

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

STRUCTURALENGINEERING

COURSE DESCRIPTOR

Course Title	ADVANCED DESIGN OF FOUNDATIONS									
Course Code	BSTB1	BSTB17								
Programme	M.Tech	M.Tech								
Semester	II	II CE								
Course Type	PROFESSIONAL COREELECTIVE									
Regulation	IARE - R18									
			Theory	Practical						
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits				
	3		-	3	-	-				
Chief Coordinator	Mr. N.	Venk	at Rao, Associate	Professor						
Course Faculty	Mr. N. Venkat Rao, Associate Professor									

I. COURSE OVERVIEW:

Civil Engineers are required to construct structures on the soil. The loads coming onto these structures, along with the self-weight, have to be safely transmitted to the soil beneath it. A geotechnical engineer must be able to design a footing in such a way that soil below it will not fail there will not be any excessive settlements in the soil. This course enables students to design a shallow and deep foundation, analyze the stability of slopes, and check the stability of retaining walls and embankments against failure. Through this course content engineers can design the foundation for safety and serviceability.

II. COURSE PRE-REQUISITES:

Level	Course Code Semester		Prerequisites	Credits		
UG	ACE003	III	Engineering Geology	4		
UG	ACE006	IV	Geotechnical Engineering	4		

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIAExamination	Total Marks	
Advanced design of foundations	70 Marks	30 Marks	100	

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs			
~	LCD / PPT	~	Seminars	~	Mini Project	~	Videos			
×	Open Ended Experiments									

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into fiveunits and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component		Totol Mowka			
Type of Assessment	CIE Exam	Quiz / AAT	1 otal Marks		
CIA Marks	25	05	30		

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems.	1	Assignments/ Exams
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Assignments/ Exams
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments/ Exams
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assesssocietal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2	Assignments/ Exams

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Engineering Knowledge : Graduates shall demonstrate sound knowledge in analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good foundation in mathematics, basic sciences and technical communication	2	Assignments/ Exams
PSO 2	Broadness and Diversity: Graduates will have a broad understanding of economical, environmental, societal, health and safety factors involved in infrastructural development, and shall demonstrate ability to function within multidisciplinary teams with competence in modern tool usage.	-	-
PSO 3	Self-Learning and Service: Graduates will be motivated for continuous self-learning in engineering practice and/or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly.	-	-

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The	The course should enable the students to:							
Ι	Decide the suitability of soil strata for different projects							
II	Design shallow foundations deciding the bearing capacity of soil.							
III	Analyze and design the pile foundation.							
IV	Understand analysis methods for well foundation							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping	
BSTB17.01	CLO 1	Understand the need and methods of Soil Exploration	PO 3	2	
BSTB17.02	CLO 2	Understand various methods of sampling and boring	PO 3	1	
BSTB17.03	CLO 3	Learn how to perform field tests on SPT and DCPT	PO 3, PO 6	2	

BSTB17.04	CLO 4	Learn how to perform Plate Load test for finding load	PO 3	2
		bearing capacity, settlements of soils		
BSTB17.05	CLO 5	Learn how to perform in-situ test using pressure meter	PO 3	3
BSTB17.06	CLO 6	Understand the importance of geophysical methods	PO 3, PO 6	2
BSTB17.07	CLO 7	Pile Group Capacity and Settlement.	PO 3	1
BSTB17.08	CLO 8	Understand the need of Laterally Londod Dilog	PO 3, PO 6,	2
		Understand the need of Laterarry Loaded Files	PO 1	
BSTB17.09	CLO 9	Understand the need of Dile L and Tests	PO 3, PO 6,	2
		Understand the need of Phe Load Tests	PO 1	
BSTB17.10	CLO 10	Analytical Estimation of Load- Settlement Behavior of	PO 3, PO 6,	2
		Piles,	PO 1	
BSTB17.11	CLO 11	Propertioning of Dile Foundations	PO 3, PO 6,	2
		Froportioning of File Foundations	PO 1, PO 2	
BSTB17.12	CLO 12	Analyza Lateral and Unlift Canacity of Dilas	PO 3, PO 6,	2
		Analyze Lateral and Opint Capacity of Files	PO 1, PO 2	
BSTB17.13	CLO 13	Understand IS and IBC Code Provisions	PO 3, PO 6,	2
		Understand 15 and IKC Code Provisions	PO 1, PO 2	
BSTB17.14	CLO 14	Elastic Theory and Ultimate Resistance Methods.	PO 3, PO 2	2
BSTB17.15	CLO 15	Tunnels and Arching in Soils	PO 2, PO 3	2
BSTB17.16	CLO 16	Understand the need of Pressure Computations around	PO 1, PO 2,	2
		Tunnels	PO 3	
BSTB17.17	CLO 17	Sheeting and Bracing Systems in Shallow and Deep	PO 1, PO 2,	2
		Open Cuts	PO 3	
BSTB17.18	CLO 18	Analysis and Design of Coffer Dams	PO 2, PO 3,	2
			PO 6	
BSTB17.19	CLO 19	Understand Foundations under uplifting loads	PO 2, PO 3,	2
			PO 6	
BSTB17.20	CLO 20	Understand Soil-structure Interaction.	PO 1, PO 2,	2
			PO 3, PO 6	

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLO		Program Outcomes (POs)													Program Specific Outcomes (PSOs)		
CLU	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CLO 1			2										2				
CLO 2			1										2				
CLO 3			2			2							3				
CLO 4			2										3				
CLO 5			3										3				
CLO 6			2			2							2				
CLO 7			1										2				
CLO 8	2		2			3							3				
CLO 9	2		2			2							3				
CLO 10	3		2			3							2				

CLO 11	1	2	2		3				3	
CLO 12	2	3	2		2				2	
CLO 13	3	3	2		3				3	
CLO 14		2	3						1	
CLO 15		2	3						2	
CLO 16	2	3	2						3	
CLO 17	2	3	2						3	
CLO 18		2	3		2				1	
CLO 19		2	3		3				2	
CLO 20	1	2	3		2				3	

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1, PO2, PO3, PO6	SEE Exams	PO 1, PO2, PO3, PO6	Assignments	PO 1, PO 2	Seminars	PO 3
Laboratory Practices	-	Student Viva	-	Mini Project	PO 1, PO 3, PO 6	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	PLANNING OF SOIL EXPLORATION					
Planning	Planning of Soil Exploration for Different Projects, Methods of Subsurface Exploration, methods of					
Borings a	long with Various Penetration Tests.					
Unit-II	SHALLOW FOUNDATIONS					
Requirem	ents for Satisfactory Performance of Foundations, Methods of Estimating Bearing Capacity,					
Settlemen	ts of Footings and Rafts, Proportioning of Foundations using Field Test Data, Pressure -					
Settlemen	Settlement Characteristics from Constitutive Laws.					
Unit-III	PILE FOUNDATIONS					
Methods of Estimating Load Transfer of Piles, Settlements of Pile Foundations, Pile Group Capacity and						
Settlement.						

Laterally Loaded Piles, Pile Load Tests, Analytical Estimation of Load- Settlement Behavior of Piles, Proportioning of Pile Foundations, Lateral and Uplift Capacity of Piles.

Unit-IV	WELL FOUNDATION

IS and IRC Code Provisions, Elastic Theory and Ultimate Resistance Methods. Tunnels and Arching in Soils, Pressure Computations around Tunnels

Unit-V OPEN CUTS, COFFER DAMS

Sheeting and Bracing Systems in Shallow and Deep Open Cuts in Different Soil Types. Coffer Dams, Various Types, Analysis and Design, Foundations under uplifting loads, Soil-structure Interaction.

Text Books:

1. N.P. Kurian, "Design of foundation system", Narosa Publishing House.

2. J. E. Bowles, "Foundation Analysis and Design", Tata McGraw Hill New York.

Reference Books:

1. Analysis and Design of Substructures, Swami Saran, Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.

Web References:

1. http://nptel.ac.in/courses/105105039/

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes	Reference
1-2	Introduction to Soil Exploration	CLO 1	T1:1.1
3	Methods of soil Exploration	CLO 1	T1:1.4
4	Types of Boring	CLO 2	T1:6.6
5-6	Soil Sampling methods	CLO 2	T1:3.1
7	Standard Penetration test (SPT)	CLO 4	T3:3.15
8-9	Plate Load test	CLO 3	T1:3.3, R1:2.10
10-11	In-situ test using a pressure meter	CLO 3	T1:3.8, R1:2.11
12-13	Planning & Preparation of Soil investigation report	CLO 4	T1:3.9
14	Requirements for Satisfactory Performance of Foundations,	CLO 3	T1:4.3
15-16	Methods of Estimating Bearing Capacity,	CLO 5	T1:5.9
17-18	Settlements of Footings and Rafts,	CLO 5	T1:5.4
19-20	Proportioning of Foundations using Field Test Data,	CLO 6	T1:5.4.1
21-22	Pressure - Settlement Characteristics from Constitutive Laws.	CLO 7	T1:5.6, R1:3.4
23-24	Methods of Estimating Load Transfer of Piles,.	CLO 8	T1:5.8, R1:3.4.1
25-26	Settlements of Pile Foundations,	CLO 12	T1:6.9to 6.10, R1:3.5
27	Pile Group Capacity and Settlement.	CLO 11	T1:6.5, R1:3.5.2
28-30	Laterally Loaded Piles,	CLO 13	T1:6.3, R1:3.6
31	Pile Load Tests,	CLO 14	T1:7.22
32-34	Analytical Estimation of Load- Settlement Behavior of Piles,	CLO 15	T1:7.22
35-37	Proportioning of Pile Foundations	CLO 16	T1:12.6.1, R1: 4.1
38	Lateral and Uplift Capacity of Piles	CLO 16	T1:12.6.2, R1: 4.1.2
39-40	IS and IRC Code Provisions,	CLO 17	T1:12.6.2, R1: 4.2
41	Elastic Theory and Ultimate Resistance Methods.	CLO 17	T1:12.6.2,

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
			R1: 4.3
42	Tunnels and Arching in Soils	CLO 17	T1:12.6.3,
42	I uniters and Arching in Sons		R1: 4.4
13	Pressure Computations around Tunnels	CLO 18	T1:7.4,
-13	Tressure computations around Tunners		R1: 6.1
11	Sheeting and Bracing Systems in Shallow and Deep Open Cuts	CLO 19	T1:10.2.1,
	Sheeting and Dracing Systems in Shanow and Deep Open Cuts		R1: 6.4
15	Analysis and Design of Coffer Dams	CLO 19	T1:10.2.4,
45	Analysis and Design of Correr Dams		R1: 6.6
16	Foundations under unlifting loads	CLO 18	T1:10.7,
40	Toundations under upfitting toads		R1: 6.7
47	Soil-structure Interaction.	CLO 20	T1:8.4.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Different Methods to increase the stability of slopes	Seminars/Guest Lectures/NPTEL	PO 3	PSO 1
2	Determination of Active and passive earth pressure by friction circle method	Seminars/Guest Lectures/NPTEL	PO 2	PSO 1
3	Design of foundation for expansive soils	Seminars/NPTEL	PO 3	PSO 1

Prepared by: Mr. N. Venkat Rao, Associate Professor

HOD, CIVIL ENGINEERING