

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	PROBABILITY AND STATISTICS					
Course Code	AHSB	12				
Programme	B.Tecl	h				
g .	П	CSE	E IT			
Semester	III	AE	ME			
	IV	CE				
Course Type	Foundation					
Regulation	IARE	- R18				
			Theory		Practic	eal
Course Structure	Lect	ures	Tutorials	Credits	Laboratory	Credits
	3 1 4 -					-
Chief Coordinator	DR. M Anita, Professor					
Course Faculty	Dr. J Suresh Goud, Associate Professor Ms. V Subba laxmi, Associate Professor Mr. Ch. Chaitanya, Assistant Professor					

I. COURSE OVERVIEW:

The course focuses on advanced concepts of probability distributions and statistical tests of hypothesis which provide the relevant mathematical tools required in analyzing the problems in engineering and scientific professions. The course includes conditional probability, Baye's theorem, random variables, probability distributions, measures of correlation, regression lines, testing of hypothesis for large as well as small samples. The mathematical and statistical skills derived from this course, form a necessary base to analyze and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	ı	Basic principles of statistics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Probability and Statistics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	/	Assignments	×	MOOCs
~	LCD / PPT	/	Seminars	×	Mini Project	/	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Maulea		
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	CIA/SEE
	mathematics, science, engineering fundamentals, and		
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Presentation on
	literature, and analyze complex engineering problems		real-time applications
	reaching substantiated conclusions using first		through AAT.
	principles of mathematics, natural sciences, and		
	engineering sciences.		
PO 4	Conduct investigations of complex problems: Use	1	Term Paper
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze	1	Seminar
	and develop computer programs in the areas related to		
	algorithms, system software, multimedia, web design,		
	big data analytics, and networking for efficient design		
	of computer-based systems of varying complexity.		
PSO 2	Software Engineering Practices: The ability to apply	-	-
	standard practices and strategies in software service		
	management using open-ended programming		
	environments with agility to deliver a quality service		
	for business success.		
PSO 3	Successful Career and Entrepreneurship: The	-	-
	ability to employ modern computer languages,		
	environments, and platforms in creating innovative		
	career paths to be an entrepreneur, and a zest for higher		
	studies.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cou	rrse should enable the students to:
I	Enrich the knowledge of probability on single random variables and probability distributions.
II	Apply the concept of correlation and regression to find covariance.
III	Analyze the given data for appropriate test of hypothesis.
IV	Understand the foundations for classical inference involving confidence intervals and hypothesis testing.

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Discuss the concepts of probability, conditional	CLO 1	Describe the basic concepts of probability.
	probability, Baye's theorem and random variables.	CLO 2	Summarize the concept of conditional probability and estimate the probability of event using Baye's theorem.
		CLO 3	Analyze the concepts of discrete and continuous random variables, probability distributions, expectation and variance.
		CLO 4	Use the concept of random variables in real-time problem like graph theory, machine learning.
CO 2	Classify the probability distributions and study	CLO 5	Determine the binomial distribution to find mean and variance.

COs	Course Outcome	CLOs	Course Learning Outcome
	their properties.	CLO 6	Understand the phenomena of real-time problem like sick versus healthy by using Binomial distribution.
		CLO 7	Determine the Poisson distribution to find mean and variance.
		CLO 8	Understand the phenomena of real-time problem of predicting soccer scores by using Poisson distribution.
		CLO 9	Illustrate the inferential methods relating to the means of normal distributions.
		CLO 10	Describe the mapping of normal distribution in real-world problem to analyze the stock market.
CO 3	Understand the concepts of correlation and	CLO 11	Demonstrate the concept of correlation for a Bivariate data .
	regression to the given data.	CLO 12	Calculate the Karl Pearson's correlation coefficient for the given data
		CLO 13	Calculate the Spearman's rank correlation coefficient for the given data.
		CLO 14	Estimate the linear regression for the given data
		CLO 15	Understand the phenomena of real-time problem like stock price and interest rates by using the concepts of correlation and regression.
CO 4	Apply testing of Hypothesis for sample	CLO 16	Understand the fundamentals of hypothesis testing.
	means and sample proportions.	CLO 17	Calculate the value of test statistic for the data related to single mean and single proportion.
		CLO 18	Calculate the value of test statistic for the data related to difference of means.
		CLO 19	Calculate the value of test statistic for the data related to difference of proportions.
		CLO 20	Summarize the concept of hypothesis testing to select the best means to stop the hazardous problems like smoking.
CO 5	CO 5 Estimate the truth value of the statistical hypotheses		Use Student t-test to predict the difference in sample means.
	by using small sample tests.	CLO 22	Apply F-test to predict the difference in sample variances.
		CLO 23	Understand the characteristics between the samples using Chi-square test.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AHSB12.01	CLO 1	Describe the basic concepts of probability.	PO 1	3
AHSB12.02	CLO 2	Summarize the concept of conditional probability and estimate the probability of event using Baye's theorem.	PO 1	3
AHSB12.03	CLO 3	Analyze the concepts of discrete and continuous random variables, probability distributions, expectation and variance.	PO 1	3
AHSB12.04	CLO 4	Use the concept of random variables in real-time problem like graph theory, machine learning.	PO 2	2
AHSB12.05	CLO 5	Determine the binomial distribution to find mean and variance.	PO 1	3

CLO	CLO's	· · · · · · · · · · · · · · · · · · ·	PO's	Strength of
Code	GY O 6	the ability to:	Mapped	Mapping
AHSB12.06	CLO 6		PO 2	2
		like sick versus healthy by using Binomial		
ALICD 12 OZ	CI O 7	distribution.	DO 1	2
AHSB12.07	CLO 7	Determine the Poisson distribution to find mean	PO 1	3
AHSB12.08	CLO 8	and variance. Understand the phenomena of real-time problem of	PO 2	2
Ansb12.08	CLU 8	predicting soccer scores by using Poisson	PO 2	2
		distribution.		
AHSB12.09	$CI \cap 0$	Illustrate the inferential methods relating to the	PO 1	3
Alisbiz.09	CLO	means of normal distributions.	101	3
AHSB12.10	CLO 10	Describe the mapping of normal distribution in	PO 4	1
71115112.10	CLO 10	real-world problem to analyze the stock market.	104	1
AHSB12.11	CLO 11	Demonstrate the concept of correlation for a	PO 1	3
11110212.11		Bivariate data.	101	3
AHSB12.12		Calculate the Karl Pearson's correlation coefficient	PO 1	3
		for the given data	_	
AHSB12.13		Calculate the Spearman's rank correlation	PO 1	3
		coefficient for the given data.		
AHSB12.14		Estimate the linear regression for the given data	PO 1	3
AHSB12.15		Understand the phenomena of real-time problem	PO 2	2
		like stock price and interest rates by using the		
		concepts of correlation and regression.		
AHSB12.16	CLO 16	Understand the fundamentals of hypothesis testing.	PO 1	3
AHSB12.17		Calculate the value of test statistic for the data		2
1 TYGD 10 10		related to single mean and single proportion.	PO 2	
AHSB12.18		Calculate the value of test statistic for the data	DO 2	2
ALICD12 10		related to difference of means. Calculate the value of test statistic for the data	PO 2	2
AHSB12.19		related to difference of proportions.	PO 2	2
AUCD12 20		Summarize the concept of hypothesis testing to	FO 2	2
Alisbiz.20		select the best means to stop the hazardous problems	PO 2	۷
		like smoking.	102	
AHSB12.21		Use Student t-test to predict the difference in sample	PO 2	2
1115212.21		means.	102	_
AHSB12.22		Apply F-test to predict the difference in sample	PO 2	2
		variances.		_
AHSB12.23	CLO 23	Understand the characteristics between the samples	PO 4	1
		using Chi-square test.		
				l l

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)							
Outcomes (COs)	PO 1	PO 2	PO 4	PSO1				
CO 1	3	2						
CO 2	3	2	1					
CO 3	3	2		1				
CO 4	3	2		1				
CO 5	3	2	1	1				

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning												gram Sp comes (
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2	3														
CLO 3	3														
CLO 4		2													
CLO 5	3														
CLO 6		2													
CLO 7	3														
CLO 8		2													
CLO 9	3														
CLO 10				1											
CLO 11	3														
CLO 12	3												1		
CLO 13	3												1		
CLO 14	3												1		
CLO 15		2											1		
CLO 16	3														
CLO 17		2											1		
CLO 18		2											1		
CLO 19		2											1		
CLO 20		2											1		
CLO 21		2											1		
CLO 22		2											1		
CLO 23				1									1		

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4,PSO1	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	ı	Seminars	PO1, PO2, PO4,PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4,PSO1						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Module-I PROBABILITY AND RANDOM VARIABLES

Probability, Conditional Probability, Baye's Theorem; Random variables: Basic definitions, discrete and continuous random variables; Probability distribution: Probability mass function and probability density functions; Mathematical expectation.

Module-II PROBABILITY DISTRIBUTION

Binomial distribution; Mean and variances of Binomial distribution, Recurrence formula for the Binomial distribution; Poisson distribution: Poisson distribution as a limiting case of Binomial distribution, mean and variance of Poisson distribution, Recurrence formula for the Poisson distribution; Normal distribution; Mean, Variance, Mode, Median, Characteristics of normal distribution.

Module-III CORRELATION AND REGRESSION

Correlation: Karl Pearson's Coefficient of correlation, Computation of correlation coefficient, Rank correlation, Repeated Ranks; Properties of correlation.

Regression: Lines of regression, Regression coefficient, Properties of Regression coefficient, Angle between two lines of regression; Multiple correlation and Regression.

Module-IV TEST OF HYPOTHESIS - I

Sampling: Definitions of population, Sampling, Parameter of statistics, standard error; Test of significance: Null hypothesis, alternate hypothesis, type I and type II errors, critical region, confidence interval, level of significance. One sided test, two sided test.

Large sample test: Test of significance for single mean, Test of significance for difference between two sample means, Tests of significance single proportion and Test of difference between proportions.

Module-V TEST OF HYPOTHESIS - II

Small sample tests: Student t-distribution, its properties: Test of significance difference between sample mean and population mean; difference between means of two small samples. Snedecor's F-distribution and its properties; Test of equality of two population variances Chi-square distribution and it's properties; Chi-square test of goodness of fit.

Text Books:

- Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2012.

Reference Books:

- 1. S. C. Gupta, V. K. Kapoor, "Fundamentals of Mathematical Statistics", S. Chand & Co., 10th Edition, 2000.
- 2. N. P. Bali, "Engineering Mathematics", Laxmi Publications, 9th Edition, 2016.
- 3. Richard Arnold Johnson, Irwin Miller and John E. Freund, "Probability and Statistics for Engineers", Prentice Hall, 8th Edition, 2013.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes (CLOs)	
1	Define the concept of probability and its applications	CLO 1	T2:26.3
2-3	Describe the concept of conditional probability	CLO 2	R2:21.48
4-5	Describe the Concept of Baye's Theorem	CLO 2	T2:26.6 R2:21.50
6-7	Describe the concept of Random variables, Contrast discrete Random variables and also calculate the mean and variance of discrete Random variables, probability distribution	CLO 3	T2:26.7 R2:21.51
8-9	Recall the continuous probability function	CLO 3	T2:26.8
10-11	Identify mathematical expectation	CLO 3	T2:26.10
12-13	Recall characteristics of the Binomial Distribution and find mean, variance	CLO 5	T2:26.14 R2:21.55
14-15	Recognize cases where Poisson Distribution could be appropriate model to find mean and variance	CLO 7	T2:26.15 R2:21.58
16-18	Apply Normal Distributions find the probability over a set of values, mean and variance	CLO 9	T2:26.16 R2:21.61
19-20	Recognize the limitation of correlation as a summary of bivariate data.	CLO 13	T2:25.12 R2:21.24
21-22	Interpret the correlation between the bivariate data by allotting ranks.	CLO 13	T2:25.16 R2:21.29
23	Define the concept of least squares estimation in linear regression	CLO 15	T2:25.14 R2:21.31
24-25	Estimate the linear model to a bivariate data to the lines regression	CLO 15	T2:25.14 R2:21.33
26-27	Recognize the multiple correlation and regression of bivariate data	CLO 11	R2:21.33
28	Recall the sampling distribution of the sample mean in general situation	CLO 16	T2:27.2 R2:21.64
29	Distinguish between a population and a sample and between parameters & statistics	CLO 16	T2:27.2
30	Recall the sampling distribution and define standard error	CLO 16	T2:27.2 R2:21.67
31-33	Recall the sampling distribution of the sample mean in general situation	CLO 16	T2:27.2
34	Understand the foundation for classical inference involving hypothesis testing and two types of errors possible	CLO 17	T2:27.3 R2:21.71
35	Explain level of significance confidence interval	CLO 17	T2:27.4 R2:21.68
36	Identify the confidence interval with single mean	CLO 18	T2:27.7 R2:21.74
37	Identify the confidence interval with difference between the mean	CLO 19	T2:27.12 R2:21.75
38	Identify the confidence interval with difference between the proportions	CLO 20	T2:27.8 R2:21.72
39	Identify the confidence interval with difference between the proportions	CLO 20	T2:27.8 R2:21.73
40-41	Recall the definition of a t-statistics in terms of statistics of sample from a normal distribution	CLO 21	T2:27.14 R2:21.78
42	Apply the definition of F-distribution	CLO 22	T2:27.19 R2:21.814

Lecture	Topics to be covered	Course	Reference
No		Learning Outcomes	
		(CLOs)	
43	Apply the definition of χ^2 –Distribution	CLO 23	T2:27.12
			R2:21.82
44-45	Apply χ^2 - distribution of goodness of fit	CLO 23	T2:27.18
			R2:21.82

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 2	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	AAT	PO 1,PO 2	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL/WEB CONTENT	PO 4	PSO 1

Prepared by: Dr. M Ainta, Professor

HOD, IT