is actually defined by system programs and not system
calls because that is what they interact with and system programs are
closer to the user interface.

• An image that describes system programs in the operating system
hierarchy is as follows:

• In the above image, system programs as well as application programs form
a bridge between the user interface and the system calls. So, from the
user view the operating system observed is actually the system programs
and not the system calls.

System programs

Types of System Programs

System programs can be divided into seven parts. These are given as follows:

Status Information

The status information system programs provide required data on the current
or past status of the system. This may include the system date, system
time, available memory in system, disk space, logged in users etc.

Communications

These system programs are needed for system communications such as web
browsers. Web browsers allow systems to communicate and access
information from the network as required.

File Manipulation

These system programs are used to manipulate system files. This can be done
using various commands like create, delete, copy, rename, print etc. These
commands can create files, delete files, copy the contents of one file into
another, rename files, print them etc.

System programs

Program Loading and Execution

The system programs that deal with program loading and execution make sure
that programs can be loaded into memory and executed correctly.

Loaders and Linkers are a prime example of this type of system programs.

File Modification

System programs that are used for file modification basically change the data
in the file or modify it in some other way.

Text editors are a big example of file modification system programs.

Application Programs

Application programs can perform a wide range of services as per the needs of
the users.

These include programs for database systems, word processors, plotting tools,
spreadsheets, games, scientific applications etc.

Programming Language Support
These system programs provide additional support features for different
programming languages. Some examples of these are compilers, debuggers
etc.

System programs

Protection and security

• Protection and security requires that computer resources such as CPU,
software, memory etc. are protected.

• This extends to the operating system as well as the data in the system.

• This can be done by ensuring integrity, confidentiality and availability in
the operating system.

• The system must be protect against unauthorized access, viruses, worms
etc.

Threats to Protection and Security

A threat is a program that is malicious in nature and leads to harmful effects
for the system. Some of the common threats that occur in a system are:

Virus

Viruses are generally small snippets of code embedded in a system. They are
very dangerous and can corrupt files, destroy data, crash systems etc. They
can also spread further by replicating themselves as required.

Trojan Horse

A trojan horse can secretly access the login details of a system. Then a
malicious user can use these to enter the system as a harmless being and
wreak havoc

Trap Door
A trap door is a security breach that may be present in a system without the
knowledge of the users.
Worm
A worm can destroy a system by using its resources to extreme levels.
Denial of Service
These type of attacks do not allow the legitimate users to access a system.

Protection and security

Operating system structure

• An operating system is a construct that allows the user application
programs to interact with the system hardware. Since the operating
system is such a complex structure, it should be created with utmost care
so it can be used and modified easily.

Simple Structure

• There are many operating systems that have a rather simple structure.
These started as small systems and rapidly expanded much further than
their scope.

• A common example of this is MS-DOS. It was designed simply for a niche
amount for people. There was no indication that it would become so
popular.

• An image to illustrate the structure of MS-DOS is as follows:

It is better that operating systems have a modular structure, unlike MS-
DOS. That would lead to greater control over the computer system and its
various applications. The modular structure would also allow the
programmers to hide information as required and implement internal
routines as they see fit without changing the outer specifications.

Contd..

Layered Structure

• One way to achieve modularity in the operating system is the layered
approach. In this, the bottom layer is the hardware and the topmost layer
is the user interface.

• An image demonstrating the layered approach is as follows:

Contd..

• As seen from the image, each upper layer is built on the bottom layer. All
the layers hide some structures, operations etc from their upper layers.

• One problem with the layered structure is that each layer needs to be
carefully defined. This is necessary because the upper layers can only use
the functionalities of the layers below them.

• Virtual Machine abstracts the hardware of our personal computer such as
CPU, disk drives, memory, NIC (Network Interface Card) etc, into many
different execution environments as per our requirements, hence giving us
a feel that each execution environment is a single computer. For example,
VirtualBox.

• When we run different processes on an operating system, it creates an
illusion that each process is running on a different processor having its
own virtual memory, with the help of CPU scheduling and virtual-memory
techniques. There are additional features of a process that cannot be
provided by the hardware alone like system calls and a file system..

Contd..

• The main drawback with the virtual-machine approach involves disk
systems. Let us suppose that the physical machine has only three disk
drives but wants to support seven virtual machines.

• Obviously, it cannot allocate a disk drive to each virtual machine, because
virtual-machine software itself will need substantial disk space to provide
virtual memory and spooling. The solution is to provide virtual disks.

• Users are thus given their own virtual machines. After which they can run
any of the operating systems or software packages that are available on
the underlying machine.

• The virtual-machine software is concerned with multi-programming
multiple virtual machines onto a physical machine, but it does not need to
consider any user-support software.

• This arrangement can provide a useful way to divide the problem of
designing a multi-user interactive system, into two smaller pieces.

Contd..

Advantages:

• There are no protection problems because each virtual machine is
completely isolated from all other virtual machines.

• Virtual machine can provide an instruction set architecture that differs
from real computers.

• Easy maintenance, availability and convenient recovery.

Disadvantages:

• When multiple virtual machines are simultaneously running on a host
computer, one virtual machine can be affected by other running virtual
machines, depending on the workload.

• Virtual machines are not as efficient as a real one when accessing the
hardware.

Contd..

MODULE –II:
PROCESS AND CPU SCHEDULING, PROCESS

COORDINATION

Contents

• Operating System Objectives and functions

• Process concepts

• Process scheduling: Scheduling queues, schedulers, context switch, preemptive
scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple
processor scheduling;

• Real time scheduling;

• Thread scheduling;

• Case studies Linux windows; Process synchronization, the critical section
problem;

• Peterson‘s solution

• Synchronization hardware

• Semaphores and classic problems of synchronization, monitors.

• Operating System Structure

• Operating System Operations

Process Concept

An operating system executes a variety of programs:

Batch system – jobs

Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost interchangeably.

Process – a program in execution; process execution must progress in sequential
fashion.

A process includes:

program counter

stack

data section

Process State

As a process executes, it changes state

new: The process is being created.

running: Instructions are being executed.

waiting: The process is waiting for some event to occur.

ready: The process is waiting to be assigned to a process.

terminated: The process has finished execution.

Diagram of Process State

Fig.Diagram of Process State

Process Control Block (PCB)

Information associated with each process.

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

Process Control Block (PCB)

CPU Switch From Process to Process

Process Scheduling Queues

 Job queue – set of all processes in the system.

 Ready queue – set of all processes residing in main

memory, ready and waiting to execute.

 Device queues – set of processes waiting for an I/O

device.

 Process migration between the various queues.

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which

processes should be brought into the ready queue.

 Short-term scheduler (or CPU scheduler) – selects which

process should be executed next and allocates CPU.

Addition of Medium Term Scheduling

Schedulers (Cont.)

 Short-term scheduler is invoked very frequently

(milliseconds) (must be fast).

 Long-term scheduler is invoked very infrequently

(seconds, minutes) (may be slow).

 The long-term scheduler controls the degree of

multiprogramming.

 Processes can be described as either:

I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts.

CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Context Switch

 When CPU switches to another process, the system must save the state of the

old process and load the saved state for the new process.

 Context-switch time is overhead; the system does no

useful work while switching.

 Time dependent on hardware support.

Process Creation

 Parent process create children processes, which, in turn

create other processes, forming a tree of processes.

 Resource sharing

Parent and children share all resources.

Children share subset of parent’s resources.

Parent and child share no resources.

 Execution

Parent and children execute concurrently.

Parent waits until children terminate.

Process Creation (Cont.)

 Address space

Child duplicate of parent.

Child has a program loaded into it.

 UNIX examples

fork system call creates new process

exec system call used after a fork to replace the process’

memory space with a new program.

Processes Tree on a UNIX System

Process Termination

 Process executes last statement and asks the operating

system to decide it (exit).

Output data from child to parent (via wait).

Process’ resources are deallocated by operating system.

 Parent may terminate execution of children processes

(abort).

Child has exceeded allocated resources.

Task assigned to child is no longer required.

Parent is exiting.

Operating system does not allow child to continue if its

parent terminates.

Cascading termination.

Cooperating Processes

 Independent process cannot affect or be affected by the

execution of another process.

 Cooperating process can affect or be affected by the

execution of another process

 Advantages of process cooperation

Information sharing

Computation speed-up

Modularity

Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces information

that is consumed by a consumer process.

unbounded-buffer places no practical limit on the size of the

buffer.

bounded-buffer assumes that there is a fixed buffer size.

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

Typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1

elements

Interprocess Communication (IPC)

 Mechanism for processes to communicate and to

synchronize their actions.

 Message system – processes communicate with each

other without resorting to shared variables.

 IPC facility provides two operations:

send(message) – message size fixed or variable

receive(message)

 If P and Q wish to communicate, they need to:

establish a communication link between them

exchange messages via send/receive

 Implementation of communication link: physical (e.g., shared memory,

hardware bus), logical (e.g., logical properties)

Direct Communication

 Processes must name each other explicitly:

send (P, message) – send a message to process P

receive(Q, message) – receive a message from process Q

 Properties of communication link

Links are established automatically.

A link is associated with exactly one pair of communicating

processes.

Between each pair there exists exactly one link.

The link may be unidirectional, but is usually bi-directional.

Indirect Communication

 Messages are directed and received from mailboxes (also

referred to as ports).

Each mailbox has a unique id.

Processes can communicate only if they share a mailbox.

 Properties of communication link

Link established only if processes share a common mailbox

A link may be associated with many processes.

Each pair of processes may share several communication

links.

Link may be unidirectional or bi-directional.

Indirect Communication

 Operations

create a new mailbox

send and receive messages through mailbox

destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

Synchronization

 Message passing may be either blocking or non-blocking.

 Blocking is considered synchronous

 Non-blocking is considered asynchronous

 send and receive primitives may be either blocking or non-blocking.

CPU Scheduler

 Selects from among the processes in memory that are

ready to execute, and allocates the CPU to one of them.

 CPU scheduling decisions may take place when a

process:

1. Switches from running to waiting state.

2. Switches from running to ready state.

3. Switches from waiting to ready.

4. Terminates.

 Scheduling under 1 and 4 is nonpreemptive.

 All other scheduling is preemptive.

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted

until the first response is produced, not output (for time-sharing environment)

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 ,P3

The Gantt Chart for the schedule is:

P1 P2 P3

300 24 27

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

First-Come, First-Served (FCFS) Scheduling

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

P2 , P3 , P1 .

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case.

 Convoy effect short process behind long process

P2 P3 P1

Operating

System

63 300

Objectives of Operating System

The objectives of the operating system are

• To make the computer system convenient to use in an efficient manner.

• To hide the details of the hardware resources from the users.

• To provide users a convenient interface to use the computer system.

• To act as an intermediary between the hardware and its users, making it easier for

the users to access and use other resources.

• To manage the resources of a computer system.

• To keep track of who is using which resource, granting resource requests, and

mediating conflicting requests from different programs and users.

• To provide efficient and fair sharing of resources among users and programs.

Shortest-Job-First (SJR) Scheduling

80

 Associate with each process the length of its next CPU burst. Use
these lengths to schedule the process with the shortest time.

 Two schemes:

nonpreemptive – once CPU given to the process it cannot
be preempted until completes its CPU burst.

preemptive – if a new process arrives with CPU burst length less than
remaining time of current executing process, preempt. This scheme is
know as the

Shortest-Remaining-Time-First (SRTF).

 SJF is optimal – gives minimum average waiting time for a given set of
processes.

Objectives of Operating System

The objectives of the operating system are

• To make the computer system convenient to use in an efficient manner.

• To hide the details of the hardware resources from the users.

• To provide users a convenient interface to use the computer system.

• To act as an intermediary between the hardware and its users, making it easier for

the users to access and use other resources.

• To manage the resources of a computer system.

• To keep track of who is using which resource, granting resource requests, and

mediating conflicting requests from different programs and users.

• To provide efficient and fair sharing of resources among users and programs.

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 - 4

Example of Non-Preemptive SJF

3 160

P1 P3 P2 P4

7 8 12

Objectives of Operating System

The objectives of the operating system are

• To make the computer system convenient to use in an efficient manner.

• To hide the details of the hardware resources from the users.

• To provide users a convenient interface to use the computer system.

• To act as an intermediary between the hardware and its users, making it easier for

the users to access and use other resources.

• To manage the resources of a computer system.

• To keep track of who is using which resource, granting resource requests, and

mediating conflicting requests from different programs and users.

• To provide efficient and fair sharing of resources among users and programs.

Example of Preemptive SJF

Process Arrival Time Burst Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

 Average waiting time = (9 + 1 + 0 +2)/4 - 3

 SJF (preemptive)
P1 P2 P3

2 110

P4

4 5 7

P2 P1

16

Operating

System

Priority Scheduling

85

 A priority number (integer) is associated with each
process

 The CPU is allocated to the process with the highest
priority (smallest integer highest priority).

Preemptive

nonpreemptive

 SJF is a priority scheduling where priority is the predicted
next CPU burst time.

 Problem Starvation – low priority processes may never
execute.

 Solution Aging – as time progresses increase the
priority of the process.

Round Robin (RR)

86

 Each process gets a small unit of CPU time (time quantum), usually
10-100 milliseconds. After this time has
elapsed, the process is preempted and added to the end of the ready
queue.

 If there are n processes in the ready queue and the time quantum is
q, then each process gets 1/n of the CPU time in chunks of at most q
time units at once.

 No process waits more than (n-1)q time units.

 Performance

q large FIFO

q small q must be large with respect to context switch,
otherwise overhead is too high.

Example of RR with Time Quantum = 20

Process

P1

P2 P3 P4

The

Gantt

chart is:

Burst Time

53

17

68

24

0 20 37 57 77 97 117 121 134 154 162

 Typically, higher average turnaround than SJF, but better

response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

Multiple-Processor Scheduling

88

 CPU scheduling more complex when multiple CPUs are

available.

 Homogeneous processors within a multiprocessor.

 Load sharing

 Asymmetric multiprocessing – only one processor accesses the

system data structures, alleviating the need for data sharing.

Real-Time Scheduling

89

 Hard real-time systems – required to complete a critical

task within a guaranteed amount of time.

 Soft real-time computing – requires that critical processes

receive priority over less fortunate ones.

Single and Multithreaded Processes

90

Benefits

91

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

User Threads

 Thread management done by user-level threads library

 Examples

- POSIX Pthreads

- Mach C-threads

- Solaris threads

Kernel Threads

92

 Supported by the Kernel

 Examples

- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

93

 Many user-level threads mapped to single kernel thread.

 Used on systems that do not support kernel threads.

Many-to-One Model

94

 Allows many user level threads to be mapped to many

kernel threads.

 Allows the operating system to create a sufficient number

of kernel threads.

 Solaris 2

 Windows NT/2000 with the ThreadFiber package

Many-to-Many Model

95

 Linux refers to them as tasks rather than threads.

 Thread creation is done through clone() system call.

 Clone() allows a child task to share the address space of the parent
task (process)

Linux Threads

Java Threads

96

 Java threads may be created by:

 Extending Thread class

 Implementing the Runnable interface

 Java threads are managed by the JVM.

The Critical-Section Problem

97

 n processes all competing to use some shared data

 Each process has a code segment, called critical section,
in which the shared data is accessed.

 Problem – ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section.

Solution to Critical-Section Problem

98

1. Mutual Exclusion. If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next
cannot be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

Assume that each process executes at a nonzero speed

No assumption concerning relative speed of the n processes.

Semaphores

99

 Synchronization tool that does not require busy
waiting.

 Semaphore S – integer variable

 can only be accessed via two indivisible (atomic)
operations

wait (S):

while S 0 do no-op; S--;

signal (S):

S++;

MODULE-3

Memory Management

Memory Management

1
0
0

Memory Management

1
0
1

 Background

 Swapping

 Contiguous Allocation

 Paging

 Segmentation

 Segmentation with Paging

 Demand Paging

 Process Creation

 Page Replacement

 Allocation of Frames

 Thrashing

 Operating System Examples

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at
three different stages.

Compile time: If memory location known a priori, absolute code can be
generated; must recompile code if starting location changes.

Load time: Must generate reloadable code if memory location is not
known at compile time.

Execution time:Binding delayed until run time if the process can be moved
during its execution from one memory segment to another. Need hardware
support for address maps (e.g., base and limit registers).

4

Multistep Processing of a User Program

5

Logical vs. Physical Address Space

6

 The concept of a logical address space that is bound to a separate
physical address space is central to proper memory management.

Logical address – generated by the CPU;

also referred to as virtual address.

Physical address – address seen by the memory unit.

 Logical and physical addresses are the same in compile-time and load-
time address-binding schemes; logical (virtual) and physical addresses
differ in execution-time address-binding scheme.

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address.

 In MMU scheme, the value in the relocation register is
added to every address generated by a user process at the
time it is sent to memory.

 The user program deals with logical addresses; it never
sees the real physical addresses.

7

Dynamic relocation using a relocation register

Dynamic Loading

9

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never
loaded.

 Useful when large amounts of code are needed to handle
infrequently occurring cases.

 No special support from the operating system is required
implemented through program design.

Overlays

10

 Keep in memory only those instructions and data that are
needed at any given time.

 Needed when process is larger than amount of memory
allocated to it.

 Implemented by user, no special support needed from
operating system, programming design of overlay structure
is complex

Overlays for a Two-Pass Assembler

10
9

Swapping

11
0

 A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

 Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct accessto these
memory images.

 Roll out, roll in – swapping variant used for priority-based scheduling
algorithms;lower-priority process is swapped out so higher-priority
process can be loaded andexecuted.

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

Schematic View of Swapping

11
1

Contiguous Allocation

11
2

 Main memory usually into two partitions:

Resident operating system, usually held in low memory with interrupt
vector.

User processes then held in high memory.

 Single-partition allocation

Relocation-register scheme used to protect user processes from each
other, and from changing operating-system code and data.

Relocation register contains value of smallest physical address; limit
register contains range of logical addresses each logical address must
be less than the limit register.

Hardware Support for Relocation and Limit Registers

11
3

Contiguous Allocation (Cont.)

11
4

 Multiple-partition allocation

Hole – block of available memory; holes of various size are scattered
throughout memory.

When a process arrives, it is allocated memory from a hole large enough to
accommodate it.

Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

OS

process 5

process 9

process 10

process 2

Address Translation Scheme

17

 Address generated by CPU is divided into:

Page number (p) – used as an index into a page

table which

contains base address of each page in physical memory.

Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit.

Address Translation Architecture

11
6

Paging Example

11
7

Paging Example

20

Free Frames

11
9

Before allocation After allocation

Paging Hardware With TLB

12
0

Effective Access Time

12
1

 Associative Lookup = time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is found
in the associative registers; ration related to number of
associative registers.

 Hit ratio =

 Effective Access Time (EAT)

Memory Protection

 Memory protection implemented by associating protection
bit with each frame.

 Valid-invalid bit attached to each entry in the page table:

“valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

“invalid” indicates that the page is not in the process’ logical
address space.

24

Valid (v) or Invalid (i) Bit In A Page Table

25

Page Table Structure

26

 Hierarchical Paging

 Hashed Page Tables

 Inverted PageTables

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:

a page number consisting of 20bits.

 a page offset consisting of 12 bits.

 Since the page table is paged, the page number is further
divided into:

a 10-bit page number.

 a 10-bit page offset.

 Thus, a logical address is as follows:

 where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table.

page number page offset

Pi

10

P2

10
d

12

Two-Level Page-Table Scheme

12
6

Address-Translation Scheme

12
7

 Address-translation scheme for a two-level 32-bit paging architecture

Hashed Page Tables

12
8

 Common in address spaces > 32 bits.

 The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same
location.

 Virtual page numbers are compared in this chain searching for
a match.

 If a match is found, the corresponding physical frame is
extracted.

Hashed Page Table

12
9

Inverted Page Table Architecture

13
0

Shared Pages

13
1

 Shared code

One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

Shared code must appear in same location in the logical
address space of all processes.

 Private code and data

Each process keeps a separate copy of the code and data.

The pages for the private code and data can appear anywhere
in the logical address space.

Shared Pages Example

34

Segmentation

13
3

 Memory-management scheme that supports user view of memory.

 A program is a collection of segments. A segment is a logical unit
such as:

main program, procedure,

function,
method,

object,

local variables,

global variables,

common block,

stack,

symbol table,

arrays

User’s View of a Program

13
4

Logical View of Segmentation

37

1

3

2

4

1

4

2

3

user space physical memoryspace

Segmentation Architecture

13
6

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical
addresses; each table entry has:

base – contains the starting physical address where the segments
reside in memory.

limit – specifies the length of the segment.

 Segment-table base register (STBR) points to the segment table’s location in
memory.

 Segment-table length register (STLR) indicates number of STLR.

13
7

Segmentation Architecture (Cont.)

 Protection. With each entry in segment table associate:

validation bit = 0 illegalsegment

read/write/executeprivileges

 Protection bits associated with segments; code sharing occurs at
segment level.

 Since segments vary in length, memory allocation is a dynamic
storage-allocation problem.

 A segmentation example is shown in the following diagram

Segmentation Hardware

13
8

Example of Segmentation

13
9

Sharing of Segments

14
0

Segmentation with Paging – MULTICS

14
1

 The MULTICS system solved problems of external fragmentation and

lengthy search times by paging the segments.

 Solution differs from pure segmentation in that the segment-table entry

contains not the base address of the segment, but rather the base

address of a page table for this segment.

MULTICS Address Translation Scheme

44

Intel 30386 Address Translation

14
3

Background

14
4

 Virtual memory – separation of user logical memory
from physical memory.

Only part of the program needs to be in memory for execution.

Logical address space can therefore be much larger than physical
address space.

Allows address spaces to be shared by several processes.

Allows for more efficient process creation.

 Virtual memory can be implemented via:

Demand paging

Demand segmentation

Virtual Memory That is Larger Than Physical Memory

14
5

Demand Paging

48

 Bring a page into memory only when it is needed.

Less I/O needed

Less memory needed

Faster response

More users

 Page is needed reference to it

invalid reference abort

not-in-memory bring to memory

Transfer of a Paged Memory to Contiguous Disk Space

49

Page Table When Some Pages Are Not in Main Memory

50

Steps in Handling a Page Fault

51

What happens if there is no free frame?

52

 Page replacement – find some page in memory, but not
really in use, swap it out.

algorithm

performance – want an algorithm which will result in
minimum number of page faults.

 Same page may be brought into memory several times.

Demand Paging Example

53

 Memory access time = 1 microsecond

 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

 Swap Page Time = 10 m sec = 10,000 m sec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in m sec)

 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files

Process Creation

Copy-on-Write

15
2

 Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory.

If either process modifies a shared page, only then is the page
copied.

 COW allows more efficient process creation as only modified
pages are copied.

 Free pages are allocated from a pool of zeroed-out
pages.

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine
memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as
ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather
than read() write() system calls.

Memory Mapped Files

15
4

Page Replacement

15
5

 Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

 Use modify (dirty) bit to reduce overhead of page transfers – only
modified pages are written to disk.

 Page replacement completes separation between logical memory
and physical memory – large virtual memory can be provided on
a smaller physical memory.

Page Replacement

15
6

 Prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

 Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk.

 Page replacement completes separation between logical
memory and physical memory – large virtual memory can be
provided on a smaller physical memory.

Need For Page Replacement

15
7

Page Replacement

15
8

15
9

Page Replacement Algorithms

 Want lowest page-fault rate.

 Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page
faults on that string.

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Graph of Page Faults Versus The Number of Frames

16
0

First-In-First-Out (FIFO) Algorithm

 4 frames

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time
per process)

1

2

3

1

2

3

4

 FIFO Replacement – Belady’s Anomaly

more frames less page faults

1 4 5

2 1 3 9 page faults

3 2 4

1 5 4

2 1 5 10 page faults

3 2

4 3

FIFO Page Replacement

65

FIFO Illustrating Belady’s Anamoly

66

Optimal Algorithm

67

1

2

3

4

 Replace page that will not be used for longest period of
time.

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4,5

4

6 page faults

5

 How do you know this?

 Used for measuring how well your algorithm performs.

Optimal Page Replacement

68

Least Recently Used (LRU) Algorithm

69

 Referencestring:

, 2,

 Counter implementation

Every page entry has a counter; every time page is referenced
through this entry, copy the clock intothe counter.

When a page needs to be changed, look at the counters to
determine which are to change.

53,4, 1, 2, 5, 1, 2, 3, 4, 51
1

2

3

4

5 4

3

LRU Page Replacement

LRU Algorithm (Cont.)

16
8

 Stack implementation – keep a stack of page numbersin
a double link form:

Page referenced:

move it to the top

requires 6 pointers to bechanged

No search for replacement

Use Of A Stack to Record The Most Recent Page References

16
9

Second-Chance (clock) Page-Replacement Algorithm

17
0

Counting Algorithms

 Keep a counter of the number of references that have been made
to each page.

 LFU Algorithm: replaces page with smallest count.

 MFU Algorithm: based on the argument that the page with the
smallest count was probably just brought in and has yet to be
used.

Allocation of Frames

. 75

 Each process needs minimum number of pages.

 Example: IBM 370 – 6 pages to handle SS MOVE
instruction:

instruction is 6 bytes, might span 2 pages.

2 pages to handle from.

2 pages to handle to.

 Two major allocation schemes.

fixed allocation

priority allocation

Fixed Allocation

17
3

 Equal allocation – e.g., if 100 frames and 5 processes, give each 20
pages.

 Proportional allocation – Allocate according to the size of
Process.

si = size of process pi S
= si

m = total number of frames
ai = allocation for Pi=si /S x m

m  64

si  10

s2 127

137

137
1  64 5

a2 
127  64 59

a  10

Use a proportional allocation scheme using priorities rather than

size.

If process Pi generates a pagefault,

select for replacement one of its frames.

select for replacement a frame from a process with lower

priority number.

17
4

Priority Allocation

Global vs. Local Allocation

17
5

 Global replacement – process selects a replacement frame from the
set of all frames; one process can take a frame from another.

 Local replacement – each process selects from only its own set of

allocated frames.

Thrashing

Locality In A Memory-Reference Pattern

17
6

Working-Set Model

81

 working-set window a fixed number of page references
Example: 10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent (varies in time)

 if  too small will not encompass entire locality.

 if  too large will encompass several localities.

 if = will encompass entire program.

 D =  WSSi =total demandframes

 if D > m  Thrashing

 Policy if D > m, then suspend one of the processes.

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit

 Example: = 10,000

Timer interrupts after every 5000 time units.

Keep in memory 2 bits for each page.

Whenever a timer interrupts copy and sets the values of all
reference bits to 0.

If one of the bits in memory = 1 page in working set.

 Why is this not completely accurate?

 Improvement = 10 bits and interrupt every 1000 time units.

Page-Fault Frequency Scheme

17
9

 Establish “acceptable” page-fault rate.

If actual rate too low, process loses frame.

If actual rate too high, process gains frame.

Other Considerations

18
0

 Preparing

 Page size selection

fragmentation

table size

I/O overhead

locality

 TLB Reach - The amount of memory accessible fromthe
TLB.

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB.
Otherwise there is a high degree of page faults.

Increasing the Size of the TLB

86

 Increase the Page Size. This may lead to an
increasein

fragmentation as not all applications require a large page size.

 Provide Multiple Page Sizes. This allows applications that
require larger page sizes the opportunity to use them
without an increase in fragmentation.

Reason Why Frames Used For I/O Must Be In Memory

18
2

Solaris 2

18
3

 Maintains a list of free pages to assign faulting processes.

 Lots free – threshold parameter to begin paging.

 Paging is performed by page out process.

 Page out scans pages using modified clock algorithm.

 Scan rate is the rate at which pages are scanned. This ranged
from slows can to fasts can.

 Page out is called more frequently depending upon the
amount of free memory available.

Solar Page Scanner

MODULE- IV :
FILE SYSTEM INTERFACE, MASS-STORAGE

STRUCTURE

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Basic file system given command like “retrieve block 123” translates to device
driver

 Also manages memory buffers and caches (allocation, freeing, replacement)

 Buffers hold data in transit

 Caches hold frequently used data

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system resides on secondary storage (disks)

 Provided user interface to storage, mapping logical to physical

 Provides efficient and convenient access to disk by allowing data to be
stored, located retrieved easily

 Disk provides in-place rewrite and random access

 I/O transfers performed in blocks of sectors (usually 512 bytes)

 File control block – storage structure consisting of information about a file

 Device driver controls the physical device

File System Layers

 Device drivers manage I/O devices at the I/O control layer

 Basic file system given command like “retrieve block 123” translates to device
driver

 Also manages memory buffers and caches (allocation, freeing, replacement)

 Buffers hold data in transit

 Caches hold frequently used data

File-System Implementation

 We have system calls at the API level, but how do we implement their
functions?

 On-disk and in-memory structures

 Boot control block contains info needed by system to

 boot OS from that volume

 Needed if volume contains OS, usually first block of volume

 Volume control block (superblock, master file table)

 contains volume details

 Total of blocks, of free blocks, block size, free block pointers or array

 Directory structure organizes the files

 Names and inode numbers, master file table

File-System Implementation (Cont.)

 Per-file File Control Block (FCB) contains many details about the file

 inode number, permissions, size, dates

 NFTS stores into in master file table using relational DB structures

190

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object- oriented way of
implementing file systems

 VFS allows the same system call interface (the API) to be used for different
types of file systems

 Separates file-system generic operations from implementation details

 Implementation can be one of many file systems types, or

 network file system

 Implements vnodes which hold inodes or network file details

 Then dispatches operation to appropriate file system implementation
routines

191

Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type of file system

192

Virtual File System Implementation

 For example, Linux has four object types:

 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be implemented

 Every object has a pointer to a function table

 Function table has addresses of routines to implementthat

 function on that object

 For example:

 int open(. . .)—Open a file

 int close(. . .)—Close an already-openfile

 ssize t read(. . .)—Read from afile

 ssize t write(. . .)—Write to afile

 int mmap(. . .)—Memory-map a file

193

Directory Implementation

 Linear list of file names with pointer to the data blocks

 Simple to program

 Time-consuming to execute

 Linear search time

 Could keep ordered alphabetically via linked list or use

 B+ tree

 Hash Table – linear list with hash data structure

 Decreases directory search time

 Collisions – situations where two file names hash to the same location

 Only good if entries are fixed size, or use chained-overflow method

194

Allocation Methods - Contiguous

 An allocation method refers to how disk blocks are allocated for files:

 Contiguous allocation – each file occupies set of contiguous blocks

 Best performance in most cases

 Simple – only starting location (block #) and length (number of blocks) are
required

 Problems include finding space for file, knowing file size, external
fragmentation, need for compaction off-line (downtime) or on-line

195

Linked Allocation

196

 Each file is a linked list of disk blocks: blocks may be scattered anywhere on the

disk

block =pointer

Indexed Allocation – Mapping

 Mapping from logical to physical in a file of unbounded length (block size of
512 words)

 Linked scheme – Link blocks of index table (no limit on size)

197

MODULE- V:

Deadlocks

198

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

 Combined Approach to Deadlock Handling

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion:only one process at a time can use a resource.

 Hold and wait:a process holding at least one resource is waiting to acquire
additional resources held by other processes.

 No preemption:a resource can be released only voluntarily by the process
holding it, after that process has completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that
P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a resource.

Resource-Allocation Graph

201

Resource Allocation Graph With A Deadlock

202

Resource Allocation Graph With A Cycle But No

Deadlock

203

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock state.

 Allow the system to enter a deadlock state and then recover.

 Ignore the problem and pretend that deadlocks never occur in the system;
used by most operating systems, including UNIX.

204

Deadlock Prevention

Restrain the ways request can be made.

 Mutual Exclusion – not required for sharable resources; must hold for
nonsharable resources.

 Hold and Wait – must guarantee that whenever a process requests a
resource, it does not hold any other resources.

Require process to request and be allocated all its resources before it begins
execution, or allow process to request resources only when the process has
none. Low resource utilization,starvationpossible.

205

Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests another resource that

cannot be immediately allocated to it, then all resources currently being held

arereleased.

 Preempted resources are added to the list of resources for which the process is

waiting.

 Process will be restarted only when it can regain its oldresources, as well as the

new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource types, and require that

each process requests resources in an increasing order of enumeration.

206

Deadlock Avoidance

The number of available and allocate Requires that the system has some
additional a priori information available.

 Simplest and most useful model requires that each process declare the
maximum number of resources of each type that it may need.

 The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition.

 Resource-allocation state is defined by the d resources, and the maximum
demands of the processes.

207

Safe State

 When a process requests an available resource, systemmust decide if
immediate allocation leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
 Pi can still request can be satisfied by currently available resources resources

held by all the Pj, with j<I.
 If Pi resource needs are not immediately available, then Pi can wait until all Pj

havefinished.
 When Pj is finished, Pi can obtain needed resources, execute, return allocated

resources, and terminate.
 When Pi terminates, Pi+1 can obtain its needed resources, and so on.

208

Safe, Unsafe , Deadlock State

209

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

 Available: Vector of length m. If available [j] = k, there are

k instances of resource type Rj available.

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k
instances of resource type Rj.

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj.

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k

more instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

210

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:

Finish [i] = false

Needi Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true ,go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

211

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi.If Requesti [j] = k then process Pi wants k
instances of resource type Rj.

1. If Requesti Needi go to step 2.Otherwise, raise error condition, since
process has exceeded its maximumclaim.

2. If Requesti Available, go to step 3. Otherwise Pi must wait, since resources are
not available.

Pretend to allocate requested resources to Pi by modifying the state as follows:
Available = Available = Requesti; Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;;

• If safe the resources are allocated to Pi.
• If unsafe Pi must wait, and the old resource-allocation state is restored

212

Detection Algorithm

213

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then
Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step4.

Detection Algorithm (Cont.)

3. Work = Work + Allocationi Finish[i] = true

go to step 2.

4. If Finish[i] == false, for some i, n, then the system is in deadlock state.
Moreover, if Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the

system is in deadlocked state.

214

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolledback?

 one for each disjointcycle

 If detection algorithm is invoked arbitrarily, there may be many cycles in the

resource graph and so we would not be able to tell which of the many

deadlocked processes “caused” the deadlock.

215

Recovery from Deadlock : Process Termination

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is eliminated.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to completion.

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated.

 Is process interactive or batch?

216

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for that state.

 Starvation – same process may always be picked as victim, include number

of rollback in cost factor.

217

Combined Approach to Deadlock Handling

 Combine the three basic approaches

 prevention

 avoidance

 detection

 allowing the use of the optimal approach for each of resources in the system.

 Partition resources into hierarchically ordered classes.

 Use most appropriate technique for handling deadlocks

within each class.

218

Domain Structure

 Access-right = <object-name, rights-set>

 where rights-set is a subset of all valid operations that

 can be performed on the object.

 Domain = set of access-rights

219

Domain Implementation (Multics)

 Let Di and Dj be any two domainrings.

220

Access Matrix

221

Use of Access Matrix

 If a process in Domain Di tries to do “op” on object Oj,

then “op” must be in the access matrix.

 Can be expanded to dynamic protection.

 Operations to add, delete accessrights.

 Special accessrights:

 owner of Oi

 copy op from Oi to Oj

 control – Di can modify Dj access rights

 transfer – switch from domain Di to Dj

222

Access Matrix With Owner Rights

223

Revocation of Access Rights

 Access List – Delete access rights from access list.

 Simple

 Immediate

 Capability List – Scheme required to locate capability in the system before

capability can be revoked.

 Reacquisition

 Back-pointers

 Indirection

 Keys

224

Capability-Based Systems

 Hydra

 Fixed set of access rights known to and interpreted by the

system.

 Interpretation of user-defined rights performed solely by user's program;

system provides access protection for use of these rights.

 Cambridge CAP System

 Data capability - provides standard read, write, execute of individual storage

segments associated with object.

 Software capability -interpretation left to the subsystem,

 through its protected procedures.

225

Stack Inspection

226

Language-Based Protection

 Specification of protection in a programming language allows the high-level

description of policies for the allocation and use of resources.

 Language implementation can provide software for protection enforcement

when automatic hardware- supported checking is unavailable.

 Interpret protection specifications to generate calls on whatever protection

system is provided by the hardware and the operating system.

227

Indexed Allocation – Mapping (Cont.)

228

Combined Scheme: UNIX UFS

229

Free-Space Management

 File system maintains free-space list to track available blocks/clusters

 (Using term “block” for simplicity)

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large filesystems

 Full data structures like bit maps couldn’tfit in memory -> thousands of I/Os

 Divides device space into metaslab units and managesmetaslabs

 Given volume can contain hundreds ofmetaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than filesystem

 Log of all block activity, in time order, in countingformat
 Metaslab activity -> load space map into memory in balanced-tree

230

Free-Space Management

 Space Maps

 Used in ZFS

 Consider meta-data I/O on very large filesystems

 Full data structures like bit maps couldn’tfit in memory -> thousands of I/Os

 Divides device space into metaslab units and managesmetaslabs

 Given volume can contain hundreds ofmetaslabs

 Each metaslab has associated space map

 Uses counting algorithm

 But records to log file rather than filesystem

 Log of all block activity, in time order, in countingformat
 Metaslab activity -> load space map into memory in balanced-tree

 structure, indexed by offset

 Replay log into that structure

 Combine contiguous free blocks into single entry

231

Efficiency and Performance

 Efficiency dependent on:

 Disk allocation and directory algorithms.

 Types of data kept in file’s directory entry.

 Pre-allocation or as-needed allocation of metadata structures.

 Fixed-size or varying-size data structures.

232

Efficiency and Performance

 Performance

 Keeping data and metadata close together

 Buffer cache – separate section of main memory for frequently used blocks

 Synchronous writes sometimes requested by apps orneeded by OS

 No buffering / caching – writes must hit diskbefore acknowledgement

 Asynchronous writes more common, buffer-able, faster

 Free-behind and read-ahead – techniques to optimize sequential access

 Reads frequently slower thanwrites

233

Overview of Mass Storage Structure

 Magnetic disks provide bulk of secondary storage of modern

 computers

 Drives rotate at 60 to 250 times persecond

 Transfer rate is rate at which data flow between drive and computer

 Positioning time (random-access time) is time to move disk arm to desired
cylinder (seek time) and time for desired sector to rotate under the disk head
(rotational latency)

 Head crash results from disk head making contact with the disk surface --
That’s bad

 Disks can be removable
 into drive or storage array

234

Moving-head Disk Mechanism

235

Disk Structure

 Disk drives are addressed as large 1-dimensional arrays of logical blocks,
where the logical block is the smallest unit of transfer

 Low-level formatting creates logical blocks on physicalmedia

 The 1-dimensional array of logical blocks is mapped into the sectors of the
disk sequentially

 Sector 0 is the first sector of the first track on the outermost cylinder

 Mapping proceeds in order through that track, then the rest of the tracks in
that cylinder, and then through the rest of the cylinders from outermost to
innermost

 Logical to physical address should be easy

 Except for bad sectors

236

Disk Attachment

 Host-attached storage accessed through I/O ports talking to I/O busses

 SCSI itself is a bus, up to 16 devices on one cable, SCSI

 initiator requests operation and SCSI targets perform tasks

 Each target can have up to 8 logical units (disks attached to device controller)

 FC is high-speed serial architecture

 Can be switched fabric with 24-bit address space – the basis of storage area
networks (SANs) in which many hosts attach to many storage units

 I/O directed to bus ID, device ID, logical unit (LUN)

237

Disk Scheduling

 The operating system is responsible for using hardware efficiently — for the
disk drives, this means having a fast access time and disk bandwidth

 Minimize seek time

 Seek time seek distance

 Disk bandwidth is the total number of bytes transferred, divided by the total
time between the first request for service and the completion of the last
transfer

238

Disk Scheduling

 There are many sources of disk I/O request

 OS

 System processes

 Users processes

 I/O request includes input or output mode, disk address, memory address,

number of sectors to transfer

 OS maintains queue of requests, per disk or device

 Idle disk can immediately work on I/O request, busy disk means work must

queue

 Optimization algorithms only make sense when a queue exists

239

FCFS

240

SSTF

 Shortest Seek Time First selects the request with the minimum seek time
from the current head position

 SSTF scheduling is a form of SJF scheduling; may cause starvation of some
requests

 Illustration shows total head movement of 236 cylinders

241

SSTF

242

SCAN

 The disk arm starts at one end of the disk, and moves toward the other end,

servicing requests until it gets to the other end of the disk, where the head

movement is reversed and servicing continues.

 SCAN algorithm Sometimes called the elevator algorithm.

 Illustration shows total head movement of 208 cylinders.

 But note that if requests are uniformly dense, largest density at other end of

disk and those wait the longest.

243

C-LOOK

 LOOK a version of SCAN, C-LOOK a version of C- SCAN

 Arm only goes as far as the last request in each direction, then reverses
direction immediately, without first going all the way to the end of the disk

 Total number of cylinders?

244

Selecting a Disk-Scheduling Algorithm

 SSTF is common and has a natural appeal

 SCAN and C-SCAN perform better for systems that place a heavy load

on the disk

 Less starvation

 Performance depends on the number and types of requests

 Requests for disk service can be influenced by the file-allocation method

And meta datalayout

 The disk-scheduling algorithm should be written as a separate module of the
operating system, allowing it to be replaced with a different algorithm if
necessary

 Either SSTF or LOOK is a reasonable choice for the default algorithm

 What about rotational latency?

 Difficult for OS to calculate

 How does disk-based queueing effect OS queue ordering efforts?

245

Disk Management

 Low-level formatting, or physical formatting — Dividing a disk into sectors
that the disk controller can read and write.

 Each sector can hold header information, plus data, plus error

correction code (ECC)

 Usually 512 bytes of data but can be selectable

 To use a disk to hold files, the operating system still needs to record its own
data structures on the disk.

 Partition the disk into one or more groups of cylinders, each treated as a
logical disk.

 Logical formatting or “making a file system”

 To increase efficiency most file systems group blocks into clusters

 Disk I/O done in blocks

 File I/O done in clusters

246

Swap-Space Management

 Swap-space — Virtual memory uses disk space as an extension of main
memory

 Less common now due to memory capacity increases

 Swap-space can be carved out of the normal file system, or, more commonly,
it can be in a separate disk partition (raw)

 Swap-space management

 4.3BSD allocates swap space when process starts; holds text segment (the
program) and data segment

 Kernel uses swap maps to track swap-space use

 Solaris 2 allocates swap space only when a dirty page is forced out of physical
memory, not when the virtual memory page is first created

 File data written to swap space until write to file system requested

 Other dirty pages go to swap space due to no other home

 Text segment pages thrown out and reread from the file system as needed

247

