

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	SEMIC	SEMICONDUCTOR PHYSICS					
Course Code	AHSB	13					
Programme	B.Tech	l					
Semester	II	CSE	E IT				
Course Type	Foundation						
Regulation	IARE -	R18					
			Theory		Practical		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	3	1.5	
Chief Coordinator	Mr. A Chandra Prakash, Assistant Professor						
Course Faculty	Mr. K	Ms. S Charvani, Assistant Professor Mr. K Sai Baba, Assistant Professor Mr. T Srikanth, Assistant Professor					

I. COURSE OVERVIEW:

The course matter is divided into five modules covering duly-recognized areas of theory and study. This course develops abstract and critical reasoning by studying mathematical and logical proofs and assumptions as applied in basic physics. The topics include quantum mechanics, semiconductors, opto electronic devices, magnetism, dielectrics, lasers and fiber optics. The course helps students to gain knowledge of basic principles and appreciate the diverse real-time applications in technological fields in respective branches.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
1	-	-	Basic principles of semiconductors

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Semiconductor Physics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	>	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	x	Mini Project	~	Videos
×	Open Ended Exp	eriment	S				

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are Page | 2

to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

The AAT chosen for this course is given in section XI.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Presentation on real- world problems
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Term paper
PO 4	Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Seminars

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand,	1	Seminar
	analyze and develop computer programs in the		
	areas related to algorithms, system software,		
	multimedia, web design, big data analytics,		
	and networking for efficient design of computer-		
	based systems of varying complexity.		
PSO 2	Problem-Solving Skills: The ability to apply	-	-
	standard practices and strategies in software project		
	development using		
	open-ended programming environments to deliver		
	a quality product for business success.		

PSO 3	Successful Career and Entrepreneurship: The	-	-
	ability to employ modern computer languages,		
	environments, and		
	platforms in creating innovative career paths to be		
	an entrepreneur, and a zest for higher studies.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:					
I	Enrich knowledge in principles of quantum mechanics and semiconductors.				
II	Develop strong fundamentals of electronic and optoelectronic materials.				
III	Enrich knowledge about measuring resistivity, conductivity and other parameters.				
IV	Correlate principles and applications of lasers and fiber optics.				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Interpret the concept of	CLO 1	Recall the basic principles of physics and apply the
	quantum mechanics		concepts of physics in solving the real-time problems.
	with dual nature of	CLO 2	Acquire knowledge about fundamental in quantum
	matter.		mechanics.
		CLO 3	Interpretation of dual nature of matter wave
			concept using Davisson & Germer's experiment
CO 2	Identify different types	CLO 4	Estimate the energy of the particles using
	of semiconductors and		Schrödinger's wave equation and apply it to particle
	dependence of their		in potential box.
	Fermi level on various	CLO 5	Recollect the conductivity mechanism involved
	factors.		in semiconductors and calculate carrier
			concentrations.
		CLO 6	Understand the band structure of a solid and
			Classify materials as metals, insulators, or
			semiconductors, and sketch a schematic band
			diagram for each one.
CO 3	To give knowledge	CLO 7	Acquire knowledge about fundamentals in
	about semiconductor		semiconducting devices
	physics and discus	CLO 8	Understand the basics of a p-n junction and
	working and		construction of optoelectronic devices like LED,
	applications of basic		photo diode, solar cell.
	devices, including p-n		1
	junctions, PIN,		
	Avalanche photodiode,		
	Solar cell		

COs	Course Outcome	CLOs	Course Learning Outcome
CO 4	Ability to identify	CLO 9	Recollect the concept of electric polarization and
	appropriate magnetic,		classify dielectric materials.
	and dielectric,	CLO 10	Recollect the concept of magnetization and classify
	materials required for		magnetic materials.
	various engineering	CLO 11	Apply different laws of radiation to understand the
	applications.		phenomenon behind production of light.
CO 5	Understand the	CLO 12	Understand the basic principles involved in the
	working principle of		production of Laser light and also real- time
	different types of lasers		applications of lasers.
	and optical fibre	CLO 13	Recollect basic principle, construction, types and
	communication.		attenuation of optical fibers.
		CLO 14	Understand the importance of optical fibers in
			real time communication system.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHSB13.01	CLO 1	Recall the basic principles of physics and apply these concepts of physics in solving the real-time problems.	PO 1, PO 2	3
AHSB13.01	CLO 2	Acquire knowledge about fundamentals in quantum mechanics.	PO 1	3
AHSB13.01	CLO 3	Interpretation of dual nature of matter wave concept using Davisson & Germer's experiment.	PO 1	3
AHSB13.01	CLO 4	Estimate the energy of the particles using Schrödinger's wave equation and apply it to particle in potential box.	PO 1	3
AHSB13.01	CLO 5	Understand the band structure of a solid and Classify materials as metals, insulators, or semiconductors, and sketch a schematic band diagram for each one.	PO 1	3
AHSB13.01	CLO 6	Recollect the conductivity mechanism involved in semiconductors and calculate carrier concentrations.	PO 1	3
AHSB13.01	CLO 7	Acquire knowledge about fundamentals in semiconducting devices	PO 1	3
AHSB13.01	CLO 8	Understand the basics of a p-n junction and construction of optoelectronic devices like LED, photo diode, solar cell.	PO 1, PO 2	3
AHSB13.01	CLO 9	Recollect the concept of electric polarization and classify dielectric materials.	PO 2	2
AHSB13.01	CLO 10	Recollect the concept of magnetization and classify magnetic materials.	PO 1	3
AHSB13.01	CLO 11	Apply different laws of radiationto understand the phenomenon behind production of light.	PO 1	3

AHSB13.01	CLO 12	Understand the basic principles involved in	PO 2,	2
		the production of Laser light and also Real- time applications of lasers.	PO 4	
AHSB13.01	CLO 13	Recollect basic principle, construction,	PO 1	3
		types		
		and attenuation of optical fibers.		
AHSB13.01	CLO 14	Understand the importance of optical fibers	PO 4	2
		in real-time communication system.		

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)								
Outcomes (COs)	PO 1	PO 2	PO 4	PSO1					
CO 1	3	2		1					
CO 2	2	2	1	1					
CO 3	2								
CO 4		2							
CO 5	3			1					

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2												1	
CLO 2	3														
CLO 3	3														
CLO 4	3														
CLO 5	3														
CLO 6	3														
CLO 7	3														
CLO 8	3	2													
CLO 9		2													
CLO 10	3														
CLO 11	3														

Course Learning	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 12		2		1										1	
CLO 13	3														
CLO 14				1										1	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1, PO2, PO4, PSO2	SEE Exams	PO 1, PO2, PO4, PSO2	Assignments	ı	Seminars	PO1, PO2, PO4, PSO2
Laboratory Practices	-	Student Viva	-	Mini Project	1	Certification	-
Term Paper	PO1, PO2, PO4, PSO2						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	'	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Module-I OUANTUM MECHANICS

Introduction to quantum physics, Black body radiation, Planck's law, Photoelectric effect, Compton effect, De-Broglie's hypothesis, Wave-particle duality, Davisson and Germer experiment, Time-independent

Schrodinger equation for wave function, Born interpretation of the wave function, Schrodinger equation for one dimensional problems—particle in a box.

Module-II | ELECTRONIC MATERIALS AND SEMICONDUCTORS

Free electron theory, Bloch's theorem for particles in a periodic potential, Kronig-Penney model (Qualitative treatment), Origin of energy bands, Types of electronic materials: metals, semiconductors, and insulators.

Intrinsic and extrinsic semiconductors, Carrier concentration, Dependence of Fermi level on carrier-concentration and temperature, Hall effect.

Module-III LIGHT-SEMICONDUCTOR INTERACTION

Carrier generation and recombination, Carrier transport: diffusion and drift, Direct and indirect band gaps, p-n junction, V-I characteristics, Energy Band diagram, Biasing of a junction.

Module-IV ENGINEERED ELECTRIC AND MAGNETIC MATERIALS

Polarization, Permittivity, Dielectric constant, Internal field in solids, Clausius Mosotti equation, Ferroelectricity, Piezoelectricity, Pyroelectricity.

Magnetization, Permeability, Susceptibility, Classification of dia, Para and Ferro magnetic materials on th basis of magnetic moment, Domain theory of Ferro magnetism on the basis of hysteresis curve.

Module-V LASERS AND FIBER OPTICS

Characteristics of lasers, Spontaneous and stimulated emission of radiation, Metastable state, Population inversion, Lasing action, Ruby laser, Semiconductor diode laser and applications of lasers.

Principle and construction of an optical fiber, Acceptance angle, Numerical aperture, Types of optical fiber (Single mode, multimode, step index, graded index), Attenuation in optical fibers, Optical fiber communic system with block diagram.

Text Books:

- 1. Dr. K. Vijaya Kumar, Dr. S. Chandralingam, "Modern Engineering Physics", Chand & Co. New Delhi, Edition, 2010.
- 2. Dr. M. N. Avadhanulu, Dr. P. G. Kshirsagar, A text book of engineering physics, S. Chand.
- 3. B. K Pandey and S. Chaturvedi, Engineering physics Cengage learning

Reference Books:

- 1. J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Inc. (1995).
- 2. R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Edition, 2001
- 3. Online course: "Optoelectronic Materials and Devices" by Monica Katiyar and Deepak Gupta on NPTEL.
- 4. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010

Photo voltaic effect, Construction and working of LED, Photo detectors, PIN, Avalanche photodiode, Solar c

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction to quantum physics	CLO 2	T2:5.5 R1:1.12.1
2	Black body radiation	CLO 2	T2:5.6 R1:1.12.3
3	Planck's law, Photoelectric effect, Compton effect	CLO 2	T2:5.10 R1:1.15
4	De-Broglie's hypothesis, Wave-particle duality	CLO 3	T2:5.15 R1:1.16
5	Davisson and Germer experiment	CLO 3	T2:5.17 R1:1.13.1
6	Time-independent Schrodinger equation for wave function	CLO 4	T2:5.18 R1:1.13.2
7	Born interpretation of the wave function	CLO 4	T2:5.19 R1:1.13.3
8	Schrodinger equation for one dimensional problem—particle in a box.	CLO 4	T2:5.20 R1:1.17.1
9	Bloch's theorem for particles in a periodic potential, Kronig- Penney model (Qualitative treatment)	CLO 5	T2:5.24 R1:1.17.3
10	Kronig-Penney model (Qualitative treatment)	CLO 5	T2:6.1 R1:2.3
11	Origin of energy bands	CLO 5	T2:6.3 R1:2.6.1
12	Types of electronic materials: metals, semiconductors, and insulators	CLO 5	T2:6.5 R1:2.6.2
13	Intrinsic semiconductors Carrier concentration	CLO 6	T2:7.3 R1:2.8
14	Intrinsic semiconductors Carrier concentration	CLO 6	T2:7.5,7.0 R1:2.9.2
15	Extrinsic semiconductors, Carrier concentration	CLO 6	T2:7.7 R1:2.10
16	Extrinsic semiconductors, Carrier concentration	CLO 6	T2:7.7 R2:2.10
17	Dependence of Fermi level on carrier-concentration and temperature	CLO 6	T2:7.11 R2:2.10.2
18	Carrier generation and recombination, Hall effect	CLO 6	T2:7.11 R2:2.32
19	Carrier generation and recombination, Carrier transport: diffusion and drift, Direct and indirect band gaps	CLO 7	T2:7.11 R2:2.10
20	p-n junction, V-I characteristics	CLO 7	T2:7.12 R2:2.10.3
21	Energy Band diagram, Biasing of a junction	CLO 8	T2:7.12 R2:2.10.3
22	Photo voltaic effect, Construction and working of LED	CLO 8	T2:7.13 R1:2.10.4
23	Photo detectors, PIN, Avalanche photodiode	CLO 8	T2:7.14 R1:2.10.6
24	Solar cell	CLO 8	T2:7.15 R1:2.10.7
25	Polarization, Permittivity, Dielectric constant	CLO 9	T1:7.15 R2:2.10.7

2.5	Y	CLO 9	T1:7.15
26	Internal field in solids, Clausius Mosotti equation		R2:2.10.7
27	Forms also trigity	CLO 9	T1:7.15
21	Ferro electricity		R2:2.10.7
28	Piezoelectricity, Pyroelectricity	CLO 9	T1:7.15
26	1 iczocicculcity, 1 ylocicculcity		R2:2.10.7
29	Magnetization, Permeability, Susceptibility	CLO 10	T1:16.9
27			R2:8.11.1
	Classification of dia, para and ferro magnetic materials on	CLO 10	T1:16.9
30	the basis		R2:8.11.2
	of magnetic moment	GI O 10	FD1 160
31	Domain theory of Ferro magnetism on the basis of hysteresis	CLO 10	T1:16.8
	curve	OI O 11	R2:8.12.1
32	Introduction and Characteristics of lasers	CLO 11	T1:15.2 R4:8.2
		CLO 11	T2:15.7
33	Spontaneous and stimulated emission of radiation	CLO 11	R4:8.3.3
		CLO 11	T2:15.13
34	Metastable state, Population inversion, Lasing action	CLO 11	R4:8.7.2
		CLO 12	T2:15.13
35	Ruby laser	CLO 12	R4:8.7.2
		CLO 12	T2:15.16
39	He-Ne laser and applications of lasers		R1:8.7.3
40	Introduction and Principle and construction of an optical	CLO 13	T1:11.9
40	fiber		R2:12.24
41	A countaines anala Numanical anautura	CLO 13	T1:11.9
41	Acceptance angle, Numerical aperture		R3:12.25
42	Types of optical fibers (Single mode, multimode, step index,	CLO 13	T1:3.2
42	graded index)		R3:3.2
43	Attenuation in optical fibers	CLO 13	T1:3.3.1
43	Auchuation in optical flocis		R3:3.2
44	Optical fiber communication system with block diagram.	CLO 14	T2:16.5
77	optical fiber communication system with block diagram.		R3:8.10
45	Applications of Optical fiber communication system	CLO 14	T2:16.5
73	ripplications of Optical from Communication system		R3:8.10

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	Encourage the students to design the working models which are correlated with the syllabus.	Seminars / Laboratory Practices	PO 2	PSO 1
2	Insist the students to collect real- time applications of the basic principlesthey learn in physics.	Seminars / NPTEL	PO 1	PSO 1
3	Motivate the students to organize theseminars for the awarenessof upcoming applications in physics.	Seminars / NPTEL	PO 4	PSO 1

Prepared by:

Mr. A Chandra Prakash, Assistant Professor