PROBABILITY AND STATISTICS SEMESTER-III AERO \& MECH
 $$
\mathrm{R}-18
$$

CONTENTS

$>$ Random Variables
$>$ Probability Distribution
$>$ Multiple Random Variables
$>$ Sampling Distribution
$>$ Testing Of Hypothesis
$>$ Large Sample Tests
$>$ Small Sample Tests

TEXT BOOKS

- Higher Engineering Mathematics by Dr.B.S.Grewal,Khanna publishers
- Probability and Statistics for Engineering and Scientists by Sheldon M Ross,Academic press
- Operation Research by S.D.Sarma

REFERENCES

- Mathematics for Engineering by K.B.Datta and M.A.S.Srinivas, Cengage Publications
- Probability and Statistics by T.K.V.Iyengar \& B.Krishna Gandhi Et
- Fundamentals of Mathematical Statistics by S C Gupta and V.K.Kapoor
- Probability and Statistics for Engineers and Scientists by Jay I Devore

UNIT-I

Single Random Variables and Probability Distribution

Basic Concepts

- An experiment is the process by which an observation (or measurement) is obtained.
- Experiment: Record an age
- Experiment: Toss a die
- Experiment: Record an opinion (yes, no)
- Experiment: Toss two coins
- A simple event is the outcome that is observed on a single repetition of the experiment.
- The basic element to which probability is applied.
- One and only one simple event can occur when the experiment is performed.
- A simple event is denoted by E with a subscript.
- Each simple event will be assigned a probability, measuring "how often" it occurs.
- The set of all simple events of an experiment is called the sample space, S .

Example

- The die toss:
- Simple events:

Sample space:
$S=\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}$

$$
\cdot \mathrm{E}_{1} \quad \cdot \mathrm{E}_{3}
$$

$$
\mathrm{s}
$$

$$
\cdot \mathrm{E}_{5}
$$

$\cdot \mathrm{E}_{2}$

- E_{4}
- E_{6}
- An event is a collection of one or more simple events.
-The die toss:
-A: an odd number
-B: a number > 2
$\mathrm{A}=\left\{\mathbf{E}_{1}, \mathrm{E}_{3}, \mathrm{E}_{5}\right\}$
$B=\left\{E_{3}, E_{4}, E_{5}, E_{6}\right\}$
- Two events are mutually exclusive if, when one event occurs, the other cannot, and vice versa.

-Experiment: Toss a die

-A: observe an odd number -B: observe a number greater than 2
-C: observe a 6
-D: observe a 3

Mutually
Exclusive

B and C ?
B and D ?

- The probability of an event A measures "how often" we think A will occur. We write $\mathbf{P}(\mathbf{A})$.
- Suppose that an experiment is performed n times. The relative frequency for an event A is
$\frac{\text { Number of times A occurs }}{n}=\frac{f}{n}$
-If we let n get infinitely large,

$$
P(A)=\lim _{n \rightarrow \infty} \frac{f}{n}
$$

- $\mathrm{P}(\mathrm{A})$ must be between o and 1.
- If event A can never occur, $\mathrm{P}(\mathrm{A})=0$. If event A always occurs when the experiment is performed, $\mathrm{P}(\mathrm{A})=1$.
- The sum of the probabilities for all simple events in S equals 1 .

-The probability of an event A is found by adding the probabilities of all the simple events contained in A .

Finding Probabilities

- Probabilities can be found using

- Estimates from empirical studies
- Common sense estimates based on equally likely events.
-Examples:
-Toss a fair coin $\mathrm{P}($ Head $)=1 / 2$
-10% of the U.S. population has red hair.
Select a person at random. $\mathrm{P}($ Red hair $)=.10$

Example

- Toss a fair coin twice. What is the probability of observing at least one head?

1st Coin 2nd Coin	E_{i}	$\mathrm{P}\left(\mathrm{E}_{i}\right)$	
H	HH	1/4	P (at least 1 head)
T	HT	1/4	$=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)$
H	TH	1/4	$=1 / 4+1 / 4+1 / 4=3 / 4$
$T \times T$	TT	1/4	

Example

- A bowl contains three M\&Ms ${ }^{\circ}$, one red, one blue and one green. A child selects two M\&Ms at random. What is the probability that at least one is red?

Counting Rules

- If the simple events in an experiment are equally likely, you can calculate
$P(A)=\frac{n_{A}}{N}=\frac{\text { number of simple events in } \mathrm{A}}{\text { total number of simple events }}$
- You can use counting rules to find n_{A} and N.

The mn Rule

- If an experiment is performed in two stages, with m ways to accomplish the first stage and n ways to accomplish the second stage, then there are $m n$ ways to accomplish the experiment.
- This rule is easily extended to \boldsymbol{k} stages, with the number of ways equal to

$$
n_{1} n_{2} n_{3} \ldots n_{k}
$$

Example: Toss two coins. The total number of simple events is:

$$
2 \times 2=4
$$

Examples
 Example: Toss three coins. The total number of simple events is
 $$
2 \times 2 \times 2=8
$$

Example: Toss two dice. The total number of simple events is:

$$
6 \times 6=36
$$

Example: Two M\&Ms are drawn from a dish containing two red and two blue candies. The total number of simple eve

$$
4 \times 3=12
$$

Permutations

- The number of ways you can arrange
\boldsymbol{n} distinct objects, taking them r at a time is

$$
P_{r}^{n}=\frac{n!}{(n-r)!}
$$

$$
\text { where } n!=n(n-1)(n-2) \ldots(2)(1) \text { and } 0!\equiv 1 \text {. }
$$

Example: How many 3-digit lock combinations can we make from the numbers $1,2,3$, and 4 ?

The order of the choice is important!

$$
P_{3}^{4}=\frac{4!}{1!}=4(3)(2)=24
$$

Combinations

- The number of distinct combinations of \boldsymbol{n} distinct objects that can be formed, taking them r at a time is

$$
C_{r}^{n}=\frac{n!}{r!(n-r)!}
$$

Example: Three members of a 5-person committee must be chosen to form a subcommittee. How many different subcommittees could be formed?
$\begin{aligned} & \text { The order of } \\ & \text { the choice is }\end{aligned} C_{3}^{5}=\frac{5!}{3!(5-3)!}=\frac{5(4)(3)(2) 1}{3(2)(1)(2) 1}=\frac{5(4)}{(2) 1}=10$

Example

- A box contains six M\&Ms ${ }^{\oplus}$, four red
- and two green. A child selects two M\&Ms at random. What is the probability that exactly one is red?

The order of the choice is not important!

$$
C_{2}^{6}=\frac{6!}{2!4!}=\frac{6(5)}{2(1)}=15
$$

ways to choose $2 \mathrm{M} \& \mathrm{Ms}$.
$C_{1}^{2}=\frac{2!}{1!!!}=2$
ways to choose
1 green M \& M.

$$
C_{1}^{4}=\frac{4!}{13!}=4
$$

ways to choose 1 red M \& M.

$$
\begin{aligned}
& 4 \times 2=8 \text { ways to } \\
& \text { choose } 1 \text { red and } 1 \\
& \text { green M\&M. }
\end{aligned}
$$

P(exactly one red) $=8 / 15$

Event Relations

- The union of two events, A and B, is the event that either A or B or both occur when the experiment is performed. We write

$$
\mathbf{A} \cup \mathbf{B}
$$

Event Relations

- The intersection of two events, \mathbf{A} and \mathbf{B}, is the event that both A and B occur when the experiment is performed. We write $A \cap B$.

- If two events A and B are mutually exclusive, then $P(A \cap B)=\mathbf{0}$.

Event Relations

- The complement of an event A consists of all outcomes of the experiment that do not result in event A. We write A^{C}.

Calculating Probabilities for

Unions and Complements

- There are special rules that will allow you to calculate probabilities for composite events.
- The Additive Rule for Unions:
- For any two events, A and B, the probability of their union, $\mathbf{P}(\mathbf{A} \cup B)$, is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Calculating Probabilities for Complements

- We know that for any event A:
- $\mathbf{P}\left(\mathbf{A} \cap \mathrm{A}^{\mathrm{C}}\right)=\mathbf{0}$
- Since either \mathbf{A} or \mathbf{A}^{C} must occur,

$$
\mathbf{P}\left(\mathbf{A} \cup \mathrm{A}^{\mathrm{C}}\right)=\mathbf{1}
$$

- so that

$$
\mathbf{P}\left(\mathbf{A} \cup \mathbf{A}^{\mathrm{C}}\right)=\mathbf{P}(\mathbf{A})+\mathbf{P}\left(\mathbf{A}^{\mathrm{C}}\right)=\mathbf{1}
$$

$P\left(A^{C}\right)=1-P(A)$

Calculating Probabilities for

Intersections

- In the previous example, we found $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ directly from the table. Sometimes this is impractical or impossible. The rule for calculating $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ depends on the idea of independent and dependent events.
Two events, \mathbf{A} and \mathbf{B}, are said to be independent if and only if the probability that event A occurs does not change, depending on whether or not event B has occurred.

Conditional Probabilities

- The probability that A occurs, given that event B has occurred is called the conditional probability of A given B and is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { if } P(B) \neq 0
$$

"given"

Defining Independence

- We can redefine independence in terms of conditional probabilities:

Two events A and B are independent if and only if

$$
P(A \mid B) \equiv P(A) \text { or } P(B \mid A) \equiv P(B)
$$

Otherwise, they are dependent.

- Once you've decided whether or not two events are independent, you can use the following rule to calculate their intersection.

The Multiplicative Rule for

Intersections

- For any two events, A and B, the probability that both A and \mathbf{B} occur is

$P(A \cap B)=P(A) P(B$ given that A occurred) $\quad=P(A) P(B \mid A)$

- If the events \mathbf{A} and \mathbf{B} are independent, then the probability that both \mathbf{A} and \mathbf{B} occuris $\underset{P(A \cap B)=\mathbf{P (A) P (B)}}{ }$

The Law of Total Probability

- Let $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$ be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of another event A can be written as

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~S}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~S}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~S}_{k}\right) \\
& =\mathrm{P}\left(\mathrm{~S}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{S}_{1}\right)+\mathrm{P}\left(\mathrm{~S}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{S}_{2}\right)+\ldots+ \\
& \mathrm{P}\left(\mathrm{~S}_{k}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{S}_{k}\right)
\end{aligned}
$$

The Law of Total Probability

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~S}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~S}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~S}_{k}\right) \\
& =\mathrm{P}\left(\mathrm{~S}_{1}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{S}_{1}\right)+\mathrm{P}\left(\mathrm{~S}_{2}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{S}_{2}\right)+\ldots+ \\
& \mathrm{P}\left(\mathrm{~S}_{k}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{S}_{k}\right)
\end{aligned}
$$

Bayes' Rule

- Let $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$ be mutually exclusive and exhaustive events with prior probabilities $\mathrm{P}\left(\mathrm{S}_{1}\right), \mathrm{P}\left(\mathrm{S}_{2}\right), \ldots, \mathrm{P}\left(\mathrm{S}_{k}\right)$. If an event A occurs, the posterior probability of S_{i}, given that A occurred is

$$
P\left(S_{i} \mid A\right)=\frac{P\left(S_{i}\right) P\left(A \mid S_{i}\right)}{\sum P\left(S_{i}\right) P\left(A \mid S_{i}\right)} \text { for } i=1,2, \ldots k
$$

Random Variables

- A quantitative variable x is a random variable if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event.
- Random variables can be discrete or continuous.
- Examples:
$\checkmark x=$ SAT score for a randomly selected student
$\checkmark x=$ number of people in a room at a randomly selected time of day
$\checkmark x=$ number on the upper face of a randomly tossed die

Probability Distributions for Discrete

Random Variables

- The probability distribution for a discrete random variable x resembles the relative frequency distributions we constructed in Chapter 1. It is a graph, table or formula that gives the possible values of x and the probability $p(x)$ associated with each value.

$$
\begin{gathered}
\text { We must have } \\
0 \leq p(x) \leq 1 \text { and } \sum p(x)=1
\end{gathered}
$$

Probability Distributions

- Probability distributions can be used to describe the population, just as we described samples in Chapter 1.
- Shape: Symmetric, skewed, mound-shaped...
- Outliers: unusual or unlikely measurements
- Center and spread: mean and standard deviation. A population mean is called μ and a population standard deviation is called σ.

and Standard Deviation

- Let x be a discrete random variable with probability distribution $p(x)$. Then the mean, variance and standard deviation of x are given as

Mean : $\mu=\sum x p(x)$
Variance: $\sigma^{2}=\sum(x-\mu)^{2} p(x)$
Standard deviation : $\sigma=\sqrt{\sigma^{2}}$

Example

- Toss a fair coin 3 times and record x the number of heads.

x	$p(x)$	$x p(x)$	$(x-\mu)^{2} p(x)$		
0	$1 / 8$	0	$(-1.5)^{2}(1 / 8)$		
1	$3 / 8$	$3 / 8$	$(-0.5)^{2}(3 / 8)$		
2	$3 / 8$	$6 / 8$	$(0.5)^{2}(3 / 8)$		
3	$1 / 8$	$3 / 8$	$(1.5)^{2}(1 / 8)$	\quad	
:---	\quad	2			
:---					

$$
\sigma^{2}=.28125+.09375+.09375+.28125=.75
$$

$$
\sigma=\sqrt{.75}=.688
$$

UNIT-II

Probability Distributions

Introduction

- Discrete random variables take on only a finite or countably number of values.
- Three discrete probability distributions serve as models for a large number of practical applications:
\checkmark The binomial random variable
\checkmark The Poisson random variable

The Binomial Random Variable - Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that $\mathrm{P}(\mathrm{H}) \neq \mathbf{1 / 2}$.

- Example: A geneticist samples 10 people and counts the number who have a gene linked to Alzheimer's disease.

- Coin:

Person

Has gene
Doesn't have gene
\square

- Number of $n=10$
- Head:
- Tail:
$\mathrm{P}($ has gene $)=$ proportion in the population who have the gene.

The Binomial Experiment

1. The experiment consists of \boldsymbol{n} identical trials.
2. Each trial results in one of two outcomes, success (S) or failure (F).
3. The probability of success on a single trial is p and remains constant from trial to trial. The probability of failure is $q=1-p$.
4. The trials are independent.
5. We are interested in \boldsymbol{x}, the number of successes in \boldsymbol{n} trials.

Binomial or Not?
 - Very few real life applications satisfy these requirements exactly.

- Select two people from the U.S. population, and suppose that 15\% of the population has the Alzheimer's gene.
- For the first person, $p=\mathrm{P}($ gene $)=.15$
- For the second person, $p \approx \mathrm{P}$ (gene) $=$.15 , even though one person has been removed from the population.

The Binomial Probability
 Distribution

- For a binomial experiment with n trials and probability p of success on a given trial, the probability of k successes in n trials is
$P(x=k)=C_{k}^{n} p^{k} q^{n-k}=\frac{n!}{k!(n-k)!} p^{k} q^{n-k}$ for $k=0,1,2, \ldots n$.
Recall $\quad C_{k}^{n}=\frac{n!}{k!(n-k)!}$
with $n!=n(n-1)(n-2) \ldots(2) 1$ and $0!\equiv 1$.

The Mean and Standard Deviation

- For a binomial experiment with n trials and probability p of success on a given trial, the measures of center and spread are:

> Mean $: \mu=n p$
> Variance: $\sigma^{2}=n p q$
> Standarddeviation: $\sigma=\sqrt{n p q}$

Cumulative Probability

Tables

You can use the cumulative probability tables to find probabilities for selected binomial distributions.
\checkmark Find the table for the correct value of n.
\checkmark Find the column for the correct value of p.
\checkmark The row marked " k " gives the cumulative probability, $\mathrm{P}(x \leq k)=\mathrm{P}(x=0)+\ldots+\mathrm{P}(x=k)$

The Poisson Random Variable

- The Poisson random variable x is a model for data that represent the number of occurrences of a specified event in a given unit of time or space.
- Examples:
- The number of calls received by a switchboard during a given period of time.
- The number of machine breakdowns in a day
- The number of traffic accidents at a given intersection during a given time period.

The Poisson Probability

Distribution

- \boldsymbol{x} is the number of events that occur in a period of time or space during which an average of μ such events can be expected to occur. The probability of k occurrences of this event is

$$
P(x=k)=\frac{\mu^{k} e^{-\mu}}{k!}
$$

For values of $k=0,1,2, \ldots$ The mean and standard deviation of the Poisson random variable are

Mean: μ
Standard deviation:

$$
\sigma=\sqrt{\mu}
$$

Cumulative Probability

Tables

You can use the cumulative probability tables to find probabilities for selected Poisson distributions.
\checkmark Find the column for the correct value of μ.
\checkmark The row marked " k " gives the cumulative probability, $\mathrm{P}(x \leq k)=\mathrm{P}(x=0)+\ldots+\mathrm{P}(x=k)$

Continuous Random Variables

- Continuous random variables can assume the infinitely many values corresponding to points on a line interval.
- Examples:
- Heights, weights
- length of life of a particular product
- experimental laboratory error

Continuous Random Variables

 - A smooth curve describes the probability distribution of a continuous random variable.
-The depth or density of the probability, which varies with x, may be described by a mathematical formula $f(x)$, called the probability distribution or probability density function for the random variable x.

Properties of Continuous Probability Distributions

- The area under the curve is equal to $\mathbf{1}$.
- $\mathrm{P}(\mathrm{a} \leq x \leq \mathrm{b})=$ area under the curve between a and b .

-There is no probability attached to any single value of x. That is, $\mathbf{P}(\boldsymbol{x}=\mathbf{a})=\mathbf{0}$.

Continuous Probability Distributions

There are many different types of continuous random variables We try to pick a model that

- Fits the data well
- Allows us to make the best possible inferences using the data.
- One important continuous random variable is the normal random variable.

The_Normal Distribution

 - The formula that generates the normal probability distribution is:$$
\begin{aligned}
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \text { for }-\propto<x<\propto \\
& e=2.7183 \quad \pi=3.1416
\end{aligned}
$$

μ and σ are the population mean and standard deviation.

- The shape and location of the normal curve changes as the mean and standard deviation change.

The Standard Normal Distribution

- To find $\mathrm{P}(\mathrm{a}<x<\mathrm{b})$, we need to find the area under the appropriate normal curve.
- To simplify the tabulation of these areas, we standardize each value of x by expressing it as a z-score, the number of standard deviations σ it lies from the mean μ.

$$
z=\frac{x-\mu}{\sigma}
$$

The Standard Normal (z) Distribution

- Mean $=0$; Standard deviation $=1$
- When $x=\mu, z=o$
- Symmetric about $z=0$
- Values of z to the left of center are negative
- Values of z to the right of center are positive
- Total area under the curve is 1 .

Finding Probabilities for the General Normal Random Variable

\checkmark To find an area for a normal random variable x with mean μ and standard deviation σ, standardize or rescale the interval in terms of z. \checkmark Find the appropriate area using Table 3.

Example: x has a normal distribution with $\mu=5$ and $\sigma=2$. Find $\mathrm{P}(x>7)$.

$$
\begin{aligned}
& P(x>7)=P\left(z>\frac{7-5}{2}\right) \\
& =P(z>1)=1-.8413=.1587
\end{aligned}
$$

The Normal Approximation to the

Binomial

- We can calculate binomial probabilities using
- The binomial formula
- The cumulative binomial tables
- Java applets
- When n is large, and p is not too close to zero or one, areas under the normal curve with mean $n p$ and variance $n p q$ can be used to approximate binomial probabilities.

UNIT-III

CORRELATION AND REGRESSION

Independence and Covariance

- Two random variables \mathbf{X} and \mathbf{Y} are said to be independent if
- Discrete

$$
p_{i j}=p_{i+} p_{+j} \text { for all values } i \text { of } X \text { and } j \text { of } Y
$$

- Continuous

$$
f(x, y)=f_{X}(x) f_{Y}(y) \text { for all } x \text { and } y
$$

- How is this independency different from the independence among events?

Independence and Covariance

- Covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E((X-E(X))(Y-E(Y))) \\
& =E(X Y)-E(X) E(Y) \\
\operatorname{Cov}(X, Y) & =E((X-E(X))(Y-E(Y))) \\
& =E(X Y-X E(Y)-E(X) Y+E(X) E(Y)) \\
& =E(X Y)-E(X) E(Y)-E(X) E(Y)+E(X) E(Y) \\
& =E(X Y)-E(X) E(Y)
\end{aligned}
$$

- May take any positive or negative numbers.
- Independent random variables have a covariance of zero
- What if the covariance is zero?

Independence and Covariance

- Example 19 (Air conditioner maintenance)

$$
\begin{aligned}
& E(X)=2.59, \quad E(Y)=1.79 \\
& \begin{aligned}
E(X Y)= & \sum_{i=1}^{4} \sum_{j=1}^{3} i j p_{i j} \\
= & (1 \times 1 \times 0.12)+(1 \times 2 \times 0.08) \\
& \quad \cdots+(4 \times 3 \times 0.07)=4.86 \\
\operatorname{Cov}(X, Y)= & E(X Y)-E(X) E(Y) \\
= & 4.86-(2.59 \times 1.79)=0.224
\end{aligned}
\end{aligned}
$$

Independence and Covariance

- Correlation:

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

- Values between -1 and 1 , and independent random variables have a correlation of zero

Independence and Covariance

- Example 19: (Air conditioner maintenance)

$$
\begin{aligned}
& \operatorname{Var}(X)=1.162, \quad \operatorname{Var}(Y)=0.384 \\
& \begin{aligned}
\operatorname{Corr}(X, Y) & =\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} \\
& =\frac{0.224}{\sqrt{1.162 \times 0.384}}=0.34
\end{aligned}
\end{aligned}
$$

- What if random variable X and Y have linear relationship, that is,

$$
Y=a X+b \quad a \neq 0
$$

where

$$
\begin{aligned}
& \quad \operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y] \\
& =E[X(a X+b)]-E[X] E[a X+b] \\
& =a E\left[X^{2}\right]+b E[X]-a E^{2}[X]-b E[X] \\
& =a\left(E\left[X^{2}\right]-E^{2}[X]\right)=a \operatorname{Var}(X) \\
& \operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{a \operatorname{Var}(X)}{\sqrt{\operatorname{Var}(X) a^{2} \operatorname{Var}(X)}}
\end{aligned}
$$

That is, $\operatorname{Cov}(X, Y)=1$ if $\mathbf{a}>0 ;-1$ if $\mathbf{a}<0$.

The relationship between x and y

- Correlation: is there a relationship between 2 variables?
- Regression: how well a certain independent variable predict dependent variable?
- CORRELATION \neq CAUSATION
- In order to infer causality: manipulate independent variable and observe effect on dependent variable

Scattergrams

Positive correlation

Negative correlation

No
correlation

Variance vs Covariance

- First, a note on your sample:
- If you're wishing to assume that your sample is representative of the general population (RANDOM EFFECTS MODEL), use the degrees of freedom $(n-1)$ in your calculations of variance or covariance.
- But if you're simply wanting to assess your current sample (FIXED EFFECTS MODEL), substitute n for the degrees of freedom.

Variance vs Covariance

- Do two variables change together?

Variance:

- Gives information on variability of a single variable.

Covariance:

- Gives information on the degree to which two variables vary together.
- Note how similar the covariance is to variance: the equation simply multiplies x's error scores by y's error scores as opposed to

$$
\operatorname{cov}(x, y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

Covariance

When X^{\dagger} and $\mathrm{Y}^{\dagger}: \operatorname{cov}(\mathrm{x}, \mathrm{y})=$ pos.
When $X \backslash$ and $Y \uparrow: \operatorname{cov}(x, y)=$ neg.
When no constant relationship: $\operatorname{cov}(x, y)$
$=0$

Example Covariance

x	y	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
0	3	-3	0	0
2	2	-1	-1	1
3	4	0	1	0
4	0	1	-3	-3
6	6	3	3	9
$\bar{x}=3$	$\bar{y}=3$		$\sum=7$	

$$
\operatorname{cov}(x, y)=\frac{\left.\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)\right)}{n-1}=\frac{7}{4}=1.75
$$

Problem with Covariance:

- The value obtained by covariance is dependent on the size of the data's standard deviations: if large, the value will be greater than if small... even if the relationship between x and y is exactly the same in the large versus small standard deviation datasets.

Example of how covariance value relies on variance

		varia	data		varian	data
Subject	x	y	$\begin{aligned} & \mathrm{x} \text { error * } \mathrm{y} \\ & \text { error } \end{aligned}$	x	y	$\begin{aligned} & \text { X error *y } \\ & \text { error } \end{aligned}$
1	101	100	2500	54	53	9
2	81	80	900	53	52	4
3	61	60	100	52	51	1
4	51	50	0	51	50	0
5	41	40	100	50	49	1
6	21	20	900	49	48	4
7	1	0	2500	48	47	9
Mean	51	50		51	50	
Sum of x error * y error :			7000	Sum of x error * y error :		28
Covariance:			1166.67	Covariance:		4.67

Solution: Pearson's r

- Covariance does not really tell us anything
- Solution: standardise this measure
- Pearson's R: standardises the covariance value.
- Divides the covariance by the multiplied standard deviations of \mathbf{X} and Y :

Pearson's R continued

$$
\begin{aligned}
\operatorname{cov}(x, y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1} \longrightarrow r_{x y} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(n-1) s_{x} s_{y}} \\
r_{x y} & =\frac{\sum_{i=1}^{n} Z_{x_{i}} * Z_{y_{i}}}{n-1}
\end{aligned}
$$

Limitations of r

- When $\mathrm{r}=1$ or $\mathrm{r}=-1$:
- We can predict y from x with certainty
- all data points are on a straight line: $y=a x+b$
- r is actually \hat{r}
- $r=$ true r of whole population
- $\hat{r}=$ estimate of r based on data
- r is very sensitive to extreme values:

Regression

- Correlation tells you if there is an association between x and y but it doesn't describe the relationship or allow you to predict one variable from the other.
- To do this we need REGRESSION!

Best-fit Line

- Aim of linear regression is to fit a straight line, $\hat{y}=a x+b$, to data that gives best prediction of y for any value of x
- This will be the line that minimises distance between data and fitted line, i.e. the residuals

Least Squares Regression

- To find the best line we must minimise the sum of the squares of the residuals (the vertical distances from the data points to our line)

Model line: $\hat{y}=a x+b \quad a=$ slope, $b=$ intercept
Residual $(\varepsilon)=y-\hat{y}$
Sum of squares of residuals $=\Sigma(y-\hat{y})^{2}$
we must find values of a and b that minimise

$$
\Sigma(y-\hat{y})^{2}
$$

Finding b

- First we find the value of b that gives the min sum of squares

Trying different values of b is equivalent to shifting the line up and down the scatter nlot

Finding a

- Now we find the value of a that gives the min sum of squares

Trying out different values of a is equivalent to changing the slope of the line, while b stays constant

Minimising sums of squares

- Need to minimise $\Sigma(y-\hat{y})^{2}$
- $\hat{y}=a x+b$
- so need to minimise:

$$
\Sigma(y-a x-b)^{2}
$$

- If we plot the sums of squares for all different values of a and b we get a parabola, because it is a squared term
- So the min sum of squares is at the bottom of the curve, where
 the gradient is zero.

The maths bit

- The min sum of squares is at the bottom of the curve where the gradient $=0$
- So we can find a and b that give min sum of squares by taking partial derivatives of $\Sigma(y-a x-b)^{2}$ with respect to a and b separately
- Then we solve these for 0 to give us the values of a and b that give the min sum of squares

The solution

- Doing this gives the following equations for a and b :

$$
a=\frac{r S_{y}}{S_{x}} \quad \begin{aligned}
& r=\text { correlation coefficient of } x \text { and } y \\
& s_{y}=\text { standard deviation of } y \\
& s_{x}=\text { standard deviation of } x
\end{aligned}
$$

From you can see that:
A low correlation coefficient gives a flatter slope (small value of a)
Large spread of y, i.e. high standard deviation, results in a steeper slope (high value of a)
Large spread of x, i.e. high standard deviation, results in a flatter slope (high value of a)

The solution cont.

- Our model equation is $\hat{y}=a x+b$
- This line must pass through the mean so:

$$
\bar{y}=a \bar{x}+b \quad b \quad b=\bar{y}-\overline{a x}
$$

We can put our equation for a into this
giving:
$r=$ correlation coefficient of x and y
$\mathbf{b}=\overline{\mathbf{y}}-\frac{\mathbf{s}_{\mathrm{y}}}{\mathbf{s}_{\mathrm{x}}} \overline{\mathbf{x}}$
$s_{y}=$ standard deviation of y
$\mathrm{s}_{\mathrm{x}}=$ standard deviation of x
The smaller the correlation, the closer the intercept is to the mean of y

Back to the modlel $\left.\qquad \hat{y}=a x+b=\begin{array}{l}5 y^{2} \\ x+y-(s)\end{array}\right)^{b}$
 Rearranges to:
 $$
\hat{y}=(x-\bar{x})+\bar{y}
$$

- If the correlation is zero, we will simply predict the mean of y for every value of x , and our regression line is just a flat straight line crossing the x -axis at y
- But this isn’t very useful.
- We can calculate the regression line for any data, but the important question is how well does this line fit the data, or how good is it at predicting y from x

How good is our model?

- Total variance of y :

$$
s_{y}{ }^{2}=\frac{\sum(y-\bar{y})^{2}}{n-1}=\frac{S S_{y}}{d f_{y}}
$$

Variance of predicted y values
(ŷ):

$$
s_{\hat{y}}{ }^{2}=\frac{\sum(\hat{y}-\bar{y})^{2}}{n-1}=\frac{S S_{\text {pred }}}{d f_{\hat{y}}}
$$

This is the variance explained by our regression model

Error variance:

$$
\mathrm{s}_{\text {error }}{ }^{2}=\frac{\sum(\mathrm{y}-\hat{y})^{2}}{\mathrm{n}-2}=\frac{\mathrm{SS}_{\mathrm{er}}}{\mathrm{df}_{\mathrm{er}}}
$$

This is the variance of the error between our predicted y values and the actual y values, and thus is the variance in y that is NOT explained by the regression model

How good is our model cont.

- Total variance $=$ predicted variance + error variance

$$
\mathrm{s}_{\mathrm{y}}^{2}=\mathrm{s}_{\hat{\mathrm{y}}}^{2}+\mathrm{s}_{\mathrm{er}}^{2}
$$

- Conveniently, via some complicated rearranging

$$
\begin{gathered}
s_{\hat{y}}^{2}=r^{2} s_{y}^{2} \\
= \\
r^{2}=s_{\hat{y}}^{2} / s_{y}^{2}
\end{gathered}
$$

- so r^{2} is the proportion of the variance in y that is explained by our regression model

How good is our model cont.

- Insert $\mathrm{r}^{2} \mathrm{~s}_{\mathrm{y}}{ }^{2}$ into $\mathrm{s}_{\mathrm{y}}{ }^{2}=\mathrm{s}_{\hat{\mathrm{y}}}{ }^{2}+\mathrm{ser}^{2}$ and rearrange to get:

$$
\begin{aligned}
\mathrm{ser}^{2}= & \mathrm{s}_{\mathrm{y}}{ }^{2}-\mathrm{r}^{2} \mathrm{~s}_{\mathrm{y}}{ }^{2} \\
& \mathrm{~s}_{\mathrm{y}}{ }^{2}\left(1-\mathrm{r}^{2}\right)
\end{aligned}
$$

- From this we can see that the greater the correlation the smaller the error variance, so the better our prediction

Is the model significant?

- i.e. do we get a significantly better prediction of y from our regression equation than by just predicting the mean?
- F-statistic:

$$
F_{\left(\mathrm{df}_{\mathrm{y}, \mathrm{~d}, \mathrm{de})}\right.}=\frac{\mathrm{s}_{\hat{\mathrm{y}}}{ }^{2}}{\mathrm{~s}_{\mathrm{e}}{ }^{2}} \stackrel{\text { rearranging }}{ }=\ldots . . .=\frac{r^{2}(\mathrm{n}-2)^{2}}{1-r^{2}}
$$

And it follows that:
(because $\left.F=t^{2}\right) \quad t_{(n-2)}=\frac{r(n-2)}{\sqrt{1-r^{2}}}$

So all we need to know are r and n

General Linear Model

- Linear regression is actually a form of the General Linear Model where the parameters are a, the slope of the line, and b, the intercept.

$$
y=a x+b+\varepsilon
$$

- A General Linear Model is just any model that describes the data in terms of a straight line

Multiple regression

- Multiple regression is used to determine the effect of a number of independent variables, x_{1}, x_{2}, x_{3} etc, on a single dependent variable, y
- The different x variables are combined in a linear way and each has its own regression coefficient:

$$
y=a_{1} x_{1}+a_{2} x_{2}+\ldots \ldots+a_{n} x_{n}+b+\varepsilon
$$

- The a parameters reflect the independent contribution of each independent variable, x, to the value of the dependent variable, y .
- i.e. the amount of variance in y that is accounted for by each x variable after all the other x variables have been accounted for

SPM

- Linear regression is a GLM that models the effect of one independent variable, x, on ONE dependent variable, y
- Multiple Regression models the effect of several independent variables, $\mathrm{x}_{1}, \mathrm{x}_{2}$ etc, on ONE dependent variable, y
- Both are types of General Linear Model
- GLM can also allow you to analyse the effects of several independent x variables on several dependent variables, $\mathrm{y}_{1}, \mathrm{y}_{2}$, y_{3} etc, in a linear combination
- This is what SPM does and all will be explained next week!

UNIT-IV

Sampling Distribution and Testing of Hypothesis

Introduction

- Parameters are numerical descriptive measures for populations.
- For the normal distribution, the location and shape are described by μ and σ.
- For a binomial distribution consisting of n trials, the location and shape are determined by \boldsymbol{p}.
- Often the values of parameters that specify the exact form of a distribution are unknown.
- You must rely on the sample to learn about these parameters.

Sampling
 Examples:

- A pollster is sure that the responses to his "agree/disagree" question will follow a binomial distribution, but p, the proportion of those who "agree" in the population, is unknown.
- An agronomist believes that the yield per acre of a variety of wheat is approximately normally distributed, but the mean μ and the standard deviation σ of the yields are unknown.
\checkmark If you want the sample to provide reliable information about the population, you must select your sample in a certain way!

Simple Random Sampling

- The sampling plan or experimental design determines the amount of information you can extract, and often allows you to measure the reliability of your inference.
- Simple random sampling is a method of sampling that allows each possible sample of size n an equal probability of being selected.

Types of Samples

- Sampling can occur in two types of practical situations:

1. Observational studies: The data existed before you decided to study it. Watch out for
$\checkmark \quad$ Nonresponse: Are the responses biased because only opinionated people responded?
$\checkmark \quad$ Undercoverage: Are certain segments of the population systematically excluded?
$\checkmark \quad$ Wording bias: The question may be too complicated or poorly worded. practical situations:
2. Experimentation: The data are generated by imposing an experimental condition or treatment on the experimental units.
\checkmark Hypothetical populations can make random sampling difficult if not impossible.
\checkmark Samples must sometimes be chosen so that the experimenter believes they are representative of the whole population.
\checkmark Samples must behave like random samples!

Other Sampling Plans

- There are several other sampling plans that still involve randomization:

1. Stratified random sample: Divide the population into subpopulations or strata and select a simple random sample from each strata.
2. Cluster sample: Divide the population into subgroups called clusters; select a simple random sample of clusters and take a census of every element in the cluster.
3. 1-in-k systematic sample: Randomly select one of the first k elements in an ordered population, and then select every k-th element thereafter. should NOT be used for statistical
4. Convenience sample: A sample that can be taken easily without random selection.

- People walking by on the street

2. Judgment sample: The sampler decides who will and won't be included in the sample.
3. Quota sample: The makeup of the sample must reflect the makeup of the population on some selected characteristic.

- Race, ethnic origin, gender, etc.

Sampling Distributions

-Numerical descriptive measures calculated from the sample are called statistics.
-Statistics vary from sample to sample and hence are random variables.
-The probability distributions for statistics are called sampling distributions.
-In repeated sampling, they tell us what values of the statistics can occur and how often each value occurs.

Sampling Distributions

Definition: The sampling distribution of a statistic is the probability distribution for the possible values of the statistic that results when random samples of size n are repeatedly drawn from the population

Population: $3,5,2,1$
Draw samples of size $n=$
3 without replacement

Each value of
x -bar is
equally
likely, with
probability
1/4

Sampling Distributions

Sampling distributions for statistics can be \checkmark Approximated with simulation techniques \checkmark Derived using mathematical theorems \checkmark The Central Limit Theorem is one such theorem.

Central Limit Theorem: If random samples of n observations are drawn from a nonnormal population with finite μ and standard deviation σ, then, when n is large, the sampling distribution of the sample mean is approximately normally distributed, with mean μ and standard deviation The approximation becomes more accurat̄̄as n becomes large.
σ / \sqrt{n}

Why is this Important?

\checkmark The Central Limit Theorem also implies that the sum of n measurements is approximately normal with mean $n \mu$ and standard deriation
\checkmark Many statistics that are used for statistical inference are sums or averages of sample measurements.
\checkmark When n is large, these statistics will have approximately normal distributions.
\checkmark This will allow us to describe their behavior and evaluate the reliability of our inferences.

How Large is Large?

If the sample is normal, then the sampling distribution of \bar{x} will also be normal, no matter what the sample size.

When the sample population is approximately symmetric, the distribution becomes approximately normal for relatively small values of n.

When the sample population is skewed, the sample size must be at least 30 before the sampling distribution of becomes approximately normal.

The Sampling Distribution of the Sample Mean

\checkmark A random sample of size n is selected from a population with mean μ and standard deviation σ.
\checkmark The sampling distribution of the sample mean will have mean μ and standard deviation
\checkmark If the original population is normal, the samping $\sqrt[s i m b i b u t i o n ~ w i l l ~ b e ~]{\text { be }}$ normal for any sample size.
\checkmark If the original population is nonnormal, the sampling distribution will be normal when n is large.

The standard deviation of x-bar is sometimes called the STANDARD ERROR (SE).

Finding Probabilities for the Sample Mean

\checkmark If the sampling distribution of \bar{x} is normal or approximately normal, standardize or rescale the interval of interest in terms of

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

\checkmark Find the appropriate area using Table 3.

Example: A random sample of size $n=16$ from a normal distribution with $\mu=10$ and σ $=8$.

$$
\begin{aligned}
& P(\bar{x}>12)=P\left(z>\frac{12-10}{8 / \sqrt{16}}\right) \\
& =P(z>1)=1-.8413=.1587
\end{aligned}
$$

The Sampling Distribution of
 the Sample Proportion

\checkmark The Central Limit Theorem can be used to conclude that the binomial random variable x is approximately normal when n is large, with mean $n p$ and standard deviation .
\checkmark The sample proportion $\hat{\hat{p}}=\frac{x}{n} \quad$ is simply a rescaling of the binomial random variable x, dividing it by n.
\checkmark From the Cep̂tral Limit Theorem, the sampling distribution of will also be approximately normal, with a rescaled mean and standard deviation.

The Sampling Distribution of

 the Sample Proportion\checkmark A random sample of size n is selected from a binomial population with parameter p.
\checkmark The sampling distribution of the sample proportion,

$$
\hat{p}=\frac{x}{n}
$$

\checkmark will have mean p and standard deviation $\sqrt{\frac{p q}{n}}$
\checkmark If n is large, and p is $\eta \hat{p}$ t too close to zero or one, the sampling distribution of will be approximately normal.

Finding Probabilities for

 the Sample Proportion\checkmark If the sampling distribution ô is normal or approximately normal, standardize or rescale the interval of interest in terms of

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
$$

\checkmark Find the appropriate area using Table 3.
Example: A random sample of size $n=$ 100 from a binomial population with $p=$

$$
\begin{aligned}
& P(\hat{p}>.5)=P\left(z>\frac{.5-.4}{\sqrt{\frac{.4(.6)}{100}}}\right) \\
& =P(z>2.04)=1-.9793=.0207
\end{aligned}
$$

Types of Inference
 - Estimation:

- Estimating or predicting the value of the parameter
- "What is (are) the most likely values of μ or p ?"
- Hypothesis Testing:
- Deciding about the value of a parameter based on some preconceived idea.
- "Did the sample come from a population with $\mu=5$ or $p=.2$?"

Types of Inference
 - Examples:

- A consumer wants to estimate the average price of similar homes in her city before putting her home on the market.

Estimation: Estimate μ, the average home price.
-A manufacturer wants to know if a new type of steel is more resistant to high temperatures than an old type was. Hypothesis test: Is the new average resistance, μ_{N} equal to the old average resistance, μ_{0} ?

Types of Inference

- Whether you are estimating parameters or testing hypotheses, statistical methods are important because they provide:
- Methods for making the inference
- A numerical measure of the goodness or reliability of the inference

Definitions

- An estimator is a rule, usually a formula, that tells you how to calculate the estimate based on the sample.
- Point estimation: A single number is calculated to estimate the parameter.
- Interval estimation: Two numbers are calculated to create an interval within which the parameter is expected to lie.

Properties of
 Point Estimators

- Since an estimator is calculated from sample values, it varies from sample to sample according to its sampling distribution.
- An estimator is unbiased if the mean of its sampling distribution equals the parameter of interest.
- It does not systematically overestimate or underestimate the target parameter.

Properties of
 Point Estimators

- Of all the unbiased estimators, we prefer the estimator whose sampling distribution has the smallest spread or variability.

Measuring the Goodness of an Estimator

- The distance between an estimate and the true value off the parameter is the error of estimation.

> The distance between the bullet and the bull's-eye.

- In this chapter, the sample sizes are large, so that our unbiased estimators
will have normal dis|Because of the Central Limit Theorem.

Estimating Means

and Proportions

-For a quantitative population,
Point estimator of population mean $\mu: \bar{x}$
Margin of error $(n \geq 30): \pm 1.96 \frac{s}{\sqrt{n}}$
-For a binomial population,
Point estimator of population proportion $p: \hat{p}=x / n$
Margin of error $(n \geq 30): \pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}$

Interval Estimation

- Create an interval (a, b) so that you are fairly sure that the parameter lies between these two values.
- "Fairly sure" is means "with high probability", measured using the confidence coefficient,
Usually, $1-\alpha=.90, .95, .98, .99$
- Suppose 1- $\alpha=$. 95 and that the estimator has a normal distrib Parameler $\pm 1.965 E$

Confidence Intervals

for Means and Proportions

-For a quantitative population,
Confidence interval for a population mean μ :

$$
\bar{x} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

-For a binomial population,
Confidence intervalfor a population proportion p :

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

UNIT-IV

Large Sample Tests

Test statistic for T.O.H. in several cases are

- Statistic for test concerning mean σ known
$\mathrm{Z}=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}$
- Statistic for large sample test concerning mean with σ unknown
$\mathrm{Z}=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}$
- Statistic for test concerning difference between the means

under NH $\mathrm{H}_{\mathrm{o}}: \mu_{1}-\mu_{2}=\delta$ against the $\mathrm{AH}, \mathrm{H}_{1}: \mu_{1}-\mu_{2}>$ δ or $H_{1}: \mu_{1}-\mu_{2}<\delta$ or $H_{1}: \mu_{1}-\mu_{2} \neq \delta$
- Statistic for large samples concerning the difference between two means (σ_{1} and σ_{2} are unknown)

$$
\mathrm{Z}=\frac{\left(\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\left(\frac{s}{2}+\frac{s}{2}\right.} \frac{s_{2}^{2}}{n_{1}} n_{2}}\right)}{}
$$

Statistics tor large sample test

concerning one proportion

- $\mathrm{Z}=\frac{x-n p_{o}}{\sqrt{4 p_{0}\left(1-p_{0}\right)}}$
under the N.H: $\mathrm{H}_{\mathrm{o}}: \mathrm{p}=\mathrm{p}_{\mathrm{o}}$ against $\mathrm{H}_{1}: \mathrm{p} \neq \mathrm{p}_{\mathrm{o}}$ or $\mathrm{p}>\mathrm{p}_{\mathrm{o}}$ or $\mathrm{P}<\mathrm{P}_{\text {o }}$
- Statistic for test concerning the difference between two proportions

- With ${ }^{p=\frac{x_{1}+X_{2}}{n_{1}+n_{2}} \text { under the } \mathrm{NH}: \mathrm{H}_{\mathrm{o}}: \mathrm{P}_{1}=\mathrm{P}_{2} \text { against the AH }}$ $\mathrm{H}_{1}: \mathrm{p}_{1}<\mathrm{p}_{2}$ or $\mathrm{p}_{1}>\mathrm{p}_{2}$ or $\mathrm{p}_{1} \neq \mathrm{p}_{2}$

Estimating the Difference between Two Means

- Sometimes we are interested in comparing the means of two populations.
-The average growth of plants fed using two different nutrients.
-The average scores for students taught with two different teaching methods.
-To make this comparison,
A random sample of size n_{1} drawn from population 1 with mean μ_{1} and variance σ_{1}^{2}.
A random sample of size n_{2} drawn from population 2 with mean μ_{2} and variance σ_{2}^{2}.

Estimating the Difference between

 Two Means-We compare the two averages by making inferences about $\mu_{1}-\mu_{2}$, the difference in the two population averages.
-If the two population averages are the same, then $\mu_{1}-\mu_{2}=0$.
-The best estimate of $\mu_{1}-\mu_{2}$ is the difference in the two sample means,

$$
\bar{x}_{1}-\bar{x}_{2}
$$

The Sampling Distribution

 of$$
\bar{x}_{1}-\bar{x}_{2}
$$

1. The mean of $\bar{x}_{1}-\bar{x}_{2}$ is $\mu_{1}-\mu_{2}$, the difference in the population means.
2. The standard deviation of $\bar{x}_{1}-\bar{x}_{2}$ is $\mathrm{SE}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$.
3. If the sample sizes are large, the sampling distribution of $\bar{x}_{1}-\bar{x}_{2}$ is approximately normal, and SE can be estimated as $\mathrm{SE}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$.

Estimating $\mu_{1}-\mu_{2}$

- For large samples, point estimates and their margin of error as well as confidence intervals are based on the standard normal (z) distribution. Point estimate for $\mu_{1}-\mu_{2}: \bar{x}_{1}-\bar{x}_{2}$

Margin of Error : $\pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
Confidence interval for $\mu_{1}-\mu_{2}$:

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

Estimating the Difference between Two Proportions

- Sometimes we are interested in comparing the proportion of "successes" in two binomial populations.
-The germination rates of untreated seeds and seeds treated with a fungicide.
-The proportion of male and female voters who favor a particular candidate for governor.
A random sample of size n_{1} drawn from binomial population 1 with parameter p_{1}.
A random sample of size n_{2} drawn from binomial population 2 with parameter p_{2}.

Estimating the Difference between

Two Means

-We compare the two proportions by making inferences about $p_{1}-p_{2}$, the difference in the two population proportions.
-If the two population proportions are the same, then $p_{1}-p_{2}=0$.
-The best estimate of $p_{1}-p_{2}$ is the difference in the two sample proportions,

$$
\hat{p}_{1}-\hat{p}_{2}=\frac{x_{1}}{n_{1}}-\frac{x_{2}}{n_{2}}
$$

The Sampling Distribution

 of $\quad \hat{p}_{1}-\hat{p}_{2}$1. The mean of $\hat{p}_{1}-\hat{p}_{2}$ is $p_{1}-p_{2}$, the difference in the population proportions.
2. The standard deviation of $\hat{p}_{1}-\hat{p}_{2}$ is $\mathrm{SE}=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}$.
3. If the sample sizes are large, the sampling distribution of $\hat{p}_{1}-\hat{p}_{2}$ is approximately normal, and SE can be estimated

$$
\text { as } \mathrm{SE}=\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}} .
$$

One Sided Confidence Bounds

- Confidence intervals are by their nature two-sided since they produce upper and lower bounds for the parameter.
- One-sided bounds can be constructed simply by using a value of z that puts α rather than $\alpha / 2$ in the tail of the z distribution.

> LCB : Estimator $-z_{\alpha} \times($ Std Error of Estimator $)$ UCB : Estimator $+z_{\alpha} \times($ Std Error of Estimator $)$

Parameter Point Estimator Margin of Error

$$
\begin{array}{lll}
\mu & \bar{x} & \pm 1.96\left(\frac{s}{\sqrt{n}}\right) \\
p & \hat{p}=\frac{x}{n} & \pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
\mu_{1}-\mu_{2} & \bar{x}_{1}-\bar{x}_{2} & \pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
p_{1}-p_{2} & \left(\hat{p}_{1}-\hat{p}_{2}\right)=\left(\frac{x_{1}}{n_{1}}-\frac{x_{2}}{n_{2}}\right) & \pm 1.96 \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}}{2}}
\end{array}
$$

IV. Large-Sample Interval Estimators

To estimate one of four population parameters when the sample sizes are large, use the following interval estimators.

Parameter ($1-\alpha$) 100\% Confidence Interval

$$
\begin{array}{ll}
\mu & \bar{x} \pm z_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right) \\
p & \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
\mu_{1}-\mu_{2} & \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
p_{1}-p_{2} & \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
\end{array}
$$

The Sampling Distribution of the Sample Mean

- When we take a sample from a normal population, the sample mean has a normal-distribution for any sample size n, and

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

$\bar{x}-\mu$
 is not normal!

- has a standard normal distribution.
- But if σ is unknown, and we must use s to estimate it, the resulting statistic is not normal.

UNIT-V

Small Sample Tests

Student's t Distribution

 Fortunately, this statistic does have a sampling distribution that is well known to statisticians, called the Student's t distribution, with $n-1$ degrees of freedom.$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

-We can use this distribution to create estimation testing procedures for the population mean μ.

Properties of Student's t

- Mound-shaped and symmetric about 0 .
- More variable than
z, with "heavier tails"
- Shape depends on the sample size n or the degrees of freedom, $\boldsymbol{n - 1}$.
As n increases the shapes of the t and z distributions become almost identical.

Small Sample Inference for a Population Mean μ

The basic procedures are the same as those used for large samples. For a test of hypothesis:
Test $\mathrm{H}_{0}: \mu=\mu_{0}$ versus H_{a} : one or two tailed using the test statistic
$t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
using p-values or a rejection region based on a t-distribution with $d f=n-1$.

Small Sample Inference for a Population Mean μ

For a $100(1-\alpha) \%$ confidence interval for the population mean μ :

$$
\bar{x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

where $t_{\alpha / 2}$ is the value of t that cuts off area $\alpha / 2$ in the tail of a t-distribution with $d f=n-1$.

Approximating the

p-value

- You can only approximate the p-value for the test using Table 4.

$\boldsymbol{d f}$	$\boldsymbol{t}_{.100}$	$\boldsymbol{t}_{.050}$
1	3.078	6.314
2	1.886	2.920
3	1.638	2.353
4	1533	2.132
5	1.476	2.015

Since the observed value of $t=1.38$ is smaller than $t_{.10}=1.476$,

$$
p \text {-value > . } 10
$$

The exact p-value

- You can get the exact p-value using some calculators or a computer.

p-value $=.113$ which

is greater than 10 as
we approximated using Table 4.

One-Sample T: Times
Test of $\mathrm{mu}=15 \mathrm{vs}>15$

Variable TimesN
$6 \quad 19.1667 \quad 7.3869$

Testing the Difference

 between Two Means

As in Chapter 9, independent random samples of size n_{1} and n_{2} are drawn from populations 1 and 2 with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}.

Since the sample sizes are small, the two populations must be normal.
-To test:

- $H_{0}: \mu_{1}-\mu_{2}=D_{0}$ versus H_{a} : one of three where D_{0} is some hypothesized difference, usually 0 .

Testing the Difference

 between Two Means-The test statistic used in Chapter 9

$$
\mathrm{z} \approx \frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

- does not have either a z or a t distribution, and cannot be used for small-sample inference.
-We need to make one more assumption, that the population variances, although unknown, are equal.

Testing the Difference

 between Two Means-Instead of estimating each population variance separately, we estimate the common variance with

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

- And the resulting test statistic,

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}-D_{0}}{\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

has a t distribution with $n_{1}+n_{2}-2$ degrees of freedom.

Estimating the Difference between Two Means

- You can also create a $100(1-\alpha) \%$ confidence interval for $\mu_{1}-\mu_{2}$.

$$
\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

$$
\text { with } s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

Remember the three assumptions:

1. Original populations normal
2. Samples random and independent
3. Equal population variances.

Testing the Difference

 between Two Means-How can you tell if the equal variance assumption is reasonable? Rule of Thumb :

If the ratio, $\frac{\text { larger } s^{2}}{\text { smaller } s^{2}} \leq 3$,
the equal variance assumption is reasonable.
If the ratio, $\frac{\text { larger } s^{2}}{\text { smaller } s^{2}}>3$,
use an alternative test statistic.
-If the population variances cannot be assumed equal, the test statistic

$$
t \approx \frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

$$
d f \approx \frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}
$$

-has an approximate t distribution with degrees of freedom given above. This is most easily done by computer.

The Paired-Difference

Test

To test $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$ we test $\mathrm{H}_{0}: \mu_{\mathrm{d}}=0$ using the test statistic
$t=\frac{\bar{d}-0}{s_{d} / \sqrt{n}}$
where $n=$ number of pairs, \bar{d} and s_{d} are the mean and standard deviation of the differences, d_{i}.
Use the p-value or a rejection region based on a t-distribution with $d f=n-1$.

Inference Concerning
 a Population Variance

-Sometimes the primary parameter of interest is not the population mean μ but rather the population variance σ^{2}. We choose a random sample of size n from a normal distribution.
-The sample variance s^{2} can be used in its standardized form:

$$
\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}
$$

- which has a Chi-Square distribution with $n-1$ degrees of freedom.

Inference Concerning
 a Population Variance

To test $\mathrm{H}_{0}: \sigma^{2}=\sigma_{0}^{2}$ versus $\mathrm{H}_{\mathrm{a}}:$ one or two tailed we use the test statistic
$\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}$ with a rejection region based on
a chi - square distribution with $d f=n-1$.
Confidence interval:

$$
\frac{(n-1) s^{2}}{\chi_{\alpha / 2}^{2}}<\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{(1-\alpha / 2)}^{2}}
$$

Inference Concerning

Two Population Variances

-We can make inferences about the ratio of two population variances in the form a ratio. We choose two independent random samples of size n_{1} and n_{2} from normal distributions.
-If the two population variances are equal, the statistic
$F=\frac{s_{1}^{2}}{s_{2}^{2}}$
-has an F distribution with $d f_{1}=n_{1}-1$ and $d f_{2}=$ $n_{2}-1$ degrees of freedom.

Inference Concerning Two Population Variances

- Table 6 gives only upper critical values of the F statistic for a given pair of $d f_{1}$ and $d f_{2}$.

Inference Concerning Two Population Variances

To test $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ versus H_{a} : one or two tailed we use the test statistic
$F=\frac{s_{1}^{2}}{s_{2}^{2}}$ where s_{1}^{2} is the larger of the two sample variances. with a rejection region based on an F distribution with $d f_{1}=n_{1}-1$ and $d f_{2}=n_{2}-1$.

Confidence interval:
$\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{F_{d f_{1}, d f_{2}}}<\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\frac{s_{1}^{2}}{s_{2}^{2}} F_{d f_{2}, d f_{1}}$

Parameter

Test Statistic

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}
$$

$$
n-1
$$

$$
\mu_{1}-\mu_{2} \text { (equal variances) } \quad t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

$$
n_{1}+n_{2}-2
$$

$\mu_{1}-\mu_{2}$ (unequal variances) $t \approx \frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \quad$ Satterthwaite's approximation

$$
\mu_{1}-\mu_{2}(\text { paired samples }) \quad t=\frac{\bar{d}-\mu_{d}}{s_{d} / \sqrt{n}}
$$

$$
n-1
$$

$$
\sigma^{2} \quad \chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}}
$$

$$
\sigma_{1}^{2} / \sigma_{2}^{2}
$$

$$
F=s_{1}^{2} / s_{2}^{2}
$$

$$
n_{1}-1 \text { and } n_{2}-1
$$

