

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATION								
Course Code	AHS002	AHS002							
Programme	B.Tech								
Semester	I AE	I AE CSE IT ECE EEE ME CE							
Course Type	Foundation	Foundation							
Regulation	IARE - R16								
		Theory	Practical						
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits				
	3	1	4	-	-				
Chief Coordinator	Ms. P Raja	ni, Assistant Profe	essor						
Course Faculty	Dr. M Anita, Professor Mr. J Suresh Goud, Assistant Professor Ms. P Srilatha, Assistant Professor Ms. C Rachana, Assistant Professor Ms. B Praveena, Assistant Professor								

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes Types of matrices, difference calculus methods and differential equations. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code Semester		Prerequisites
-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Linear Algebra and Ordinary Differential Equations	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	×	Assignments	×	MOOCs			
~	LCD / PPT	/	Seminars	×	Mini Project	/	Videos			
×	Open Ended Experiments									

\mathbf{V} . **EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component Theory

Table 1: Assessment pattern for CIA

Total Marks CIE Exam Quiz / AAT Type of Assessment 05 30 **CIA Marks** 25

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part-A shall have five compulsory questions of one mark each. In part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by	
PO 1	Engineering knowledge : Apply the knowledge of	3	Presentation on	
	mathematics, science, engineering fundamentals, and an		real-world	
	engineering specialization to the solution of complex		problems	
	engineering problems.			
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar	
	literature, and analyze complex engineering problems reaching			
	substantiated conclusions using first principles of mathematics,			
	natural sciences, and engineering sciences			
PO 4	Conduct investigations of complex problems: Use research-	1	Term Paper	
	based knowledge and research methods including design of			
	experiments, analysis and interpretation of data, and synthesis			
	of the information to provide valid conclusions.			

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.		Seminar
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.		-
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an Entrepreneur, and a zest for higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:											
I	Enrich the knowledge of probability on single random variables and probability distributions.										
II	Apply the concept of correlation and regression to find covariance.										
III	Analyze the given data for appropriate test of hypothesis.										

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS002.01	CLO 1	Demonstrate knowledge of matrix	PO 1	1
		calculation as an elegant and powerful		
		mathematical languagein connection with		
		rank of a matrix.		
AHS002.02	CLO 2	Finding rank by reducing the matrix to	PO 1	3
		Echelon and Normal forms.		
AHS002.03	CLO 3	Determine inverse of the matrix by Gauss	PO 1	3
		Jordon Method.		
AHS002.04	CLO 4	Apply the method of LU Decomposition	PO 2	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
		and solve the simultaneous equations.			
AHS002.05	CLO 5	Use the method of LU factorization real	PO 2	3	
		world problems such as circuit designing			
		and solving complex circuits			
AHS002.06	CLO 6	Use the method of LU factorization real	PO 2	2	
		world problems such as economize and			
		accumulate sums in double precision			
		Computer Programme.			
AHS002.07	CLO 7	Interpret the Eigen values and Eigen vectors	PO 4	1	
		of matrix for a linear transformation and use			
		properties of Eigen values			
AHS002.08	CLO 8	Understand the concept of Eigen values in	PO 4	1	
		real world problems of control field where			
		they are pole of closed loop system.			
AHS002.09	CLO 9	Apply the concept of Eigen values in real	PO4	1	
		world problems of mechanical systems			
		where Eigen values are natural frequency			
		and mode shape.			
AHS002.10	CLO 10	Use the system of linear equations and	PO 2	2	
		matrix to determine the dependency and			
		independency.			
AHS002.11	CLO 11	Determine a modal matrix, and reducing a	PO 1	3	
		matrix to diagonal form.			
AHS002.12	CLO 12	Evaluate inverse and powers of matrices by	PO 1	3	
		using Cayley-Hamiltontheorem.			
AHS002.13	CLO 13	Solving differential equations of first order.	PO 1	3	
AHS002.14	CLO 14		PO 1,	2	
АПЗ002.14	CLO 14	Finding orthogonal trajectories of Cartesian	PO 1,	2	
	GT 0 1 7	and polar equations.			
AHS002.15	CLO 15	Apply the first order differential equations	PO 2	2	
		in real world problems such as Newton's			
		Law of cooling and Law of natural growth			
		and decay			
AHS002.16	CLO 16	Solving Second and higher order	PO 2	2	
		differential equations with constant			
		coefficients.			
AHS002.17	CLO 17	Apply the second order differential	PO 4	1	
		equations for real world problems of			
		electrical circuits and simple harmonic			
		motion.			
AHS002.18	CLO 18	Apply the Mean value theorems for the	PO 1,	2	
		single variable functions.	PO 2		
AHS002.19	CLO 19	Understand the basic concepts of Partial	PO 1,	2	
71115002.17	CLO 17	_	PO 2	2	
		Differential equations.			
A 110002 20	OT C 20		DO 1		
AHS002.20	CLO 20	Determine Jacobian for the coordinate	PO 1,	2	
		transformation	PO 2		
AHS002.21	CLO 21	Apply the technique of Jacobian and	PO 4	1	
		inverse Jacobian relation to real world			
		problems such as kinematics and inverse	<u> </u>		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		kinematic solutions of robot manipulators.		
AHS002.22	CLO 22	Understand the techniques of multidimensional change –of –variables to transform the coordinates by utilizing the Jacobian.	PO 1	3
AHS002.23	CLO 23	Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers	PO 1	3
AHS002.24	CLO 24	Understand the concept and acquire the knowledge for attempting the competitive exams	PO 4	1

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs				P	rogra	m Ou	tcome	s (PO	s)				Program Specific Outcomes (PSOs)		
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	1												1		
CLO 2	2												1		
CLO 3	3												1		
CLO 4		2													
CLO 5		3													
CLO 6		2													
CLO 7				1									1		
CLO 8				1											
CLO 9				2									1		
CLO 10		2											1		
CLO 11	3														
CLO 12	3														
CLO 13	3														
CLO 14	1	2											1		
CLO 15		2		_			-		_						-

CLOs	Program Outcomes (POs)							Program Specific Outcomes (PSOs)							
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 16		2													
CLO 17				1									1		
CLO 18	1	2											1		
CLO 19	1	2											1		
CLO 20	1	2											1		
CLO 21				1											
CLO 22	3														
CLO 23	3														
CLO 24				1											

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2	SEE Exams	PO 1, PO2, PO 4	Assignments	-	Seminars	PO 2
Laboratory Practices	-	Student Viva	1	Mini Project	1	Certification	1
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

•	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I T	THEORY OF MATRICES					
	Real Matrices: Symmetric, skew-symmetric and orthogonal matrices; Complex matrices: Hermitian, Skew-Hermitian and unitary matrices; Elementary row and column transformations, elementary matrix,					
finding rank o	of a matrix by reducing to Echelon form and normal form; Finding the inverse of a matrix					
	ntary row/column transformations: Gauss-Jordan method; Solving of linear system of					
equations by I	LU decomposition method.					
Unit-II L	LINEAR TRANSFORMATIONS					
Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and independence of vectors; Linear transformation; Eigen values and eigen vectors of a matrix; Properties of eigen values and eigen vectors of real and complex matrices; Diagonalization of matrix.						
Unit-III D	DIFFERENTIAL EQUATIONS OF FIRST ORDER AND THEIR APPLICATIONS					

Formation of a differential equation; Differential equations of first order and first degree: Exact, non exact, linear equations; Bernoulli equation; Applications of first order differential equations: Orthogonal

trajectories; Newton's law of cooling; Law of natural growth and decay.

Unit-IV HIGHER ORDINARY LINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS

Linear differential equations of second and higher order with constant coefficients, non homogeneous term of the type $f(x) = e^{ax}$, $\sin ax$, $\cos ax$ and $f(x) = x^n$, $e^{ax}v(x)$, $x^nv(x)$; Method of variation of parameters; Applications to electrical circuits and simple harmonic motion.

Unit-V FUNCTIONS OF SINGLE AND SEVERAL VARIABLES

Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrang multipliers.

Text Books:

- 1. Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012.

Reference Books:

- RK Jain & SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, 5th Edition, 2016.
- 2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, 1st Edition, 2009.
- Srimanthapal & Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, 3rd Edition, 2015.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
1	Theory of Matrices Introduction of matrices	CLO 1	T1:22.5
	•		R1:2.3
2-3	Real and complex matrices	CLO 2	T1:22.5
			R1:2.4
4-6	Find rank by echelon and normal form	CLO 2	T1:22.6
			R1:2.6
7	Gauss-Jordan method	CLO 4	T1:22.7
			R1:4.4
8	LU decomposition method	CLO 4	T1:22.7
	-		R1:4.10
9-12	Cayley Hamilton theorem	CLO 7	T1:22.8
			R1:4.15
13-16	Eigen values and Eigen vectors	CLO 9	T1:22.9
			R1:5.4
17-18	Diagonalisation	CLO 9	T1:22.9
	-		R1:5.8
1922	Differential equations	CLO 11	T1:23.10
	Introduction of first order differential equations		R1:6.8
23-24	Orthogonal trajectories	CLO 11	T1:23.10
			R1:6.13
25-26	Applications	CLO 13	T1:23.9
			R1:7.5
27-30	Second and Higher order differential equations with constant	CLO 11	T1:23.10
	coefficients		R1:7.5
31-34	Method of variation of parameters	CLO 9	T1:23.10
	-		R1:8.1

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
35-36	Applications of second order differential equations	CLO 14	T1:23.1
			R1:9.2
37	Differential Calculus Methods	CLO 14	T1:23.1
	Verification of Rolle's Theorem to the given functions		R1:9.4
38-39	Verification of Lagrange's Mean value theorem to the given	CLO 14	T1:23.1
	functions		R1:9.9
40	Verification of Cauchy's mean value theorem to the given	CLO 14	T1:23.1
	functions		R1:9.10
41	Functional dependence for two and three functions	CLO 14	T2:27.5
			R1:10.2
42-43	Maxima and minima of functions of two variables without	CLO 17	T2:27.7
	constraints		R1:11.3
44-45	Lagranges method of undetermined multipliers	CLO 17	T2:27.8
			R1:11.6

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with P0s	Relevance with PSOs
1	To improve standards and analyze the	Guest lecture	PO 1	PSO 1
	concepts.			
2	Conditional probability, Sampling	Seminars /	PO 4	PSO 1
_	distribution, correlation, regression	NPTEL		
		NEIEL		
	analysis and testing of hypothesis			
3	Encourage students to solve real time	NPTEL	PO 2	PSO 1
	applications and prepare towards			
	competitive examinations.			

Prepared by:

Ms. P Rajani, Assistant Professor

HOD, FRESHMAN ENGINEERING