INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTION FORM

Course Title	CLOUD COMPUTING									
Course Code	A70519									
Regulation	R15 - JNTUH	R15 - JNTUH								
Course Structure	Lectures	Tutorials	Practicals	Credits						
Course Structure	4	-	-	4						
Course Coordinator	Ms. Ch Sri Vidya, Ass	sistant Professor, CS	E							
	Ms. S Swarajya Laxmi, Assistant Professor, CSE									
Team of Instructors	Ms. A Jayanthi, Assistant Professor, CSE									
	Mr. B Tejaswi, Assist	ant professor, CSE								

I. COURSE OVERVIEW:

Cloud Computing is a large-scale distributed computing paradigm which has become a driving force for information technology over the past several years. The exponential growth data size in scientific instrumentation/simulation and social media has triggered the wider use of cloud computing services. We will explore solutions and learn design principles for building large network-based systems to support both compute and data intensive computing across geographically distributed infrastructure.

II. **PREQUISITE(S):-**

Level	Credits	Periods/ Week	Prerequisites
UG	4	4	Computer networks, Distributed systems, middleware technologies

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam marks	Total Marks
Midterm Test There shall be 2 midterm examinations. Each midterm Examination consists of subjective type and Objective type tests.		
The subjective type tests. The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each semester shall contain 4 questions; the student has to answer 2 questions each carrying 5 marks.		
The objective type test is for 10 marks with duration of 20 minutes. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.	75	100

Sessional Marks	University End Exam marks	Total marks
Five marks are marked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	IMidExamination	80 minutes	20
2.	I Assignment	-	5
3.	II MidExamination	80 minutes	20
4.	II Assignment	-	5
5.	External Examination	3 hours	75

V. COURSE OBJECTIVES:

Upon successful completion of this course students will be able to:

- 1. Understand fundamental concepts in the area of cloud computing
- 2. Determine knowledge in applications of cloud computing
- 3. Develop the broad perceptive of cloud architecture and model.
- 4. Understand the concept of virtualization and design of cloud services.
- 5. Understand the familiariaty of the lead players in the cloud.
- 6. Understand the features of Cloud Simulator.
- 7. Develop different cloud programming model as per need.
- 8. Define and design the trusted cloud computing system.

VI. COURSE OUTCOMES:

Upon successful completion of this course students will be able to:

- 1. Define cloud computing and related concepts
- 2. Understand the key dimensions of the challenges of Cloud Computing
- 3. Understand the assessment of the economics , financial, and technological implications for selecting cloud computing for an organization
- 4. Describe the benefits of cloud computing
- 5. Understand the challenges of cloud computing
- 6. Understand how cloud components fit together
- 7. Determine the suitability of in-house v/s hosted solutions
- 8. Understanding the systems, protocols and mechanisms to support cloud computing
- 9. Develop applications for cloud computing
- 10. Understanding the hardware necessary for cloud computing
- 11. Determine numerous opportunities exist for practitioners seeking to create solutions for cloud computing.
- 12. Develop the best practices in migrating to the cloud is unique to every class of enterprise applications and unique to every corporate practice group.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	S	Assignment, Exercises
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	S	Exercises
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Н	Exercises
PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	N	
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	N	
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	Ν	
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	Ν	
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering	S	Seminars, Discussions
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Ν	
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear.	N	
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply Mini Projects these to one's own work, as a member and leader in a team, to manage Projects and in multidisciplinary environments	Н	Exercises, Discussions
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological	N	

N - None S - Supportive H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, Multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	Н	Lectures, Assignments
PSO2	Problem-Solving Skills: The ability to apply standard practices and Strategies in software project development using open-ended programming environments to deliver a quality product for business success.	S	Projects
PSO3	Successful Career and Entrepreneurship: The ability to employ Modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	Н	Guest Lectures
N - No	N - None S - Supportive H - High		d

IX. SYLLABUS:

UNIT – I

System Modeling, Clustering And Virtualization: Distributed system models and enabling technologies, computer clusters for scalable parallel computing, virtual machines and virtualization of clusters and data centers.

UNIT – II

Foundations: Introduction to cloud computing, migrating into cloud, enriching the integration of service paradigm for cloud era, the enterprise cloud computing paradigm.

UNIT – III

Inter Process Communication: Infra Structure As Service (IAAS) & Platform And Software Service(PAAS/SAAS): Virtual machine provisioning and migration services, on the management of virtual machines for cloud infrastructure, enhancing cloud computing environments using a cluster as service, secure distributed data storage in cloud computing.

Aneka, comet cloud, T-systems, work flow engine for clouds, understanding scientific applications for cloud environments.

UNIT-IV

Monitoring, Management And Applications : An Architecture for federated cloud computing ,SLA management in cloud computing, performance prediction for HPC on clouds, best practices in Architecting cloud applications in the AWS cloud, building content delivery networks using clouds, resource cloud mashups.

UNIT V

Governance and case studies: organizational readiness and change management in cloud age, data security in

cloud, legal issues in cloud computing, achieving production readiness for cloud services.

Text Books

- 1. Cloud computing: principles and paradigms by rajkumar buyya, James Broberg and Andrzej M.Goscinski, Wiley, 2011.
- 2. Distributed and cloud computing , kai Hwang, Geofferyu C.fox, jack J.dongarra, Elsevier, 2012

References

- 1. Cloud Computing : A practical approach, Anthony T.velte, Toby J.velte, Robert lsenpeter, Tata McGraw Hill, 2011.
- 2. Enterprise Cloud Computing, Gautam Shroff, Cambridge University press, 2010.
- 3. Cloud computing: implementation ,management and security, john W .Ritting house ,James F. Ransome ,CRC press,rp2012.
- 4. Cloud applications architectures: building Applications and infrastructure in the cloud, George Reese, O reilly, SPD, rp2011.
- 5. Cloud security and privacy: An Enterprise perspective on Risks and compliance, im Mather, Subra Kumaraswamy, Shahed Latif, Oreilly, SPD, rp2011.

X. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes.

Lecture No.	Learning Objectives	Topics to be covered	Reference
1-2 3 4-5 6 8	To Understand The Different Types Of Systems, System Models	System Modeling, Clusters And Virtualization	T2:10-58
17 18 19 20 21	To Understand Different Types Of Clusters', Different Types Of Clusters'	Computer Clusters	T2:68-168
22 23 24 25 26	To Define The Definition Of Scalable Computing And Virtualization, Virtual Machines	Scalable Parallel Computing. Computer Clusters For Scalable Parallel Computing. Virtual Machines And Virtualization Of Clusters And Data Centers.	T2:174-286
27 28	To Understand What Is Cloud And Able To Define Cloud And Its Uses	Enterprise cloud computing Paradigm.	T1:97-158
29	To Understand The Infrastructure Of Cloud And We Are Accessing	Infrastructure As A Service (Iaas) &Platform And Software As A Service (Paas/Saas).	T1:126-130
30-34	That From Cloud	Basics Of Infrastructure As A Service (Iaas) & Platform And Software As A Service (Paas/Saas).	T1:140-144
35		Virtual Machines Provisioning And Migration Services.	T1:145-154
36-37	To Manage The Device Which Are Virtualized	On The Management Of Virtual Machines For Cloud Infrastructures.	T1:152-185
38	To Understand The Data Storage In Cloud	Enhancing Cloud Computing Environments Using A Cluster As A Service.	T1:193-212
39		Secure Distributed Data Storage In Cloud Computing.	T1:221-242
40		Aneka, Comet Cloud, T-Systems.	T1:252-298
41		Understanding Scientific Applications For Cloud Environments.	T1:345-385

42	To Understand The Applications Of Cloud And Monitoring And	Monitoring, Management Applications: An Architecture For Federated Cloud Computing.	T1:393-410
43-44	Management Of Cloud Applications	Sla Management In Cloud Computing, Resource Cloud Mashups.	T1:413-429
45		Performance Prediction For HPC On Cloud.	T1:437-445
46		Best Practices In Architecting Cloud Applications In The AWS Cloud.	T1:459-542
47		Governance And Case Studies.	T1:551-567
48		Organizational Readiness And Change Management In The Cloud Age.	T1:567-572
49		Data Security In The Cloud.	T1:573-588
50		Achieving Production Readiness For Cloud Services.	T1:593-612

XII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Objectives		Program Outcomes											Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι		S	Н										Н	S	Н
II		Н			S								S		Н
III										Н	S		Н	S	S
IV			S		Н								Н	S	S
V											S	Н	S		Н
VI				Н			Η								
VII					S								Н		
VIII							Η						Н		

S – Supportive

H - Highly Related

XV. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes	Program Outcomes											Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Η					S							Н		Н
2		S									Н		S	Н	
3		Н	S											Н	Н
4			Н		S								S	Н	
5					Н						S		Н		S
6					S			Н					Н	Н	S
7		Н									S		Н		S
8			Н		S		Η				Н		Н	S	
9		S				S		Н					Н		
10			Н		Η		S						S		
11		Н											S		
12					Η								S		

S – Supportive

H - Highly Related

Prepared by: Ms. Ch Sri Vidya, Assistant Professor

HOD, CSE