

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	AERODYNAMICS – II				
Course Code	A52107				
Regulation	R15-JNTUH				
a a i	Lectures	Tutorials	Practical's	Credits	
Course Structure	4	-	-	4	
Course Coordinator	Mr. N V Raghavendra, Associate Professor				
Team of Instructors	Mr. N V Raghavendra, As	Mr. N V Raghavendra, Associate Professor, Ms. Farheen Sana, Associate Professor			

I. COURSE OVERVIEW

Aerodynamic is the study of the flow of air about a body. In this case, the body will be an airplane. It gives a complete picture of the aerodynamic forces behavior of the airplane. Aerodynamics extends fluid mechanic concepts to the aerodynamic performance of wings and bodies in sub/supersonic regimes. Aerodynamics-II is a basic course that deals with the flow characteristics subjected to various types of force problems, usually the objectives of aerodynamic force analysis are the determination of the lift, drag, thrust and weight produced by wing surfaces. Classroom lectures are supplemented with physical demonstrations. The course includes a laboratory where students have an opportunity to build an appreciation for the phenomenon being discussed in lecture. The course has four components: (i) thermodynamics in fluid motion (ii) one dimensional flows; (iii) oblique shock and expansion waves; (iv) supersonic flow regimes.

II. **PREREQUISITE(S)**

Level	Credits	Periods	Prerequisite
UG	4	5	Knowledge of basic physics, fluid mechanics & engineering mechanics

III. MARKS DISTRIBUTION

Sessional Marks	University End Exam Marks	Total Marks
Mid Semester Test There shall be two midterm examinations. Each midterm examination consists of subjective type and objective type tests. The subjective test is for 10 marks of 60 minutes duration. Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks. The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.	75	100

Assignment	
Five marks are marked for assignments. There shall be two assignments in every	
theory course. Marks shall be awarded considering the average of two	
assignments in each course	

IV. EVALUATION SCHEME

S No	Component	Duration	Marks
1	I Mid examination	80 minutes	20
2	I Assignment		05
3	II Mid examination	80 minutes	20
4	II Assignment		05
5	External examination	3 hours	75

V. COURSE OBJECTIVES:

- I. **Discuss** and revise the basic thermodynamics concepts.
- II. **Understand** the characteristics of quasi one-dimensional compressible flows through nozzles. in subsonic and supersonic regimes.
- III. Analyze how the aerodynamics affects the aircraft design and operation.
- IV. Knowledge of oblique shock waves and expansion waves.
- V. Understand one dimensional inviscid compressible flows.
- VI. Knowledge of flow in transonic regime.
- VII. Discuss the effect of presence of airfoil, wing and cone section in supersonic flows.

VI. COURSE OUTCOMES

At the end of the course the students are able to:

- 1. Apply knowledge and understand the essential facts, concepts and principles of thermodynamics.
- 2. **Apply** the basic knowledge in mathematics, science and engineering.
- 3. **Apply** the basic knowledge to design a mathematical system or a Mechanical system or a process that meets desired specifications and requirements.
- 4. Analyze the characteristics of quasi one-dimensional flows through nozzles.
- 5. Analyze how the aerodynamics affects the aircraft design and operation
- 6. **Analyze** the concept of oblique shock waves and expansion waves.
- 7. **Evaluate** the one dimensional inviscid compressible flows.
- 8. Analyze flow in transonic regime.
- 9. Analyze the effect of presence of airfoil, wing and cone section in supersonic flows.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program outcomes	Level	Proficiency assessed by
PO1	General knowledge: An ability to apply the knowledge of mathematics,	Η	Exercises
	science and Engineering for solving multifaceted issues of Aeronautical		
	Engineering		
PO2	Problem Analysis: An ability to communicate effectively and to prepare	Н	Assignments
	formal technical plans leading to solutions and detailed reports for		
	Aeronautical systems		
PO3	Design/Development of solutions: To develop Broad theoretical knowledge	S	Exercises
	in Aeronautical Engineering and learn the methods of applying them to		
	identify, formulate and solve practical problems involving Aerodynamics		

PO4	Conduct investigations of complex problems: An ability to apply the	Н	
101	techniques of using appropriate technologies to investigate, analyze, design,	11	
	simulate and/or fabricate/commission complete systems involving complex		
	aerodynamics flow situations.		
PO5	Modern tool usage: An ability to model real life problems using different	S	Assignments
	hardware and software platforms, both offline and real-time with the help of		C
	various tools along with upgraded versions.		
PO6	The engineer and society: An Ability to design and fabricate modules,		Exercises
	control systems and relevant processes to meet desired performance needs,		
	within realistic constraints for social needs		
PO7	Environment and sustainability: An ability To estimate the feasibility,		Exams,
	applicability, optimality and future scope of power networks and apparatus for		Discussions
	design of eco-friendly with sustainability		
PO8	Ethics: To Possess an appreciation of professional, societal, environmental		Exercises
	and ethical issues and proper use of renewable resources		
PO9	Individual and team work: An Ability to design schemes involving signal	S	Assignments
	sensing and processing leading to decision making for real time Aeronautical		
	systems and processes at individual and team levels.		
PO10	Communication : an Ability to work in a team and comprehend his/her scope	S	Exercises
	of work, deliverables, issues and be able to communicate both in verbal,		
	written for effective technical presentation		
PO11	Project management and finance: To be familiar with project management		Assignments
	problems and basic financial principles for a multi-disciplinary work		
PO12	Life-long learning: An ability to align with and upgrade to higher learning	Η	Exercises
	and research activities along with engaging in life-long learning.		
C C.,	nnortive	н_1	Jighly Rolated

S – Supportive

H – Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace	Н	Lectures,
	engineering in innovative, dynamic and challenging environment for design		Assignments
	and development of new products		U
PSO2	Problem solving skills: imparted through simulation language skills and	S	Tutorials
	general purpose CAE packages to solve practical, design and analysis		
	problems of components to complete the challenge of airworthiness for flight		
	vehicles		
PSO3	Practical implementation and testing skills: Providing different types of in	S	Seminars and
	house and training and industry practice to fabricate and test and develop the		Projects
	products with more innovative technologies		5
PSO4	Successful career and entrepreneurship: To prepare the students with broad		
	aerospace knowledge to design and develop systems and subsystems of		
	aerospace and allied systems and become technocrats		
~ ~			

S – Supportive

H – Highly Related

IX. SYLLABUS

Unit I

Thermodynamics in Fluid motion:

Definition of compressibility of flow, measure, flow regimes. Review of thermodynamics –concept of equilibrium, thermodynamic systems, variables of state, the first law of thermodynamics, Reversible & Irreversible processes, Perfect gases, internal energy and enthalpy, specific heats, adiabatic reversible process, relations for thermally & calorically perfect gas, First law applied to irreversible processes, the throttling process or Joule-Thompson process(considered most important for application to fluid mechanics), Entropy and second law, Entropy change relations, isentropic relations.

Unit II

One Dimensional Flows:

One dimensional approximation, continuity equation for 1-D flows, Energy equation – incorporation of kinetic energy in Joule-Thompson process, reservoir conditions, 1-D momentum equation for inviscid flow, Bernoulli equation for compressible flow, Mach number, 1-D area velocity relation, convergent divergent channel and throat, relations between stagnation pressure/density and mach number, local reservoir and actual reservoir, sonic variables and reservoir variables, different forms of energy equation, constant area duct as a special case of 1-D flow, continuity and momentum equations for constant area ducts, experimental flow visualization of a bluff body in a supersonic flow and picture of a normal shock constant area ducts formed but streamlines entering and leaving perpendicular to the shock, Normal shock waves: basic equations, relations across a normal shock, calculation of normal shock wave properties, measurement of air speed in compressible subsonic and supersonic flows, entropy rise across normal shock and its relation to pressure rise, numerical exercises with normal shock tables.

Unit - III

Oblique Shock And Expansion Waves:

Oblique shock relations, supersonic flow over wedges with attached shock, large wedge angle and shock detachment, oblique shock charts: strong shock and weak shock boundary, pressure, density and entropy rise, oblique shock of vanishing strength and mach wave, mach line, mach angle, supersonic compression by turning, smooth nearly isentropic turn, numerical exercises with oblique shock charts, regular reflection from solid wall, pressure deflection diagrams, phenomenological description of shock boundary layer interaction at the wall, intersection of shocks, mach reflection and slip stream. Numerical exercises with shock reflection and shock intersection, detached shock wave in front of a bluff 2-D body-variation of its strength starting from normal shock, strong oblique shock, weak oblique shock to mach wave, shock wave in front of a 3-d body (phenomenological description only), supersonic expansion by turning, Prandtl-Meyer function and expansion fan, shock expansion theory-application to supersonic aerofoils. Supersonic flows-over a flat plate at angle of attack, over a diamond aerofoil at angle of attack, determination of the slip stream angle, wave drag and lift, numerical exercises with Prandtl-Meyer function tables. Numerical exercises determining shock expansion slip stream configuration and force calculation on aerofoils.

Unit – IV

More One Dimensional Flows And Subsonic And Transonic Airfoils:

Adiabatic flow in straight, variable area channels- nozzles, diffusers. Governing equations, area-velocity relation. Mass flow rate, effect of stagnation conditions, back pressure. Choked flow- isentropic flow, ideally expanded, over-expanded, under-expanded flows- appearance of normal shock- flow losses. Wave reflection from free boundary, brief outline of operation of supersonic wind tunnels employing convergent-divergent nozzles, 1-D piston motion in a constant area tube, jump start, propogation of shock wave in front and expansion wave behind, x-t diagram, particle velocity, pressure density and temperature relations.

SUBSONIC FLOW: The velocity potential, perturbation potential, linearised governing equation in 2-D, The pressure coefficient-Prandtl-Glauert compressibility correction, application to swept wings, critical Mach no., drag divergence Mach no.

TRANSONIC FLOW: the sound barrier. Supercritical airfoils, swept wings at transonic speeds, second order equation for transonic flow, wing-body combinations, Whitcomb's, transonic area rule, application to transonic aircraft.

Unit -V: Airfoil, Wing and Cone in Supersonic Flow: Point mass in stationary air moving in subsonic speed and moving in supersonic speed and propagation of wave front, in supersonic case influence zone limited within mach lines/wave /cones, principle of limited upstream influence in supersonic flow, brief outline of method of characteristics-statement (without proof) of compatibility relations, application to supersonic nozzle design.

Linearized supersonic flow-governing equations, boundary conditions. Pressure coefficient, application to supersonic airfoils. Lift, drag, pitching moment. Wedge, flat plate, diamond and biconvex aerofoils at small angle of attack.

Air loads over flat rectangular wings of finite span, Delta wing with supersonic leading edge and subsonic leading edge, Cone at zero angle of attack with attached conical shock: Limited upstream influence in supersonic flow-comparison of finite cone and semi-infinite cone, dimensional analysis and dimensionless conical variable, ordinary differential equation for conical flow, mention of availability of computed solution, how to use the standard computed chart, comparison of pressure rise for wedge and cone of equal semi-angle.

Qualitative aspects of hypersonic flow, Newtonian flow model: windward surface and Lee surface, Lift and drag of flat plate wings at hypersonic speeds.

TEXT BOOKS:

- 1. Liepmann, H.W., and Roshko, A., "Elements of Gas Dynamics", John Wiley, 1957
- 2. Bertin, J.J., "Aerodynamics for Engineers", 4th edn., Indian reprint, Pearson Education, ISBN: 81-297-0486-2, 2004
- 3. Radhakrishnan E., "Gas Dynamics", Prentice-Hall of India.
- 4. Anderson, J.D., "Modern Compressible Flow with Historical Perspective", 3rd edn., McGraw-Hill, ISBN: 0- 07-112161-7, 2003

REFERENCES:

- 1. McCormick, B.W., "Aerodynamics, Aeronautics & Flight Mechanics", 2nd edn., John Wiley, ISBN: 0-471-57506-2, 1995
- 2. Shapiro, A.H., "The Dynamics and Thermodynamics of Compressible Fluid Flow", Vols. I and II, John Wiley, 1953.
- 3. Landau, L.D., &Lifshitz, E.M., *"Fluid Mechanics"*, 2nd edn., Course of Theoretical Physics, vol. 6, Maxwell Macmillan International Edition, Pergamon, ISBN: 0-02-946234-7, 1989

X. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Course Learning Outcomes	Topics to be covered	Reference
1	Explain basic concept of thermodynamics	UNIT– I - Thermodynamics in Fluid motion	T1.1
2	Define compressibility of flow	Definition of compressibility of flow	T1.1
3	Define measure, flow regimes	Measure, flow regimes	T1.1
4	Discuss concept of equilibrium, thermodynamic systems, variables of state	Review of thermodynamics –concept of equilibrium, thermodynamic systems, variables of state	T1.1
5	Discuss the first law of thermodynamics, Reversible & Irreversible processes	The first law of thermodynamics, Reversible & Irreversible processes	T1.1
6	Define perfect gases, internal energy and enthalpy	Perfect gases, internal energy and enthalpy	T2.2
7	Discuss Specific heats, adiabatic reversible process,	Specific heats, adiabatic reversible process	T2.2
8	Derive relations for thermally & calorically perfect gas	Relations for thermally & calorically perfect gas	T2.2
9	Define first law applied to irreversible processes	First law applied to irreversible processes	T2.2
10	Discuss the throttling process or Joule- Thompson process	The throttling process or Joule-Thompson process(considered most important for application to fluid mechanics)	T1.17
11	Discuss Entropy and second law	Entropy and second law	T1.17
12	Explain Entropy change relations	Entropy change relations	T1.17

13	Justify the isentropic relations	isentropic relations	T1.17
14	Discuss One dimensional approximation, continuity equation for 1-D flows	Unit II – One Dimensional Flows: One dimensional approximation, continuity equation for 1-D flows	T1.2
15	Discuss Energy equation – incorporation of kinetic energy in Joule-Thompson process,	Energy equation – incorporation of kinetic energy in Joule-Thompson process	T1.4
16	Explain Reservoir conditions, 1-D momentum equation for inviscid flow	Reservoir conditions, 1-D momentum equation for inviscid flow	T1.2
17	Derive Bernoulli equation for compressible flow	Bernoulli equation for compressible flow	T1.3
18	Explain Mach number, 1-D area velocity relation	Mach number, 1-D area velocity relation,	T1.3
19	Explain convergent divergent channel and throat	convergent divergent channel and throat	T1.3
20	Discuss and analyze Local reservoir and actual reservoir	Local reservoir and actual reservoir	T1.3
21	Discuss and analyze Sonic variables and reservoir variables	Sonic variables and reservoir variables	T1.3
22	Analyze different forms of energy equation	Different forms of energy equation,	T1.3
23	Discuss constant area duct as a special case of 1-D flow	Constant area duct as a special case of 1-D flow	T1.3
24-25	Explain continuity and momentum equations for constant area ducts	Continuity and momentum equations for constant area ducts	T1.3
26	Discuss the experimental flow visualization of a bluff body in a supersonic flow	Experimental flow visualization of a bluff body in a supersonic flow	T1.3
27	Explain picture of a normal shock - constant area ducts formed by streamlines entering and leaving perpendicular to the shock	Picture of a normal shock - constant area ducts formed by streamlines entering and leaving perpendicular to the shock	T1.3
28-29	Define Normal shock waves: basic equations, relations across a normal shock	Normal shock waves: basic equations, relations across a normal shock	T1.4
30	Explain calculation of normal shock wave properties	Calculation of normal shock wave properties	T1.4
31	Discuss the measurement of air speed in compressible subsonic and supersonic flows	Measurement of air speed in compressible subsonic and supersonic flows	T1.4
32	Resolve the entropy rise across normal shock and its relation to pressure rise	Entropy rise across normal shock and its relation to pressure rise	T1.4
33	Discuss numerical exercises with normal shock tables	Numerical exercises with normal shock tables	T1.4
34	Explain Oblique shock relations, pressure, density and entropy rise	UNIT– III - Oblique Shock And Expansion Waves: Oblique shock relations, pressure, density and entropy rise	T1.17
35	Define supersonic flow over wedges with attached shock	Supersonic flow over wedges with attached shock,	T1.17
36	Explain Large wedge angle and shock detachment	Large wedge angle and shock detachment	T1.17
37-38	Discuss Oblique shock charts: strong shock and weak shock boundary	Oblique shock charts: strong shock and weak shock boundary	T2.4
39	Discuss the oblique shock of vanishing strength and mach wave, mach line, mach angle	Oblique shock of vanishing strength and mach wave, mach line, mach angle	T2.4
40	Discuss the supersonic compression by turning, smooth nearly isentropic turn	Supersonic compression by turning, smooth nearly isentropic turn	T2.4
41	Discuss numerical exercises with oblique shock charts, regular reflection from solid wall, pressure deflection diagrams,	Numerical exercises with oblique shock charts, regular reflection from solid wall, pressure deflection diagrams	T2.4

40			T 2 (
42	Describe phenomenological description of shock boundary layer interaction at the wall	Phenomenological description of shock boundary layer interaction at the wall	T2.4
43	Discuss the importance and effects of	Intersection of shocks, mach reflection and	T2.4
43	surface roughness for internal and external flows	slip stream	12.4
44	Discuss Numerical exercises with shock	Numerical exercises with shock reflection	T2.4
••	reflection and shock intersection	and shock intersection	12.1
45	Explain Detached shock wave in front of a	Detached shock wave in front of a bluff 2-	T2.4
	bluff 2-D body- variation of its strength starting from normal shock	D body- variation of its strength starting from normal shock	
46	Derive Strong oblique shock, weak oblique	Strong oblique shock, weak oblique shock	T2.4
	shock to mach wave	to mach wave,	
47	Define Shock wave in front of a 3-d	Shock wave in front of a 3-d	T2.4
	body(phenomenological description only)	body(phenomenological description only),	
48	Describe Supersonic expansion by turning	Supersonic expansion by turning,	T1.5
49-50	Explain Prandtl-Meyer function and	Prandtl-Meyer function and expansion fan,	T1.5
51	expansion fan ,	Sheel and the second section to	T1 5
51	Discuss Shock expansion theory- application to supersonic aerofoils.	Shock expansion theory-application to supersonic aerofoils	T1.5
52	Discuss Supersonic flows-over a flat plate	Supersonic flows-over a flat plate at angle	T1.5
52	at angle of attack, over a diamond aerofoil at angle of attack	of attack, over a diamond aerofoil at angle of attack	11.5
53	Explain Determination of the slip stream	Determination of the slip stream angle,	T1.5
51	angle	Warrenderen er ditte	TT1 5
54	Derive the wave drag and lift	Wave drag and lift	T1.5
55	Discuss Numerical exercises with Prandtl-	Numerical exercises with Prandtl-Meyer	T1.5
	Meyer function tables.	function tables.	
56-57	Discuss Numerical exercises determining	Numerical exercises determining shock	T1.5
	shock expansion slip stream configuration	expansion slip stream configuration and	
	and force calculation on aerofoils.	force calculation on aerofoils.	
58	Define Adiabatic flow in straight, variable	Unit - IV: More One Dimensional	R2.17
	area channels- nozzles, diffusers	Flows And Subsonic And Transonic	
		Airfoils: Adiabatic flow in straight,	
		variable area channels- nozzles, diffusers	
59	Discuss Governing equations, area-velocity	Governing equations, area-velocity	R2.17
60	Discuss Mass flow rate, effect of stagnation	Mass flow rate, effect of stagnation	R2.17
00	conditions, back pressure	conditions, back pressure.	112.17
61	Discuss Choked flow- isentropic flow,	Choked flow- isentropic flow, ideally	R2.17
	ideally expanded, over-expanded, under-	expanded, over-expanded, under-expanded	
	expanded flows- appearance of normal	flows- appearance of normal shock- flow	
	shock- flow losses	losses.	
62	Define Wave reflection from free boundary,	Wave reflection from free boundary, brief	R2.17
	brief outline of operation of supersonic	outline of operation of supersonic wind	
	wind tunnels employing convergent-	tunnels employing convergent-divergent	
	divergent nozzles	nozzles,	
63	Discuss and Explain the 1-D piston motion	1-D piston motion in a constant area tube,	R2.17
	in a constant area tube, jump start,	jump start, propagation of shock wave in	
	propagation of shock wave in front and expansion wave behind	front and expansion wave behind	
64	Define x-t diagram, particle velocity,	x-t diagram, particle velocity, pressure	R2.17
	pressure density and temperature relations	density and temperature relations.	
65	Discuss the velocity potential, perturbation	SUBSONIC FLOW: The velocity	R2.17
	potential, linearised governing equation in	potential, perturbation potential, linearised	
	2-D.	governing equation in 2-D	T C 2
66	Define the pressure coefficient-Prandtl-	The pressure coefficient-Prandtl-Glauert	T3.2
	Glauert compressibility correction	compressibility correction	

67	Discuss application to swept wings, critical Mach no., drag divergence Mach no.	Application to swept wings, critical Mach	T3.3
60		no., drag divergence Mach no. TRANSONIC FLOW: the sound barrier.	T2 0
68	Discuss the sound barrier. Supercritical		T3.2
	airfoils, swept wings at transonic speeds,	Supercritical airfoils, swept wings at	
	second order equation for transonic flow	transonic speeds, second order equation	
		for transonic flow	
69	Discuss wing-body combinations,	Wing-body combinations, Whitcomb's,	T3.3
	Whitcomb's, transonic area rule,	transonic area rule, application to	
	application to transonic aircraft	transonic aircraft	
70	Discuss Point mass in stationary air moving	Unit -V: Airfoil, Wing and Cone in	T3.3
	in subsonic speed and moving in supersonic	Supersonic Flow: Point mass in	
	speed and propagation of wave front	stationary air moving in subsonic speed	
		and moving in supersonic speed and	
		propagation of wave front	
71	Discuss in supersonic case influence zone	In supersonic case influence zone limited	T3.3
	limited within mach lines/wave /cones	within mach lines/wave /cones	
72	Discuss principle of limited upstream	Principle of limited upstream influence in	T3.3
	influence in supersonic flow, brief outline	supersonic flow, brief outline of method of	2.0
	of method of characteristics-statement	characteristics-statement (without proof)	
	(without proof) of compatibility relations	of compatibility relations	
73	Discuss application to supersonic nozzle	Application to supersonic nozzle design.	T3.2
15	design.	Linearized supersonic flow-governing	13.2
	Linearized supersonic flow-governing	equations	
		equations	
74	equations,		T4 0
74	Explain boundary conditions. Pressure	Boundary conditions. Pressure coefficient,	T4.2
	coefficient, application to supersonic	application to supersonic airfoils. Lift,	
	airfoils. Lift, drag, pitching moment.	drag, pitching moment.	
75	Define Wedge, flat plate, diamond and	Wedge, flat plate, diamond and biconvex	T4.2
	biconvex aerofoils at small angle of attack.	aerofoils at small angle of attack.	
76	Discuss Air loads over flat rectangular	Air loads over flat rectangular wings of	T3.2
	wings of finite span, Delta wing with	finite span, Delta wing with supersonic	
	supersonic leading edge and subsonic	leading edge and subsonic leading edge	
	leading edge,		
77	Discuss Cone at zero angle of attack with	Cone at zero angle of attack with attached	T3.2
	attached conical shock: Limited upstream	conical shock: Limited upstream influence	
	influence in supersonic flow-comparison of	in supersonic flow-comparison of finite	
	finite cone and semi-infinite cone,	cone and semi-infinite cone	
78	Define dimensional analysis and	Dimensional analysis and dimensionless	T4.2
-	dimensionless conical variable,	conical variable	
79	Explain ordinary differential equation for	Ordinary differential equation for conical	T4.2
.,	conical flow, mention of availability of	flow, mention of availability of computed	± 1.2
	computed solution	solution	
80	Discuss how to use the standard computed	How to use the standard computed chart,	T4.2
00		comparison of pressure rise for wedge and	14.2
	chart, comparison of pressure rise for		
01	wedge and cone of equal semi-angle.	cone of equal semi-angle.	T 4 2
81	Define Qualitative aspects of hypersonic	Qualitative aspects of hypersonic flow,	T4.2
	flow, Newtonian flow model: windward	Newtonian flow model: windward surface	
~	surface and Lee surface,	and Lee surface,	
82	Explain Lift and drag of flat plate wings at	Lift and drag of flat plate wings at	T3.4
	hypersonic speeds.	hypersonic speeds.	

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Objectives	Program Outcomes													Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Ι	Н					S		S				Н		S	S		
II		S					Н			S			Н			Н	
III				Н				S			S						
IV			Н		S				S			Н					
V	Н					S						S				S	
VI		S			S		Н		Н	S							
VII				Н							S	Н		S	S		

S – Supportive

H - Highly related

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

Course Outcomes	Program Outcomes													Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
1	Н		Н					S			S	Н		S	S		
2					S											S	
3												Н					
4								S		S	S					Н	
5																	
6			Н	Н						S						S	
7	Н																
8													Н				
9		Н												S			
S – Supportiv	S – Supportive H - Highly related													ted			

S – Supportive

H - Highly related

Prepared by: Mr. N V Raghavendra, Associate Professor

HOD, AE