

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	SPACE	SPACE MECHANICS						
Course Code	AAE01	AAE016						
Programme	B.Tech	B.Tech						
	VII	AE						
Course Type	Core							
Regulation	IARE -	R16						
Course Structure			Theory		Practic	al		
	Lectu	res	Tutorials	Credits	Laboratory	Credits		
	3 1 4							
Chief Coordinator	Dr. P.K. Mohanta, Associate Professor							
Course Faculty	Dr. P.K Mr. Ka	. Mo sturi	hanta, Associate Rangan, Asst. P	Professor rofessor				

I. COURSEOVERVIEW:

The course focuses on Space Mechanics topics. It will involve the development of concepts of the two-body problem, the restricted three-body and n-body problem, Hamiltonian dynamics, canonical transformations, and Poincare surface sections. Several basic Newtonian dynamics and spacecraft altitude dynamics will also be analyzed. Several concepts of the launch vehicle will be discussed and its prescribed position will be described. A vehicle's trajectory will be determined. Additionally, interplanetary spacecraft will also be described and explained. Concepts on satellites and launch vehicles will also be described.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	Nil

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Space Mechanics	70	30	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

✓	White board marker& Talk	\checkmark	Quiz	√	Assignments	X	MOOCs
✓	LCD / PPT	\checkmark	Seminars	X	Mini Project	\checkmark	Videos
√	✓ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern	for	CIA
---------------------	---------	-----	-----

Component	Theory		Total	
Type of Assessment	CIE Exam	CIE Exam Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video.

VI. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignments
	mathematics, science, engineering fundamentals, and		Lectures
	an engineering specialization to the solutionofcomplex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	AssignmentLectur
	literature, and analyze complex engineering problems		es
	reaching substantiated conclusions using first		
	principles of mathematics, natural		
	sciences, and engineering sciences		
PO 3	Design/development of solutions: Design Solutions	1	Assignment
	for complex engineering problems and design system		LecturesSe
	components or processes that meet the specified needs		minars
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Assignment
	aeronautical/aerospace engineering in innovative,		Exam
	dynamic and challenging environment for design and		Lectures
	development of new products		
PSO 2	Problem-solving Skills: Imparted through simulation	3	Assignment
	language skills and general purpose programming to		Exam
	solve practical, design and analysis problems of		
	components to complete the challenge. of orbital		
	mechaics.		
PSO 3	Practical implementation and testing skills:	1	Assignment
	Providing different types of in house and training and		
	industry practice to fabricate and test and develop the		
	products with more innovative technologies		

PSO 4	Successful career and entrepreneurship: To prepare	-	Seminars
	the students with broad aerospace knowledge to design		
	and develop systems and subsystems of aerospace and		
	allied systems and become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The cour	rse should enable the students to:					
Ι	Impart the knowledge in two-body, restricted three-body and n-body problem, Hamiltonian					
	dynamics, canonical transformations, Poincare surface sections.					
II	Analyze the basic Newtonian dynamics and spacecraft altitude dynamics					
III	Provide necessary knowledge to study the satellite and interplanetary trajectories and formal					
	approaches for handling coordinate transformations					
IV	Solve the orbital problem related to Earth satellite orbits using Hamilton's and generate					
	interplanetary orbits in the frame work of restricted three-body problem.					

IX. COURSE OUTCOMES(COs):

Cos	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand and develop	CLO 1	Describe the solar system, reference frames, and
	basic concepts in Space		coordinate systems.
	Mechanics	CLO 2	Explain the celestial sphere, the ecliptic, a motion of
			vernal equinox, sidereal time, solar time, standard
			time, and the Earth's atmosphere.
		CLO 3	Define and describe the many body problem, and the
			Lagrange-Jacobi identity.
		CLO 4	Recognize and describe the circular restricted three
			body problem, libration points, and relative motion in
			the N-body problem.
CO 2	Obtain a clear	CLO 5	Derive and describe the Equations of motion.
	understanding of the Two		Specifically, the general characteristics of motion for
	Body Problem.		different orbits. Understandthe relations between
			position and time for different orbits.
		CLO 6	Define and describe the expansions in elliptic motion,
			and orbital elements.
		CLO 7	Explain the relation between orbital elements and
			position and velocity. Launch vehicle ascent
			trajectories, general aspects of satellite injection.
		CLO 8	Discuss the dependence of orbital parameters on in-
			plane injection parameters, and launch vehicle
			performances, and orbit deviations due to injection
			errors.

Cos	Course Outcome	CLOs	Course Learning Outcome
CO 3	Develop a clear	CLO 9	Explain special and general perturbations, such as the
	understanding of the		Cowell's method, & Encke's method.
	perturbed satellite orbit,	CLO 10	Understand the method of variations of orbital
	and its various		elements, and the general perturbations approach.
	implications.	CLO 11	Define the two-dimensional interplanetary trajectories,
			fast interplanetary trajectories.
		CLO 12	Understand 3D interplanetary trajectories.
		CLO 13	Discuss about the launch of interplanetary spacecraft,
			and understand the trajectory of the target planet.
CO 4	Develop a Complete	CLO 14	Define and understand the boost phase, the ballistic
	understanding of the		phase, trajectory geometry and optimal flights.
	BallisticMissile	CLO 15	Define the time of flight and the re-entry phase.
	Trajectories	CLO 16	Define the position of the impact point and the
			influence coefficients.
CO 5	Understand the various	CLO 17	Understand the equations of motion.
	aspects of low-Thrust	CLO 18	Understand the constant radial thrust acceleration,
	trajectories		constant tangential thrust (Characteristics of the
			motion), Linearization of the equations of motion, and
			Performance analysis.

X. COURSE LEARNING OUTCOMES(CLOs):

CLO	CLO's	At the end of the course, the student will have the	PO's	Strength
Code		ability to:	Mapped	of Mapping
AAE0016.01	CLO 1	Describe the solar system, reference frames, and	PO 1	3
		coordinate systems.		
AAE0016.02	CLO 2	Explain the celestial sphere, the ecliptic, a motion of	PO 1	2
		vernal equinox, sidereal time, solar time, standard time,		
		and the Earth's atmosphere		
AAE0016.03	CLO 3	Define and describe the many body problem, and the	PO 1	3
		Lagrange-Jacobi identity.		
AAE0016.04	CLO 4	Recognize and describe the circular restricted three body	PO 1PO 2	1
		problem, libration points, and relative motion in the N-		
		body problem.		
AAE0016.05	CLO 5	Derive and describe the Equations of motion. Specifically,	PO 1PO 2	2
		the general characteristics of motion for different orbits.		
		Understand the relations between position and time for		
		different orbits.		
AAE0016.06	CLO 6	Define and describe the expansions in elliptic motion, and	PO 1	3
		orbital elements.		

AAE0016.07	CLO 7	Explain the relation between orbital elements and	PO 1PO 2	1
		position and velocity. Launch vehicle ascent trajectories,		
		general aspects of satellite injection.		
AAE0016.08	CLO 8	Discuss the dependence of orbital parameters on in-plane	PO 1PO 2	2
		injection parameters, and launch vehicle performances,		
		and orbit deviations due to injection errors.		
AAE0016.09	CLO 9	Explain special and general perturbations, such as the	PO 1	2
		Cowell's method, & Encke's method.		
AAE0016.10	CLO 10	Understand the method of variations of orbital elements,	PO1	2
		and the general perturbations approach		
AAE0016.11	CLO 11	Define the two-dimensional interplanetary trajectories,	PO 1	1
		fast interplanetary trajectories.		
AAE0016.12	CLO 12	Understand 3D interplanetary trajectories.	PO 1PO 2	3
AAE0016.13	CLO 13	Discuss about the launch of interplanetary spacecraft, and	PO 1	2
		understand the trajectory of the target planet.		
AAE0016.14	CLO 14	Define and understand the boost phase, the ballistic phase,	PO 3	1
		trajectory geometry and optimal flights.		
AAE0016.15	CLO 15	Define the time of flight and the re-entry phase.	PO 2	2
AAE0016.16	CLO 16	Define the position of the impact point and the influence	PO 1PO4	1
		coefficients.		
AAE0016.17	CLO 17	Understand the equations of motion.	PO 1	3
AAE0016.18	CLO 18	Understand the constant radial thrust acceleration, constant	PO	2
		tangential thrust (Characteristics of the motion),	1PO2PO	
		Linearization of the equations of motion, and Performance	4	
		analysis.		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	I	Program Ou	Program Specific Outcomes		
(COs)	PO 1	PO 2	PO 3	PO 4	PSO 1
CO 1	2	1			2
CO 2	2	1			3
CO 3	2	1			2
CO 4	1	1	1	1	2
CO 5	3	1		1	1

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course	Program Outcomes (POs)									ProgramSpecific					
Learning									Outo	comes(F	'SOs)				
(CLO _g)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOS)															
CLO 1	3												3		
CLO 2	2												1		
CLO 3	3												3		
CLO 4	1	1											2		
CLO 5	2	2											3		
CLO 6	3												3		
CLO 7	1	1											2		
CLO 8	2	2											3		
CLO 9	2												3		
CLO 10	2												1		
CLO 11	1												2		
CLO 12	3	3											1		
CLO 13		3											3		
CLO 14			1										1		
CLO 15		2											3		
CLO 16	1			1									2		
CLO 17	3												1		
CLO 18	2	2		2									1		

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO1,PO 1, PO 2,PSO1	SEE Exams	PO 1, PO 2, PO 1, PSO 1	Assignments	PO1, PSO1, PO2, PSO2, PO3, PSO3	Seminars	PO 2,PO 1, PO 2,PSO 3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 1,PO 2, PO 2,PSO 3						

XIV. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	Introduction to Space Mechanics						
Basic concept	s: The solar system, Reference frames and coordinate systems, The celestial sphere, The						
ecliptic, Motio	ecliptic, Motion of vernal equinox, Sidereal time, Solar Time, Standard Time, The earth's atmosphere.						
The many bod	ly problem, Lagrange-Jacobi identity. The circular restricted three body problem, Libration						
points, Relativ	e Motion in the N-body problem.						
Unit-II	Two Body Problem						
Equations of n	notion-General characteristics of motion for different orbits-Relations between position and						
time for diffe	erent orbits, Expansions in elliptic motion, Orbital Elements. Relation between orbital						
elements and	position and velocity: Launch vehicle ascent trajectories, General aspects of satellite						
injection. Deperformances,	pendence of orbital parameters on in-plane injection parameters, Launch vehicle Orbit deviations due to injection errors.						
Unit-III	Perturbed Satellite Orbit						
Special and ge	neral perturbations-Cowell's Method, Encke's method. Method of variations of orbital						
elements,Gene	eral perturbations approach. Two-dimensional interplanetary trajectories, Fast interplanetary						
trajectories, Tl	hree dimensional interplanetary trajectories. Launch of interplanetary spacecraft. Trajectory						
about the targe	et planet.						
Unit-IV	Ballistic Missile Trajectories						
The boost pha	se, the ballistic phase, Trajectory geometry, optimal flights. Time of flight, Re-entry phase.						
The position o	f the impact point, Influence coefficients.						
Unit-V	Low Thrust Trajectories						
Equations of N	Motion. Constant radial thrust acceleration, Constant tangential thrust(Characteristics of the						
motion), Linea	arization of the equations of motion, Performance analysis.						
Text Books:							
1. J. W. Corn	elisse, —Rocket Propulsion and Spaceflight Dynamicsl, Pitman Publishing, London,						
1979							
2. William E.	Wiesel, —Spaceflight Dynamicsl, McGraw-Hill, 3rd Edition, New Delhi, 2010.						
Reference Bo	oks:						
1. Vladimir A.	Chobotov, —Orbital MechanicsI, AIAA Education Series, USA, 3rdEdition,2002.						
2. Kaplan, Ma	rshall H.,Modern Spacecraft Dynamics and Controll, John Wiley & Sons, New York,						
1976.	1976.						
3. Wiesel, Wil	liam E., —Spaceflight Dynamicsl, Tata McGraw-Hill Publishing Company Limited, New						
Delhi, 2ndE	dition 2007.						
4. David A. V	ellado, —Fundamentals of Astrodynamics and ApplicationsI, Springer, Germany,						
3rdEdition, 2007							

XVI. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be	Course	Reference
No	covered	Learning	
		Outcomes	
		(CLOs)	
1	Describe the solar system,	CLO 1	T1:2.2.1
2	Reference frames, and coordinate systems.	CLO 1	T1:2.2.1
3	Celestial sphere, the ecliptic, a motion of vernal equinox	CLO 2	T1:2.3.2
4	Sidereal time, solar time, standard time	CLO 2	T1:2.3.2
5	Earth's atmosphere	CLO 2	T1:2.3.2
6	Define and describe the many body problem	CLO 3	T1:2.3.4
7	Lagrange-Jacobi identity	CLO 3	T1:2.3.4
8	Circular restricted three body problem, libration points	CLO 4	T1:2.3.5
9	Libration points	CLO	T1:2.3.5
10	Relative motion in the N-body problem.	CLO	T1:2.3.5
11	Derive and describe the Equations of motion.	CLO 5	T1:2.3.6
	Specifically, the general characteristics of motion for		
	different orbits.		
12	Understand the relations between position and time for	CLO 5	T1:2.3.6
	different orbits.		
13	Define and describe the expansions in elliptic motion,	CLO 6	T1:3.1.1
14	Orbital elements.	CLO 6	T1:3.1.1
15	Explain the relation between orbital elements and	CLO 7	T1:3.1.2
	position and velocity.		T2:1.2.3
16	Launch vehicle ascent trajectories, general aspects of	CLO 7	T1:3.1.2
	satellite injection.		T2:1.2.3
17	Discuss the dependence of orbital parameters on in-	CLO 8	T1:3.1.2
	plane injection parameters,		T2:1.2.3
18	Launch vehicle performances	CLO 8	T1:3.1.2
			T2:1.2.3
19	Orbit deviations due to injection errors.	CLO 8	T1:3.1.2
			T2:1.2.3
20	Explain special and general perturbations	CLO 9	T1:3.1.2
			T2:1.2.3
21	Cowell's method,.	CLO 9	T1:3.1.2
			T2:1.2.3

Lecture	Topics to be Course		Reference
No	covered	Learning	
		Outcomes	
		(CLOs)	
22	Encke's method	CLO 9	T2:1.2.3
			T2:1.2.3
23	Understand the method of variations of orbital elements	CLO 10	T1:3.1.2
			T2:1.2.3
24	General perturbations approach	CLO 10	T1:3.1.2
			T2:1.2.3
25	Define the two-dimensional interplanetary trajectories	CLO 11	T1:3.1.2
			T2:1.2.3
26	Fast interplanetary trajectories.	CLO 11	T1:3.1.2
			T2:1.2.3
27	Understand 3D interplanetary trajectories	CLO 12	T1:3.1.2
			T2:2.2.3
28	Launch of interplanetary spacecraft, Understand the	CLO 13	T1:3.1.2
	trajectory of the target planet.		T2:4.2.3
29-31	Boost phase, the ballistic phase	CLO 14	T1:3.1.2
			T2:3.2.3
32	Trajectory geometry and optimal flights.	CLO 14	T1:3.1.2
			T2:3.2.3
33-34	Define the time of flight and the re-entry phase	CLO 15	T1:3.1.2
			T2:1.2.3
35-36	Define the position of the impact point and the influence	CLO 16	T1:3.1.2
	coefficients.		T2:1.2.3
37	Understand the equations of motion.	CLO 17	T1:2.1.2
			T2:2.2.3
38	Understand the constant radial thrust acceleration,	CLO 18	T1:2.1.2
			T2:1.2.3
39-40	Constant tangential thrust (Characteristics of the	CLO 18	T1:2.1.2
	motion),.		
41-42	Linearization of the equations of motion,	CLO 18	T2:1.2.3
43-45	Performance analysis	CLO 18	T1:2.1.2

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S NO	DESCRIPTION	PROPOSED	RELEVANCE	RELEVANCE
		ACTIONS	WITH POs	WITH PSOs
1	To improve standards and	Seminars	PO 1	PSO 1
	analyze the concepts.			
2	To understand definitions	Seminars / Full	PO 3	PSO 1
	better and be able to derive	time Jobs		
	critical equations.			
3	Develop trajectories and	Seminars/i	PO 2	PSO 1
	equations of motion for the	nternship		
	various aspects of space flights			

Prepared by: Dr. P K Mohanta, Associate Professor

HOD, AE