ADVANCED DATABASES

V Semester: IT										
Course Code	Category	Hours / Week		Credits	Maximum Marks					
AIT505	Elective	L	Т	Р	С	CIA	SEE	Total		
		3	-	-	3	30	70	100		
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 45				

COURSE OBJECTIVES:

The course should enable the students to:

- I. Define entity relationship model and transaction processing system.
- II. Understand various storage structures for database.
- III. Describe the distributed and parallel database processing.
- IV. Describe object oriented database concepts and models.
- V. Understand various advancements in database technology.

COURSE OUTCOMES (COs):

- CO 1: Understand the concept of Active Databases in Starburst, Oracle, and DB2.
- CO 2: Analyze the concepts of Temporal and Object Databases-SQL.
- CO 3: Understand the Concepts of Relational calculi, relational algebra and recursion.
- CO 4: Explore the concept of Spatial, Text and Multimedia Databases.
- CO 5: Understand the concept of Uncertainty in Databases.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand and explain the key ideas underlying database systems and the database approach to information storage and manipulation.
- 2. Design and implement database applications.
- 3. Understand the types of tasks involved in database administration and the facilities provided in a typical database system to support these tasks.
- 4. Design adequate backup, recovery and security measures for a database installation, and understand the facilities provided by typical database systems to support these tasks.
- 5. Define and use important temporal concepts, such as time point, time interval, and time-interval operators such as before, after and overlaps.
- 6. Understand the temporal data model at the conceptual level.
- 7. Describe some of the extensions to conventional query languages that have been proposed to support temporal query processing.
- 8. Critically assess the strengths and weaknesses of Object databases with respect to Relational systems.
- 9. Describe why Object databases appear to be such a good fit for a number of major growth areas in computing, such as Web-based and multimedia information systems.
- 10. Describe the strategy being adopted by major database supplier Oracle to address the apparent threat of Object database systems, and critically compare this approach with a pure Object technology approach
- 11. Formulate, using relational calculus solutions to a broad range of query problems
- 12. Identify a range of concepts, techniques and tools for creating and editing the interactive multimedia database
- 13. Identify the current and future issues related to multimedia technology to store information
- 14. Impart an overview of emerging data models like temporal, mobile and spatial databases
- 15. Understand the commercial relational database system (Oracle) by writing SQL using the system.

UNIT -I	ACTIVE DATABASES:	Classes: 10					
Syntax and Semantics (Starburst, Oracle, DB2): Taxonomy, applications, integrity management, workflow management, business rules, design principles, properties, rule modularization, rule debugging, IDEA methodology, open problems.							
UNIT -II	TEMPORIAL AND OBJECT DATABASES:	Classes: 10					
Overview: Time domain, data types, associating facts with time, temporal query language; Transact-SQL (T-SQL): Time ontology, data model, language constructs; Implementation: System architecture, temporal support, support for TSQL2.							
UNIT -III	COMPLEX QUERIES AND REASONING:	Classes: 09					
Logic of Query Languages: Relational calculi, relational algebra, recursive rules, syntax and semantics of data log, fix point semantics. Implementation Rules and Recursion: Rule rewriting methods, compilation and optimization, recursive queries in SQL, open issues.							
UNIT -IV	SPATIAL, TEXT AND MULTIMEDIA DATABASES:	Classes: 08					
Traditional Indexing Methods: Secondary keys, spatial access methods, text retrieval; Multimedia indexing: 1D time series, 2D color images, sub pattern matching							
UNIT -V	UNCERTAINITY IN DATABASES AND KNOWLEDGE BASES:	Classes: 08					
Introduction: Uncertainty in image database, uncertainty in temporal database, uncertainty in null value; Models of uncertainty; Uncertainty in relational databases: Lattice based relational databases, probabilistic relational databases.							
Text Books:							
1. Carlo Zaniolo, Stefano Ceri, "Advanced Database Systems", Morgan Kauffmann Publishers, VLDB Journal, 1 st Edition, 1997							
Reference Books:							
 Raghu Ramakrishnan, "Database Management System", McGraw-Hill Publications, 3rd Edition, 2000. Abraham Silberschatz, Henry F. Korth and S.Sudharshan, "Database System Concepts", Tata McGraw- Hill, 6th Edition, 2010. 							