

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTION

Course Title	AUTOMATA A	AUTOMATA AND COMPILER DESIGN									
Course Code	A50513	A50513									
Regulation	R13	R13									
Course Structure	Lectures	Lectures Tutorials Practicals Credits									
	4	-	-	4							
Course Coordinator	Mr. D Rahul, A	Assistant Professo	r	·							
Team of Instructors	Mr. D Rahul, A	Assistant Professo	r								

I. COURSE OVERVIEW:

This course deals with the basic techniques of Compiler Construction and tools that can be used to perform syntax- directed translation of a high –level of a high level programming language into an executable code. This will provide deeper insights into the more advanced semantics aspects of programming languages, code generation, machine independent optimizations, dynamic memory allocation, types and their inferences, object orientation.

II. PREREQUISITES:

Level	Credits	Periods / Week	Prerequisites
UG	4	4	C Programming, Data Structures, Mathematical Foundations of Computer Science

III. COURSE ASSESSMENT METHODS:

a) Marks Distribution

	Session Marks	University End Exam Marks	Total Marks
1.	There shall be 2 midterm examinations. Each midterm Examination Consists of subjective type and Objective type tests.		
2.	The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each semester shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks.		
3.	The objective type test is for 10 marks with duration of 20 minutes. It consists of 10 multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark.	75	100
4.	First midterm examination shall be conducted for the first four units of syllabus and second midterm examination shall be conducted for the Remaining portion.		
5.	Five marks are marked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1	I Mid Examination	80 minutes	20
2	I Assignment		05
3	II Mid Examination	80 minutes	20
4	II Assignment		05
5	External Examination	3 hours	75

V. COURSE OBJECTIVES:

- 1. Construct an insight of fundamental principles of designing compilers
- 2. Discuss the various phases of compiler design
- 3. Develop the skills needed for building compilers
- 4. Differentiate the organization of code optimizer
- 5. Evaluate Machine dependent code optimization

VI. COURSE OUTCOMES:

At the end of the course the students are able to:

- 1. Formulate lexical analysis phase of the compiler.
- 2. Understand the syntax analysis phase.
- 3. Rewrite Parsing using YACC.
- 4. Classify the Semantic Analysis and Intermediate code generation phase.
- 5. **Define** the Machine code generation phase.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics,	Н	Assignments
	science, engineering fundamentals, and an engineering		and
	specialization to the solution of complex engineering problems.		Tutorials
PO2	Problem analysis: Identify, formulate, review research literature,	Н	Assignments
	and analyze complex engineering problems reaching substantiated		and
	conclusions using first principles of mathematics, natural sciences,		Tutorials
	and engineering sciences.		
PO3	Design/development of solutions : Design solutions for complex	N	
	engineering problems and design system components or processes		
	that meet the specified needs with appropriate consideration for		
	the public health and safety, and the cultural, societal, and		
	environmental considerations.		
PO4	Conduct investigations of complex problems: Use research-	Н	Assignments
	based knowledge and research methods including design of		and
	experiments, analysis and interpretation of data, and synthesis of		Tutorials
	the information to provide valid conclusions.		
PO5	Modern tool usage: Create, select, and apply appropriate	N	
	techniques, resources, and modern engineering and IT tools		
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		
PO6	The engineer and society: Apply reasoning informed by the	N	
	contextual knowledge to assess societal, health, safety, legal and		
	cultural issues and the consequent responsibilities relevant to the		
	professional engineering practice.		

	learning in the broadest context of technological change.		
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long	S	
	apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		riojecis
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and	S	Projects
	engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.		
PO10	multidisciplinary settings. Communication: Communicate effectively on complex	S	seminars.
	and as a member or leader in diverse teams, and in		and Tutorials
PO9	and responsibilities and norms of the engineering practice.Individual and team work: Function effectively as an individual,	Н	Assignments
PO8	Ethics : Apply ethical principles and commit to professional ethics	Ν	
	contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental	Ν	

VIII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes						
PSO1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based	Н	Lectures, Assignments				
PSO2	Software Engineering practices: The ability to apply standard practices and strategies in software service management using open- ended programming environments with ability to deliver a quality service for business success.	S	Projects				
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	S	Guest Lectures				

N - None

S - Supportive

H - Highly Related

IX. SYLLABUS:

UNIT – I

Formal Language and Regular Expressions: Languages, Definition Language regular expressions, Finite Automata-DFA, NFA. Conversion of regular expression to NFA, NFA to DFA, Applications of Finite Automata to lexical analysis, lex tools.

Context Free grammars and parsing: Context free grammars, derivation, parse trees, ambiguity LL (K) grammars and LL (1) parsing.

UNIT – II

Bottom up parsing handle pruning LR Grammar Parsing, LALR Parsing, Parsing ambiguous grammars, YACC Programming specification.

Semantics: Syntax directed translation, S-attributed and L-attributed grammars, and Intermediate codeabstract, syntax tree, translation of simple statements and control flow statements.

UNIT – III

Context sensitive features-Chomsky hierarchy of languages and recognizers. Type checking, type conversions, equivalence of type expressions, overloading of functions and operations.

$\mathbf{UNIT} - \mathbf{IV}$

Run time storage: Storage organization, storage allocation strategies scope access to now local names, parameters, language facilities for dynamics storage allocation.

Code optimization: Principal sources of optimization of basic blocks, peephole optimization, flow graphs, data flow analysis of flow graphs.

UNIT - V

Code generation: Machine dependent code generation, object code forms, generic code generation algorithm, register allocation and assignment using DAG representation of Block.

TEXT BOOKS

- 1. Principles of compiler design -A.V. Aho . J.D.Ullman; Pearson Education.
- 2. Modern Compiler Implementation in C- Andrew N. Apple, Cambridge University Press.

REFERENCES

- 1. Lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly
- 2. Modern Compiler Design- Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, Wiley dreamtech.
- 3. Engineering a Compiler-Cooper & Linda, Elsevier.
- 4. Compiler Construction, Louden, Thomson
- 5. "Introduction to Automat a Theory Languages and Computation". Hopcroft H.E. and Ullman J.D. Pearson Education

IX. COURSE PLAN:

At the end of the course, students are able to achieve the following learning outcomes.

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference	
1	Understand the basic compilers	Introduction, structure, Phases of	T1:1.1-1.8	
	and compilation process	Compilation.	11.1.1 1.0	
2-10	Relate regular grammar to	Construction of regular expressions,	T1:3.5-3.7	
	programming feature	NFA,DFA, conversions		
11	Differentiate Pass and Phases of	Concept of pass and difference	T1:3.3,T2:2.3	
	translation	between pass and phase.	11.5.5,12.2.5	
12	Design of compiler for a language	Bootstrapping and types of compiler.	T1:4.1	

10	Lloutifre Determine	I an I amont an alternation of	
13	Identify Data structure in	Lex-Lexical analyzer generator	T1.4 1
	compilation Using lexical analyzer	Derivations and parse tree regular	T1:4.1
		expressions v/s context free grammar.	
14-16	Understand Top down parsing	Backtracking, LL(1), Recursive decent	T1:3.8,T2:2.5
	techniques	parsing Finding FIRST and	T1:4.1,
		FOLLOW.	T2:3.1
17-20	Construct the parsing table for	Construction of parse tables,	T1.4 2
	given inputs	Predictive parsing.	T1:4.3
21-22	Understand bottom up parsing	Shift reduce parsing, operator	T1:4.4
	techniques	precedence parsing	
23-25	Differentiate types of LR(0)	LR-SLR,LR(0)	
25-25		ER-BER,ER(0)	T1:4.5
26.29	parsers Differentiate tames of L D(1)		
26-28	Differentiate types of LR(1)	LALR,CLR.	T1: 4.6
•	parsers		
29	Construct a parse tree for	Description of error recovery	T1: 4.7
	ambiguous grammar		
30	Implement parser generator	YACC parser generator	T1:4.8
31-32	Implement the construction of	Abstract syntax tree, three address	m 4.4.2
	syntax trees	code	T1:4.9
33-35	Recognize the semantics of	Introduction to attributes grammars	
55-55	grammar	Syntax directed definitions,	
	grammai	applications of SDD, implementing L-	T1:5.2
26.27		attributed SDD's	
36-37	Describe the forms of	Control flow, back patching, switch	
	intermediate code generation	statements	T1:5.1.5.3,5.4
	phases		
38-40	List different types of language	Rules, type conversions,	
	constructs	Overloading, type inference and	T1:8.1-8.6
		polymorphic functions.	
41-43	Summarize the symbol table	Symbol table format, ordered and	
41-43	Summarize the symbol table	unordered symbol tables.	
		One primetical for his structures.	T1:6.1-6.6
		Organization for block structures	
		languages	
44-46	List different types of storage	Static, runtime stack and heap storage	T1:7.6
	allocation	allocations	
47-48	Understand storage allocations	Storage allocation for arrays, strings	T1: 7.7
	for data structures	and records	11. /./
48-50	Understand Various	Introduction for optimization.	T1.7 9 7 0
	optimization techniques	Local, global and scope optimization	T1:7.8-7.9
51-53	Implementation of basic block	Basic blocks, flow graphs, loops, code	
-	optimization techniques	motion, induction variables, reduction	T1:10.1-10.2
	-F	in strength	
54-55	Construction of DAG	DAG construction, applications	
5 + 55		2110 construction, applications	T1:10.3-10.4
55-57	Understand the Data flow	Data flow analysis of flow graphs.	
55-51	analysis	Flow graph, loops in flow graphs	
	anarysis	Representing data flow information,	T1:10.5
			11.10.3
		data flow equations for programming	
FO FO		constructs	
58-60	Implement optimization on data	Examples for sub expression	T1:10.6-10.8
	flow graphs	elimination, Live variable analysis	T2:9.1
		copy propagation and examples	12.7.1
61-62	Understand various code	Introduction, issues in code	
	generation techniques	generation, object code forms	T1:10.9-
	· ·	Need of machine dependent code	10.13
		optimization, peephole optimization	
	1	· · · · · · · · · · · · · · · · · · ·	

63-65	Implement machine dependent	Global register allocation, register	
	optimizations	assignment for outer loops	
		Rearranging the order, heuristic	T1:10.12
		ordering for DAGs, optimal ordering	
		and labeling algorithm	

X. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course Objecti		Program Outcomes												Program Specific Outcomes		
ves	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Н		Н	S					S				Н		S	
2	Н									Н			S			
3		Η	S	Н					Н				S		Н	
4		S								S				Н		
5			Η						S						S	

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

Course Outcomes		Program Outcomes													ecific es
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Н	Н	Н	Η						S			Н	S	Н
2		Н		S											Н
3	Н		Н						Н				Н	S	
4	S	S								Н					
5	S	S	Н	S					S	S			S	Н	Н
				a a											

S =Supportive

H = Highly Related

Prepared by: Mr D Rahul, Assistant Professor

Date: 07/07/2017

HOD, IT