

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	CONCI	CONCRETE TECHNOLOGY					
Course Code	ACE01	ACE010					
Programme	B.Tech	B.Tech					
Semester	V	V CE					
Course Type	Core	Core					
Regulation	IARE - R16						
Theory					Practical		
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits	
	3		1	4	3	2	
Chief Coordinator	Mr. N Venkat Rao, Associate Professor						
Course Faculty	Mr. N V Mrs. B.	/enk Bhav	at Rao, Associate /ani, Assistant Pr	e Professor ofessor			

I. COURSE OVERVIEW:

Concrete technology provides a comprehensive coverage of the theoretical and practical aspects of the subject and includes the latest developments in the field of concrete construction. It incorporates the latest Indian standard specifications and codes regulating concrete construction. The properties of concrete and it constituent materials and the role of various admixtures in modifying these properties to suit specific requirements, such as ready mix concrete, reinforcement detailing, disaster-resistant construction, and concrete machinery have been treated exhaustively the and also special concrete in addition to the durability maintenance and quality control of concrete structure.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACE007	IV	Building Material Construction and Planning	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Concrete Technology	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component		Total Marks	
Type of Assessment	CIE Exam		
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part-A shall have five compulsory questions of one mark each. In part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge: Apply the knowledge of	2	Presentation on
	mathematics, science, engineering fundamentals, and		real-world problems
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	1	Assignments
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first		
	principles of mathematics, natural sciences, and		
	engineering sciences		
PO3	Design/development of solutions: Design solutions	2	Mini Project
	for complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		
PO 4	Conduct investigations of complex problems: Use	2	Seminars
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		
PO 5	Modern tool usage: Create, select, and apply	1	Assignments
	appropriate techniques, resources, and modern		
	engineering and IT tools including prediction and		
	modeling to complex engineering activities with an		
	understanding of the limitations		
	2 - High 2 - Modium 1 - Low		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Engineering knowledge: Graduates shall demonstrate	2	Assignments
	sound knowledge in analysis, design, laboratory		
	investigations and construction aspects of civil		
	engineering infrastructure, along with good foundation		
	in mathematics, basic sciences and technical		
	communication		
PSO 2	Broadness and Diversity: Graduates will have a broad	1	Seminars
	understanding of economical, environmental, societal,		
	health and safety factors involved in infrastructural		
	development, and shall demonstrate ability to function		
	within multidisciplinary teams with competence in		
	modern tool usage.		
PSO 3	Self-learning and Service: Graduates will be	-	-
	motivated for continuous self-learning in engineering		
	practice and/ or pursue research in advanced areas of		
	civil engineering in order to offer engineering services		
	to the society, ethically and responsibly.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

The cour	se should enable the students to:
Ι	Discuss the physical and chemical properties of cement and admixtures.
II	Understand the workability of concrete, manufacturing processes of concrete and the behavior
	of the hardened concrete.
III	Identify, formulate and solve problems in concrete mix design.
IV	Enrich the practical knowledge on mix design principles, concepts and methods

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1 Understand the basic physical and chemical		CLO 1	Explain the different types of cement, grades of cement and hydration process.
	properties of cement, admixtures and	CLO 2	Classify different types of admixture and their usage.
aggregates		CLO 3	Understand aggregates and classification of aggregate depending upon shape, size, texture etc.
		CLO 4	Understand the Alkali Aggregate Reaction.
		CLO 5	Understand Sieve Analysis and grading of aggregate.
CO 2	Describe the properties and factors influencing	CLO 6	Understand the concept of workability of concrete and factors affecting workability.
	the workability of fresh concrete	CLO 7	Explain the measurement of workability by different test.
		CLO 8	Understand the concept of segregation and bleeding in concrete.

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 9	Explain the various steps involved in the
			manufacturing process of concrete.
		CLO 10	Understand the importance of quality of
			mixing water.
CO 3	Determine the affect of	CLO 11	Understand hardened concrete and its
	water/cement ratio on the		properties.
	strength of hardened	CLO 12	Explain the importance of water cement ratio,
	concrete and also the		maturity concept in hardened concrete
	strength of concrete by	CLO 13	Understand the various methods of curing of
	using ND1 testing		concrete.
	methods	CLO 14	Explain the different tests involved in testing
		CL 0.15	of hardened concrete.
		CLO 15	Understand the concept of creep and how it
		CL 0.16	effects hardened concrete.
		CLO 16	Explain shrinkage and its effect on concrete.
CO 4	Analyse the mix design of	CLO 17	Understand the importance of Mix
	concrete		proportions.
		CLO 18	Understand durability and quality control of
			concrete.
		CLO 19	Explain Acceptance criteria involved in
			concrete mix proportioning.
		CLO 20	Explain proportioning of concrete method by
			different methods.
		CLO 21	Design the concrete mix by BIS method.
CO 5	Understand the basic	CLO 22	Explain the different types of special concrete.
	concepts and applications		
	of special concretes at	CLO 23	Explain the effect of fiber in the concrete.
	various situations	CL O DI	
		CLO 24	Understand the performance of fibers on concrete
		CLO 25	Explain the tests involved in self-compacting
			concrete

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACE010.01	CLO 1	Explain the different types of cement, grades	PO1, PO3	2
		of cement and hydration process.		
ACE010.02	CLO 2	Classify different types of admixture and their	PO2, PO5	1
		usage.		
ACE010.03	CLO 3	Understand aggregates and classification of	PO1, PO3	2
		aggregate depending upon shape, size, texture		
		etc.		
ACE010.04	CLO 4	Understand the Alkali Aggregate Reaction.	PO1, PO4	2
ACE010.05	CLO 5	Understand Sieve Analysis and grading of	PO2, PO3	2
		aggregate.	PO5	
ACE010.06	CLO 6	Understand the concept of workability of	PO1;PO2;	2
		concrete and factors affecting workability.	PO4	
ACE010.07	CLO 7	Explain the measurement of workability by	PO3	2
		different test.		
ACE010.08	CLO 8	Understand the concept of segregation and	PO1,PO4,	2
		bleeding in concrete.	PO5	

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
ACE010.09	CLO 9	Explain the various steps involved in the	PO3	2
		manufacturing process of concrete.		
ACE010.10	CLO 10	Understand the importance of quality of	PO2, PO3	2
		mixing water.		
ACE010.11	CLO 11	Understand hardened concrete and its	PO2, PO4,	1
		properties.	PO5	
ACE010.12	CLO 12	Explain the importance of water cement ratio,	PO1	2
		maturity concept in hardened concrete		
ACE010.13	CLO 13	Understand the various methods of curing of	PO1, PO2,	2
		concrete.	PO3, PO5	
ACE010.14	CLO 14	Explain the different tests involved in testing	PO2	1
		of hardened concrete.		
ACE010.15	CLO 15	Understand the concept of creep and how it	PO2, PO3,	1
		effects hardened concrete.	PO5	
ACE010.16	CLO 16	Explain shrinkage and its effect on concrete.	PO1, PO4	2
ACE010.17	CLO 17	Understand the importance of Mix	PO2, PO3	2
		proportions.		
ACE010.18	CLO 18	Understand durability and quality control of	PO2, PO5	1
		concrete.		
ACE010.19	CLO 19	Explain Acceptance criteria involved in	PO2, PO3,	2
		concrete mix proportioning.	PO4	
ACE010.20	CLO 20	Explain proportioning of concrete method by	PO1	2
		different methods.		
ACE010.21	CLO 21	Design the concrete mix by BIS method.	PO2, PO3,	2
			PO4, PO5	
ACE010.22	CLO 22	Explain the different types of special concrete.	PO1	2
ACE010.23	CLO 23	Explain the effect of fibre in the concrete.	PO1, PO4	2
ACE010.24	CLO 24	Understand the performance of fibres on	PO2,PO4	2
A CE010.27		concrete		
ACE010.25	CLO 25	Explain the tests involved in self-compacting	PO 3,PO5	2
		concrete		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)							
(COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PSO1	PSO2	
CO 1	2	2	3	3	2	2	1	
CO 2	2	1	2	3	1	1	2	
CO 3	2	2	2	3	2	2	1	
CO 4	3	2	2	2	2	2	2	
CO 5	3	2		2	1	1	2	

3 = High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Prog Outc	ram Sj comes (pecific PSOs)			
Outcomog									oute		1000)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)															
CLO 1	2		2											2	
CLO 2		1			1								2		
CLO 3	2		2											1	
CLO 4	2			2										1	
CLO 5		2	2		2								2		
CLO 6	2	2		2										2	
CLO 7			2											1	
CLO 8	2			2	2								1		
CLO 9			2											2	
CLO 10		2	2											2	
CLO 11		1		1	1								2		
CLO 12	2														
CLO 13	2	2	2		2										
CLO 14		1													
CLO 15		1	1		1								2		
CLO 16	2			2										1	
CLO 17		2	2											2	
CLO 18		1			1									2	
CLO 19		2	2	2									2		
CLO 20	2													1	
CLO 21		2	2	2	2										
CLO 22	2													2	
CLO 23	2			2									1		
CLO 24		2		2											
CLO 25			2		2										

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1; PO2; PO5,PSO1, PSO2	SEE Exams	PO 1; PO2; PO5 PSO1, PSO2	Assignments	PO 2	Seminars	PO 3
Laboratory Practices	PO 5	Student Viva	-	Mini Project	PO 4;PO5	Certification	-
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

>	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	CEMENT ADMIXTURES AND AGGREGATES					
Portland cement	:chemical composition, hydration, setting of cement, structure of hydrate cement, test					
on physical properties, different grades of cement						
Admixtures: Mineral and chemical admixtures, properties, dosage, effects usage.						
Aggregates: Cla	ssification of aggregate, particle shape & texture bond, strength & other mechanical					
properties of ag	gregate, specific gravity, bulk density, porosity, adsorption & moisture content of					
aggregate, bulki	ng of sand, deleterious substance in aggregate, soundness of aggregate, alkali aggregate					
reaction, therma	l properties, sieve analysis, fineness modulus, grading curves, grading of fine & coarse					
aggregates, gap	graded aggregate, maximum aggregate size.					
UNIT -II	FRESH CONCRETE					
Workability :fac	tors affecting workability, measurement of workability by different tests, setting times					
of concrete, effe	ct of time and temperature on workability, segregation & bleeding, mixing and					
vibration of cond	vibration of concrete, steps in manufacture of concrete, quality of mixing water.					
UNIT -III	UNIT -III HARDENED CONCRETE AND ITS TESTING					
Water / Cement	ratio: Abram's Law, Gel space ratio, Nature of strength of concrete, Maturity concept,					
Strength in tensi	on & compression, factors affecting strength, relation between compression & tensile					
strength curing.						
Testing of head						
lesting of harde	ened concrete: compression tests, tension tests, factors affecting strength, flexure tests,					
splitting tests, no	on-destructive testing methods, codal provisions for NDT. elasticity, creep & shrinkage,					
influencing cross	sticity, dynamic modulus of elasticity, Poisson's ratio, creep of concrete, lactors					
types of shrinka	b, relation between creep & time, nature of creep, effects of creep, sin inkage,					
	MIX DESIGN					
Eastern in the	heire of min momentions. Durchility of comparets Quality Control of comparets					
Statistical math	Factors in the choice of mix proportions, Durability of concrete, Quality Control of concrete,					
Statistical methods, Acceptance criteria, Proportioning of concrete mixes by various methods, BIS						
UNIT -V SPECIAL CONCRETE						
Light weight aggregates, light weight aggregate concrete, cellular concrete , no fines concrete, high						
density concrete, fiber reinforced concrete, different types of fibers , factors affecting properties of						
F.R.C, applicati	ons, polymer concrete, types of polymer concrete, properties of polymer concrete					
applications, high performance concrete, self-consolidating concrete, SIFCON						

Text Books:

Shetty, M.S., "Concrete Technology, Theory & Practice", S. Chand and Co, 2004.
Gambhir, M.L., "Concrete Technology", Tata McGraw Hill, 2004.

Reference Books:

V.N.Vazirani&S.P.Chandola, Ed. by Vineet Kumar," Concrete technology", 6th edition reprint.
Santakumar A.R., "Concrete Technology", Oxford University Press, New Delhi, 2007..

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

		Course	
Lecture	Topics to be covered	Learning	Reference
No		Outcomes	
		(CLOs)	
1-2	Introduction to Portland cement :chemical composition	CLO 1	T1: 1.1-1.7
3	Hydration,	CLO 1	T1: 1.8-1.9
	setting of cement		T1: 2.28-2.28.2
4	Structure of hydrate cement,	CLO 1	T1: 1.13-1.14
5	Test on physical properties	CLO 1	T1:2.1-2.6
	Different grades of cement		T1: 2.18
6	Admixtures: Mineral and chemical admixtures	CLO 2	T1: 5.1-5.3
7	Properties, dosage, effects usage of admixtures	CLO 2	T1: 5.4-5.5
8	Aggregates: Classification of aggregate, particle shape	CLO 3	T1: 3.2-3.4
	& texture bond		
9	Strength & other mechanical properties of aggregate	CLO 3	T1: 3.7-3.9
10	Specific gravity, bulk density, porosity, adsorption &	CLO 3	T1: 3.15-3.18
	moisture content of aggregate		
11	Bulking of sand,	CLO 3	T1: 3.26-3.27
	Deleterious substance in aggregate,		T1: 3.19-3.20
	Soundness of aggregate		T2 :3.50
12	Alkali aggregate reaction, thermal properties	CLO 4	T2 :3.6-3.7
13	Sieve analysis, fineness modulus	CLO 5	T2:3.8-3.9
14-16	Grading curves, grading of fine & coarse aggregates,	CLO 5	T2:3.9-3.11
	gap graded aggregate, maximum aggregate size		
17-18	Introduction to Workability of concrete :factors	CLO 6	T2: 6.1-6.4
	affecting workability		
19-21	Measurement of workability by different tests	CLO 7	T1:6.3-6.36
22-23	Setting times of concrete	CLO 7	T1:6.6
24	Effect of time and temperature on workability	CLO 7	T1: 6.6
25-26	Segregation & bleeding	CLO 8	T1: 6.4-6.5
27-28	Mixing and vibration of concrete	CLO 8	T1: 6.7.1-
			6.7.7.15
29-30	Steps in manufacture of concrete	CLO 9	T1: 6.7-6.8
31	Quality of mixing water	CLO 10	T1: 4.2-4.3
32	Introduction to Hardened concrete: Water / Cement	CLO 12	T1: 7.2
	ratio, Abram's Law		
33	Gel space ratio	CLO 12	T1: 7.3
34	Nature of strength of concrete	CLO 12	T1: 7.4
35	Maturity concept of concrete	CLO 12	T1: 7.6
36-37	Strength in tension & compression	CLO 11	T1: 7.8
38	Factors affecting strength	CLO 11	T1: 7.7
39	Relation between compression & tensile strength.	CLO 13	T1: 7.8
-	curing		T1: 6.8-6.9
40	Testing of hardened concrete:	CLO 14	T 1 10 1 10 5
	Compression tests, tension tests		T1: 10.1-10.2
41	Factors affecting strength, flexure tests.	CLO 14	T1:10.7-10.9
42	Splitting tests, non-destructive testing methods, codal	CLO 14	T1:10.8-10.11

	provisions for NDT		
43	Elasticity, creep & shrinkage	CLO 15	T1:8.1-8.3
44	Modulus of elasticity, dynamic modulus of elasticity,	CLO 15	T1:8.1.1-8.1.4
	Poisson's ratio		
45-46	Creep of concrete, factors influencing creep, relation	CLO 15	T1:8.2
	between creep & time, nature of creep, effects of creep		
47	Shrinkage ,types of shrinkage	CLO 16	T1:8.3
48-49	Introduction to Mix design: Factors in the choice of	CLO 17	T1:11.3
	mix proportions		
50-51	Durability of concrete	CLO 18	T1:9.2
52-53	Quality control of Concrete.	CLO 18	T1:11.5
54-55	Statistical methods, Acceptance criteria	CLO 19	T1:11.5-11.7
56	Proportioning of concrete mixes by various methods	CLO 20	T1:11.9
57-59	BIS method of mix design	CLO 21	T1:11.13
60-62	Exercise problems on Mix design	CLO 21	T1:11.13-11.14
63-64	Light weight aggregates, light weight aggregate	CLO 22	T2:14.2-14.3
	concrete		
65-66	Cellular concrete, no fines concrete	CLO 22	T2:14.15
67	High density concrete	CLO 22	T1:12.8
68-69	Fiber reinforced concrete, different types of fibers	CLO 23	T1:12.10
70-71	Factors affecting properties of F.R.C, applications	CLO 23	T1:12.10.2
72-73	Polymer concrete, types of polymer concrete	CLO 22	T1:12.13
74	Properties of polymer concrete applications	CLO 22	T1:12.13.2
75	High performance concrete	CLO 22	T2:16.1-16.9
76	Self-consolidating concrete	CLO 22	T1:13.1-13.4
77	Slurry infiltrated fibre concrete (SIFCON)	CLO 22	T2:14.2

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With PO's	Relevance With PSO's
1	Design a concrete mix for lower grade concrete using BIS	Seminars	PO 1	PSO 1
2	Design a concrete mix for higher grade concrete using BIS	Seminars / NPTEL	PO 5	PSO 1

Prepared by: Mr. N Venkat Rao, Associate Professor

HOD, CE