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Basic Concepts

* An experiment is the process by which an
observation (or measurement) is obtained.

* Experiment: Record an age
* Experiment: Toss a die
* Experiment: Record an opinion (yes, no)

* Experiment: Toss two coins



* A simple event is the outcome that is observed
on a single repetition of the experiment.

e The basic element to which probability is
applied.

e One and only one simple event can occur
when the experiment is performed.

* A simple event is denoted by E with a
subscript.



Each simple event will be assigned a probability,
measuring “how often” it occurs.

The set of all simple events of an experiment is called
the sample space, S.



* Simple events: Sample space:
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* An event is a collection of one or more simple
events.

*The die toss:

—A: an odd number
—B: a number > 2

A={E, E; Es}
B ={E;, E;, Es, Eg}




* Two events are mutually exclusive if, when one event
occurs, the other cannot, and vice versa.

’ ; Not Mutuall
Experiment: Toss a die

—A: observe an odd number
—B: observe a number greater than

—C: observe a 6 |

B and C?
—D: observe a 3

B and D?

2



N

The probability of an event A measures “how
often” we think A will occur. We write P(A).

Suppose that an experiment is performed n
times. The relative frequency for an event A is

Number of times A occurs  f

n n
o|f we let n get Infinitely large,
f
P(A) = lim —
n—>o [
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* P(A) must be between o and 1.

e If event A can never occur, P(A) = o. If event A always
occurs when the experiment is performed, P(A) =1.

* The sum of the probabilities for all simple events in S
equals 1.

*The probability of an event A is
found by adding the probabilities of all
the simple events contained in A.




inding Probabilities =

* Probabilities can be found using
e Estimates from empirical studies

e Common sense estimates based on equally likely
events.

Examples:

—Toss a fair coin lEEEL) N

—10% of the U.S. population has red hair.
Select a person at random. [FHGEMETERNI




Xample

* Toss a fair coin twice. What is the
probability of observing at least one head?

1st Coin  2nd Coin _E, P(E;)

H HH 1/4 | P(at least 1 head)

T HT 1/4 | =P(EJ +P(E) + P(Ey)
= 1/4 + 1/4 + 1/4 = 3/4

H TH 1/4
TT 1/4

A
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* A bowl contains three M&Ms", one red, one
blue and one green. A child selects two M&Ms
at random. What is the probability that at least
one is red?

st M&M  2nd M&M  E P(E;)

- .
@ RG 1/6 P(at least 1 red)
= P(RB) + P(BR)+ P(RG) +

@<3 BR|  1/6 |P@GR)
BG =4/6 = 2/3

1/6

@<® B 1
¢ =1




¢ If the simple events in an experiment are equally
likely, you can calculate

P(A) = n, number of simple eventsin A
N total number of simple events

* YOou can use counting rules to find
n, and N.



W

[f an experiment is performed in two stages,
with m ways to accomplish the first stage
and n ways to accomplish the second stage,
then there are mn ways to accomplish the
experiment.

This rule is easily extended to k stages, with
the number of ways equal to

n;

<

n,n,n,..

Example: Toss two coins. The total number

of simple events Is;j




Xamples

Example: Toss three coins. The total

number of simple events is 2% 2 x D=8

Example: Toss two dice. The total number of
simple events Is: 6x6 =236

Example: Two M&Ms are drawn from a dish
containing two red and two blue candies. The

total number of simple eve 4 3 =12
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* The number of ways you can arrange
n distinct objects, taking them r at a time is

N _ n!
" (n-r)!
where nl=n(n-1)(n—-2)...(2)(1) and 0!=1.

Example: How many 3-digit lock
combinations can we make from the
numbers 1, 2, 3, and 47?

The order of the choice is P34 _ % _ 4(3)(2) =24

Important!




/ inations *

* The number of distinct combinations of n distinct
objects that can be formed, taking them r at a time is

ch = n!
r'(n—r)!

Example: Three members of a 5-person committee
must be chosen to form a subcommittee. How many
different subcommittees could be formed?

—— Ic5= 5 _54)E)@1_54) _,,
> 31(5-3)! 3221 (21

the choice Is
not important!
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* A box contains six M&Ms’, four red
* and two green. A child selects two M&Ms at
random. What is the probability that exactly

one is red?
2!
6!l 6(5 Ci=—"=2
The order of [l T 2((1)) =15 |
o c_:hoice - ;va S tc-) c.:hoose 2M & Ms Ways to choose
not important! y | 1 green M & M.
. A
S =—=4 4 x 2 =8 ways to
— 13 | lchoose1redand1 | —-P(exactlyone
ways to choose | | green M&M. red) = 8/15
lred M & M.




vent Relations

* The union of two events, A and B, is the event that either
A or B or both occur when the experiment is performed.
We write

AUB

AU B




- Event Relations

* The intersection of two events, A and B, is
the event that both A and B occur when the
experiment is performed. We write A N B.

S

AAB

* |f two events A and B are mutually
exclusive, then P(An B) = 0.



vent Relations

* The complement of an event A consists
of all outcomes of the experiment that do
not result in event A. We write A¢.
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Unions and Complements

* There are special rules that will allow you to
calculate probabilities for composite events.
* The Additive Rule for Unions:

* For any two events, A and B, the probability of their
union, P(A U B), is

P(AUB)=P(A)+P(B)- P(Ar B)I




Cal
- for Complements

* We know that for any event A:
e PANAY =0
e Since either A or A must occur,
P(A U A€) =1
esothat P(AUASY =P(A)+P(AC) =1

P(AC) = 1 — P(A)




Calc [ obabilities for

~  Intersections

* In the previous example, we found P(A n B)
directly from the table. Sometimes this is
impractical or impossible. The rule for
calculating P(A m B) depends on the idea of
independent and dependent events.

Two events, A and B, are said to be
independent if and only if the
probabillity that event A occurs does

not change, depending on whether or
not event B has occurred.




~— Conditional Probabiliti

* The probability that A occurs, given
that event B has occurred is called the
conditional probability of A given B
and is defined as

P(ANB)

P(A|B) = 5(5)

if P(B) =0

“orven”



;_-=--=-:—-e-;: vendence

* We can redefine independence in terms of conditional
probabilities:

Two events A and B are independent if and
only if

P(AIB) =P(A) or P(B|A)=P(B)
Otherwise, they are dependent.

* Once you've decided whether or not
two events are independent, you can

use the following rule to calculate their
Intersection.



The Multiplicative Rule for
- Intersections

* For any two events, A and B, the probability that both A
and B occur is

P(ANnB)=P(A) P(B given that A
occurred) = P(A)P(B|A)

* |[f the events A and B are independent,
then the probability that both A and B
OCCU[

F;?A N B) =P(A) P(B)




/ e Law of Total Probability

LetS,,S,, S, ,..., S, be mutually exclusive and exhaustive

: 2 i A2

events (that is, one and only one must happen). Then
the probability of another event A can be written as

P(A)=P(ANS,)+P(ANS)+..+PANS)

= P(S)P(A[S,) + P(S))P(A|Sy) + ... +
P(SK)P(A|S)




PA)=P(ANS,)+PANS)+..+PANS)

= P(S)P(A|S)) + P(S)P(A[Sy) + ... +
P(SIP(A[S))




LetS,,S,, S, ,..., Sy be mutually exclusive and

LX)

exhaustive events with prior probabilities
P(S,), P(S,),...,P(S,). If an event A occurs, the
posterior probabiiity of S, given that A
occurred is

= fori = 1,2,.k
2.P(S)P(A]S))




om varia

* A quantitative variable x is a random variable
if the value that it assumes, corresponding to
the outcome of an experiment is a chance or
random event.

* Random variables can be discrete or
continuous.

« Examples:
v'X = SAT score for a randomly selected
student
v'X = number of people in a room at a
randomly selected time of day
v'X = number on the upper face of a
randomly tossed die



D ility Distributi : =
Random Variables

The probability distribution for a discrete random
variable x resembles the relative frequency
distributions we constructed in Chapter 1. It is a graph,
table or formula that gives the possible values of x and
the probability p(x) associated with each value.

We must have
0< p(x)<land 2 p(x)=1




/
Probability Distributions

Probability distributions can be used to describe
the population, just as we described samples in
Chapter 1.

e Shape: Symmetric, skewed, mound-shaped...
e OQutliers: unusual or unlikely measurements

e Center and spread: mean and standard
deviation. A population mean is called pand a
population standard deviation is called o.



M
~—and Standard Deviation

Let x be a discrete random variable with probability
distribution p(x). Then the mean, variance and standard
deviation of x are given as

Mean : 1 = 2. Xp(X)
Variance:o* = Y.(Xx— u)° p(x)

Standard deviation: o = o




-

PEXample  ——  —— ——w

*Toss a fair coin 3 times and
record x the number of heads.

p(X) | Xp(X) | (X-p)*p(x) 12
1/8 |0 15218 | [# = 2XP(X) = = 1.5

3/8 3/8 (-0.5)%(3/8)

38 |6/8 |(05)(38) |5 ,
18 |3/8 | (1.5)2(1/8) ‘,G = 2(X— ) p(x)I

e

WINFPL|O | X

( o2 = 28125+ .09375+.09375+.28125 = .75
o =+/.75 = .688
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Discrete random variables take on only a
finite or countably number of values.

Three discrete probability distributions
serve as models for a large number of
practical applications:

v'The binomial random variable

v'The Poisson random variable




e Binomial Ranc om Vari
° Many situations in rea life resemble the

coin toss, but the coin is not necessarily fair,
so that P(H) <1

« Example: A geneticist samples 10 &»&5&5&
people and counts the number who &}}ﬁﬁ
have a gene linked to Alzheimer’s s & & N
disease.

- Coin: « Number of

« Head: tosses: P(has gene) = proportion

in the population who

. e P(H):
.+ Tail (H): I




he Binomial Experiment

The experiment consists of n identical trials.

Each trial results in one of two outcomes,
success (S) or failure (F).

The probability of success on a single trial is p
and remains constant from trial to trial. The
probability of failure is g =1 - p.

The trials are independent.

We are interested in x, the number of
successes in n trials.




inomial or Not? PREN
* Very few real life applications &5 &3 &5 &5

satisty these requirements exactly. && & :&:

» Select two people from the U.S.
population, and suppose that 15% of
the population has the Alzheimer’s
gene.

* For the first person, p = P(gene) = .15

 For the second person, p = P(gene) =
.15, even though one person has been
removed from the population.



The Binomi abilit
Distribution
For a binomial experiment with n trials and

probability p of success on a given trial, the
probability of k successes in n trials is

P(x=k)=Cp“q"™* = N p“q"* fork =0,1,2,...n
kl( _k)l = =y oaal g
|
Recall C; = L
kI(h —k)!

withn!l=n(n-1)(n—2)...(2)1and 0!'=1




- The Mean and Standard Deviation
For a binomial experiment with n trials and

probability p of success on a given trial, the
measures of center and spread are:

Mean: z =np
Variance: 6 = npg

Standarddeviation: o = \/npg




Tables

You can use the cumulative probability tables
to find probabilities for selected binomial
distributions.

v'Find the table for the correct value of n.
v'Find the column for the correct value of p.

v'The row marked “k” gives the cumulative
probability, P(x <k) = P(x =0) +...+ P(x = k)




, e Poisson Rando riable

* The Poisson random variable x is a model for data
that represent the number of occurrences of a
specified event in a given unit of time or space.

« Examples:

» The number of calls received by a
switchboard during a given period of time.

* The number of machine breakdowns in a day

« The number of traffic accidents at a given
Intersection during a given time period.




Distribution

x is the number of events that occur in a period
of time or space during which an average of p
such events can be expected to occur. The
probability of k occurrences of this event is

KAa—#
e
P(x=k) =~ X
For values of k = 0, 1, 2, ... The mean and standard
deviation of the Poisson random variable are

Mean:

Standard deviation:




Tables

You can use the cumulative probability tables

to find probabilities for selected Poisson
distributions.

v'Find the column for the correct value of L.

v'The row marked “k” gives the cumulative
probability, P(x <k) = P(x=0) +...+ P(x = k)




ntinuous Random Variables

* Continuous random variables can assume the infinitely
many values corresponding to points on a line interval.
e Examples:
e Heights, weights
e length of life of a particular product

e experimental laboratory error



“Continuous Random Variables

* A smooth curve describes the probability
distribution of a continuous random variable.

fix)

A

*The depth or density of the probability, which
varies with X, may be described by a
mathematical formula f (x ), called the
probability distribution or probability density
function for the random variable x.




Properti Continuous
robability Distributions

* The area under the curve is equal to 1.
* P(a < x <b) = area under the curve between a and b.

X

a b

*There Is no probability attached to any
single value of x. That Is, P(x =a) = 0.



Conti e _— ioTTe

* There are many different types of
continuous random variables

*  We try to pick a model that
e Fits the data well

e Allows us to make the best possible
inferences using the data.

*  One important continuous random
variable is the normal random variable.



~The hlo ma‘ Dp]stribution
* The formula that generates the
normal probability distribution Is:

1( x—u

L __(T) for — oc< X <oc

f(X) = e’
() oN2r1
e=2.7183 7 =3.1416
1 and o are the population mean and standard deviation.

* The shape and location of the normal
curve changes as the mean and standard
deviation change.



ﬂ\/
The Standard Normal Distribution A

To find P(a < x < b), we need to find the area
under the appropriate normal curve.

To simplify the tabulation of these areas, we
standardize each value of x by expressing it
as a z-score, the number of standard
deviations o it lies from the mean p.

_X-n
O

/




The Standard
Normal (z)

- | Distribution

() 0 (%)

Mean = o; Standard deviation =1
Whenx=y,z=0

Symmetric about z = 0

Values of z to the left of center are negative
Values of z to the right of center are positive
Total area under the curve is 1.



() [ — oo, o :
ey TE Mmoo __ 4
[ S =avS - .‘i-~—a‘ = . F-- ayY rFa
BEE=< ol @ N - e - o
e )

| Normal Random Variable

v'To find an area for a normal random variable x
with mean u and standard deviation o, standardize
or rescale the interval in terms of z.

v'Find the appropriate area using Table 3.

Example: x has a normal distribution with
u=5and o = 2. Find P(x > 7).

P(x>7)=P(z >7—;5)

— P(z >1) =1-.8413 = .1587




Binomial

* We can calculate binomial probabilities using
¢ The binomial formula
e The cumulative binomial tables
e Java applets

* When n is large, and p is not too close to zero or one, areas
under the normal curve with mean np and variance npq
can be used to approximate binomial probabilities.
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Independence and Covariance

* Two random variables X and Y are said to be
independent if

e Discrete

p; = P, P,; forall valuesiof X and jofY

e Continuous

f(x,y)=1,(x)f,(y) forall xand vy

e How is this independency different from the
independence among events?



e

Independence and Covariance

Covariance

Cov(X,Y)=E({(X —E(X))(Y —E(Y)))
= E(XY)=E(X)E(Y)
Cov(X,Y)=E((X-E(X))(Y -E(Y)))
= E(XY = XE(Y)-E(X)Y + E(X)E(Y))
= E(XY)—E(X)E(Y)-E(X)E(Y)+E(X)E(Y)
= E(XY)=E(X)E(Y)
e May take any positive or negative numbers.

e Independent random variables have a covariance of zero
e What if the covariance is zero?



/ .

Independence and Covariance

Example 19 (Air conditioner maintenance)

E(X)=259, E(Y)=1.79
E(XY)= Zzijpij
TR
=(1x1x0.12) + (1x 2x0.08)
+---4+(4x3x0.07) =4.86

Cov(X,Y) = E(XY)—E(X)E(Y)
—4.86—(2.59x1.79) = 0.224



N

Independence and Covariance

Correlation:
Cov(X,Y)

Corr(X,Y) = JVar(X)Var(Y)

e Values between -1and 1, and independent random
variables have a correlation of zero
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Independence and Covariance

Example 19: (Air conditioner maintenance)
Var(X)=1.162, Var(Y)=0.384

Cov(X,Y)
JVar(X)Var(Y)
. oo
~ J1.162x0.384

Corr(X,Y) =

=0.34
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V}\l/hat if random variable X and Y have linear relationship,
that is,

Y=aX+b a=#0

where
Cov(X,Y)=E[XY]-E[X]E[Y]

— E[X (aX +b)]- E[X]E[aX +b]
— aE[X 2]+ bE[X]-aE[X]-bE[X]
=a(E[X*]-E*[X]) =aVar(X)

Cov(X,Y) aVar(X)
Jar(X)var(Y) WVar(X)a¥Var(X)

That is, Cov(X,Y)=1 if a>o0; -1 if a<o.

Corr(X,Y)=



/ |

The relationship between x and y

Correlation: is there a relationship between 2 variables?

Regression: how well a certain independent variable
predict dependent variable?

CORRELATION # CAUSATION

e In order to infer causality: manipulate independent variable
and observe effect on dependent variable



N

/ Scattergrams

Positive correlation Negative correlation No
correlation



Variance vs Covariance

First, a note on your sample:

« If you’re wishing to assume that your sample is representative of
the general population (RANDOM EFFECTS MODEL), use the
degrees of freedom (n — 1) in your calculations of variance or
covariance.

o But if you’re simply wanting to assess your current sample
(FIXED EFFECTS MODEL), substitute n for the degrees of

freedom.



Variance vs Covariance

* Do two variables change together?

Variance: n

:2 : u\2
* Gives information on variability of a (XI e X)

single variable. 5 "
E; sl

: n—1

Covariance:

* Gives information on the degree
to which two variables vary

S (%~ X)(Y; - ¥)

* Note how similar the covariance =T

IS to variance: the equation simply ( ) e

multiplies x’s error scores by y’s CoVv X’ y 1
error scores as opposed to n—
squaring x’s error scores.




Covarilance

n

> (% = X)(Y; = Y)

cov(x, y) ==

n—1
When X! and Y : cov (x,y) = pos.
When X | and Y! : cov (X,y) = neg.

When no constant relationship: cov (X,y)
=5




- Example Covariance

6 1 * X lly X=X |-y (>ﬁ —7<)(yi -Y)
o Bs e 0
| ¢ e e 1
= . 3 4 01 0
- & 0 3 -3
0 . f_S 8 [ = 9
N N el AN R D R c—ally-—13 2:7
(%= X)(Y; - ) . What does this

cov(x, y) = 1= = =Z=1-75 number tell us?




=

Problem with Covariance:

The value obtained by covariance is dependent on the size of
the data’s standard deviations: if large, the value will be greater
than if small... even if the relationship between x and y Is
exactly the same in the large versus small standard deviation
datasets.



Example of how covariance value relies
on variance

Low variance data

High variance data
Subject X y X error *y
error
1 101 100 2500
2 81 80 900
3 61 60 100
4 51 50 0
5 41 40 100
6 21 20 900
7 1 0 2500
Mean 51 50
Sum of x error *y error : 7000
Covariance: 1166.67

X y Xerror*y
error

54 53 9

53 52 4

52 51 1

51 50 0

50 49 1

49 48 4

48 47 9

51 50

Sum of x error *y error : 28

Covariance:

4.67




Solution: Pearson’s r

Covariance does not really tell us anything
Solution: standardise this measure

Pearson’s R: standardises the covariance value.

DiC\I/i\c(Ies the covariance by the multiplied standard deviations of X
and Y:

= cov(X, V)
—

Xy



N

Pearson’s R continued

3" (% - (% - ) > (%= X)(% - Y)
cov(x, y) == = = - (—Ds.s,
|
Zn:ZXi *ZYi
e i=1

E 1



Limitations of r

Whenr=1orr=-1:
e We can predict y from x with certainty

e all data points are on a straight line: y =ax + b
ris actually ¢

e r = true r of whole population
e f = estimate of r based on data

r is very sensitive to extreme values.




e

Regression

Correlation tells you if there Is an association between x
and y but 1t doesn’t describe the relationship or allow you
to predict one variable from the other.

To do this we need REGRESSION!



Best-fit Line

Aim of linear regression is to fit a straight line, § = ax + b, to data that
gives best prediction of y for any value of x

This will be the line that . y=ax+bhb
minimises distance between / \
data and fitted line, i.e. slope intercept
the residuals S

v

=V, predicted value
= Yy, true value

¢ = residual error



e

|_east Squares Regression

To find the best line we must minimise the sum of
the squares of the residuals (the vertical distances
from the data points to our line)

Model line: y —axXx + b a=slope, b =intercept
Residual () =y -y
Sum of squares of residuals = > (y — V)

we must find values of a and b that minimise
2 - V)



e

Finding b

First we find the value of b that gives the min sum of
squares

A 4 / A
/ | / //

- - -
// / /

Trying different values of b is equivalent to
shifting the line up and down the scatter

Nnlnt

-



e

Finding a

Now we find the value of a that gives the min sum of
squares

b /bj/ b,

//' =/ # //

rying out different values of a is
equivalent to changing the slope of the
line, while b stays constant
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Minimising sums of squares

Need to minimise Z(y—¥)?

y=ax+Db
so need to minimise;
>(y - ax - b)?

If we plot the sums of squares for
all different values of a and b we
get a parabola, because it is a
squared term

sums of squares (S)

Gradient=0
min S

So the min sum of squares is at values of a and b
the bottom of the curve, where
the gradient is zero.




/

The maths bit

The min sum of squares Is at the bottom of the curve
where the gradient =0

So we can find a and b that give min sum of squares
by taking partial derivatives of X(y - ax - b)? with
respect to a and b separately

Then we solve these for 0 to give us the values of a
and b that give the min sum of squares



The solution

Doing this gives the following equations for a and b:

I Sy r = correlation coefficient of x and y
a = s, = standard deviation of y
o s = standard deviation of x

From you can see that:

A low correlation coefficient gives a flatter slope (small
value of a)

Large spread of y, i.e. high standard deviation, results in a
steeper slope (high value of a)

Large spread of x, i.e. high standard deviation, results in a
flatter slope (high value of a)



The solution cont.

Our model equation is § = ax + b
This line must pass through the mean so:

y—ax+h mm) p-vy ax
We can put our equation for a into this

ngng: I Sy 2 r = correlation coefficient of x and y
b = y & X Sy = standard deviation of y
SX S, = standard deviation of x

The smaller the correlation, the closer the
Intercept is to the mean of y



Back to the model .

.
.
/" —
/
/
.
] -
'
\
\
\
\
\
N
s,

y=ax+Db=

Rearranges to: y =

 |f the correlation is zero, we will simply predict the mean of y for every
value of x, and our regression line is just a flat straight line crossing the
X-axis at y

* But this isn’t very useful.

* \We can calculate the regression line for any data, but the important
question is how well does this line fit the data, or how good is it at
predicting y from x
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How good Is our model?

: -y)? SS
Total variance of y: S 2= 2y =) =
! n-1 df,
Variance of predicted y values
()7) & N2 This is the variance
3.2 = 2 = g’red explained by our
! n-1 df, regression model

Error variance. This is the variance of the error

~\D between our predicted y values
- :Z(y 9 - SSer and the actual y values, and
error N9 df thus is the variance in y that is
o NOT explained by the
regression model




// |

How good Is our model cont.

Total variance = predicted variance + error variance
e 2
s

Conveniently, via some complicated rearranging

P e R
e 2 2
= /sy

so r?is the proportion of the variance in y that is explained by
our regression model
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How good Is our model cont.

26 2 j 2=—c 24 2 -
Insert r° s, Into s,~ = s, + s~ and rearrange to get:
Ser2 = Sy2 - r25y2
=s:(1 K

From this we can see that the greater the correlation
the smaller the error variance, so the better our
prediction
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Is the model significant?

1.e. do we get a significantly better prediction of y
from our regression equation than by just predicting

the mean?

F-statistic: complicated

892 rearringlng r2 (n 5 2)2

= = -
er

And it follows that:
_r(n-2
(because F =12 ((n2) = ( )
V1 — 12

So all we need to
know are r and n
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General Linear Model

Linear regression is actually a form of the General Linear
Model where the parameters are a, the slope of the line,
and b, the intercept.

y=ax+Db +e

A General Linear Model is just any model that describes
the data in terms of a straight line
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Multiple regression

Multiple regression is used to determine the effect of a number
of independent variables, X;, X,, X; etc, on a single dependent
variable, y

The different x variables are combined in a linear way and each
has its own regression coefficient:

YVmath g b g ae e

The a parameters reflect the independent contribution of each
Independent variable, X, to the value of the dependent variable,
y.

I.e. the amount of variance in y that is accounted for by each x
variable after all the other x variables have been accounted for
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SPM

Linear regression is a GLM that models the effect of one
Independent variable, x, on ONE dependent variable, y

Multiple Regression models the effect of several independent
variables, x,, X, etc, on ONE dependent variable, y

Both are types of General Linear Model

GLM can also allow you to analyse the effects of several
Independent x variables on several dependent variables, y,, Y.,
Yy, etc, in a linear combination

This is what SPM does and all will be explained next week!






* Parameters are numerical descriptive measures for

populations.

e For the normal distribution, the location and

shape are described
e For a binomial distri

by U and o.
bution consisting of n trials,

the location and shaj

be are determined by p.

* Often the values of parameters that specify the
exact form of a distribution are unknown.

* You must rely on the sample to learn about these

parameters.
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Examples:

* A pollster is sure that the responses to his
“agree/disagree” question will follow a binomial
distribution, but p, the proportion of those who
“agree” in the population, is unknown.

* An agronomist believes that the yield per acre of a
variety of wheat is approximately normally
distributed, but the mean x and the standard
deviation o of the yields are unknown.

v If you want the sample to provide reliable
information about the population, you must select
your sample in a certain way!



~—Simple Random Sampling

The sampling plan or experimental design
determines the amount of information you can
extract, and often allows you to measure the
reliability of your inference.

Simple random sampling is a method of sampling
that allows each possible sample of size n an equal
probability of being selected.



s of Samples
« Sampling can occur in two types of
practical situations:

1. Observational studies: The data existed before you decided to
study it. Watch out for

Nonresponse: Are the responses biased because only
opinionated people responded?

Undercoverage: Are certain segments of the population
systematically excluded?

Wording bias: The question may be too complicated or
poorly worded.
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es of Samples

« Sampling can occur in two types of
practical situations:

2. Experimentation: The data are generated by imposing an
experimental condition or treatment on the experimental units.

v

v

Hypothetical populations can make random sampling difficult
If not impossible.

Samples must sometimes be chosen so that the
experimenter believes they are representative of the whole
population.

Samples must behave like random samples!




er Sampling Plan
* There are several other sampling plans

that still involve randomization:

Stratified random sample: Divide the population into
subpopulations or strata and select a simple random sample
from each strata.

Cluster sample: Divide the population into subgroups called
clusters; select a simple random sample of clusters and take a
census of every element in the cluster.

1-in-k systematic sample: Randomly select one of the first k
elements in an ordered population, and then select every k-th
element thereatfter.




* There are several other sampling plans
that do not involve randomization. They
should NOT be used for statistical

MRARES L R A p gy |

Convenience sample: A sample that can be taken easily without random
selection.

 People walking by on the street

Judgment sample: The sampler decides who will and won'’t be included in
the sample.

Quota sample: The makeup of the sample must reflect the makeup of the
population on some selected characteristic.

 Race, ethnic origin, gender, etc.




Sampling Distributions
-Numerical descriptive measures

calculated from the sample are called
statistics.

-Statistics vary from sample to sample and
hence are random variables.

-The probability distributions for statistics
are called sampling distributions.

-In repeated sampling, they tell us what
values of the statistics can occur and how
often each value occurs.




pling Dis

Definition: The sampling distribution of a
statistic is the probabillity distribution for the
possible values of the statistic that results

when random samples of size n are
repeatedly drawn from the population

Population: 3, 5, 2, 1

Draw samples of size n =
3 without replacement

Possible samples X

p(X)

10/3=3.33
3,5, 2 9/3=3
3,9,1 6/3=2
3,2, 1 8/3=2.67
571

X

Each value of
X-bar Is
equally

likely, with
probability
1/4



Sampling distributions for statistics can be
v Approximated with simulation techniques
v'Derived using mathematical theorems
v'The Central Limit Theorem is one such
theorem.

Central Limit Theorem: If random samples of n observations are drawn
from a nonnormal population with finite u and standard deviation ¢ , then,
when n is large, the sampling distribution of the sample mean s
approximately normally distributed, with mean p and standard deviation

. The approximation becomes more accuratéas n becomes large.

oln




vThe Central Limit Theorem also implies that the
sum of n measurements Is approximately normal
with mean np and standard dexiation

vMany statistics that are used for statistical
iInference are sums or averages of sample
measurements.

vWhen n is large, these statistics will have
approximately normal distributions.

vThis will allow us to describe their behavior and
evaluate the reliability of our inferences.



ow Large i

If the sample Is normal, then the sampling
distribution of x will also be normal, no matter
what the sample size.

When the sample population is approximately
symmetric, the distribution becomes
approximately normal for relatively small
values of n.

When the sample population is skewed, the
sample size nqust be at least 30 before the
sampling distribution of becomes
approximately normal.




The Sampling Distribution.-of the-
Sample Mean

—

v'A random sample of size n is selected from a population with mean
u and standard deviation o.

v'The sampling distribution of the sample mean  will have mean pn
and standard deviation : X

v'If the original population is normal, the sammi'r‘bq{aribution will be
normal for any sample size.

vIf the original population is nonnormal, the sampling distribution will
be normal when n is large.

| The standard deviation of x-bar is sometimes called the

STANDARD ERROR (SE).



~ the Sample Mean

vIf the sampling distribution ofX  is nhormal or
approximately normal, standardize or rescale the

Interval of interest In terms of
)_( _

7,
oln

v'Find the appropriate area using Table 3.

/ =

A random sample 12 —10

of size n = 16 from a normal P()_( >12) — P(Z > )
distributi ith u =10 and
:ISSII’I ution with p and o 8/ \/

=P(z>1)=1-.8413=.1587




- the Sample Proportion

The S

istribution of

A

v'The Central Limit Theorem can be used to
conclude that the binomial random variable x Is
approximately normal when n is large, with mean

np and standard deviation .
X

v'The sample proportion[5 B IS simply a
rescaling of the binomial random variable X,
dividing it by n.

v'From the Ceftral Limit Theorem, the sampling
distribution of will also be approximately
normal, with a rescaled mean and standard
deviation.



~ the Sample Proportion A

v'A random sample of size n is selected from a
binomial population with parameter p.

v'The sampling distribution of the sample

proportion, 5 = X
n

P9
v'will have mean p and standard deviationy ;-

vIf nis large, and p is nppt too close to zero or
one, the sampling distribution of will be
approximately normal.
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~ the Sample Proportion Sl S

v'If the sampling distribution o0 is normal or
approximately normal, standardize or rescale the
interval of interest in terms of L p-p

Pq
n
v'Find the appropriate area using Table 3.

Arandom |[P(p>.5)=P(z> '5_'4)

sample of size n = A4(.6)
100 from a binomial 100

population withp = |= P(z > 2.04) =1-.9793=.0207
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Types of Inference -

Estimation:

 Estimating or predicting the value of the
parameter

» “What is (are) the most likely values of p
or p?”
Hypothesis Testing:

* Deciding about the value of a parameter
based on some preconceived idea.

* “Did the sample come from a population
withp=5o0rp= .27



pes of Inference

* Examples:

e A consumer wants to estimate the average
price of similar homes in her city before
putting her home on the market.

Estimation: Estimate p, the average home price.

—A manufacturer wants to know If a new
type of steel is more resistant to high
temperatures than an old type was.

Hypothesis test: Is the new average resistance, u equal to the old

average resistance, p,?
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- Types of Inference

Whether you are estimating parameters or testing
hypotheses, statistical methods are important because
they provide:

e Methods for making the inference

e A numerical measure of the goodness or reliability
of the inference



e

Definitions

An estimator is a rule, usually a formula, that tells
you how to calculate the estimate based on the
sample.

e Point estimation: A single number is calculated to
estimate the parameter.

e Interval estimation: Two numbers are calculated to
create an interval within which the parameter is
expected to lie.




Properties of =

Point Estimators

Since an estimator is calculated from sample values, it
varies from sample to sample according to its
sampling distribution.
An estimator is unbiased if the mean of its sampling
distribution equals the parameter of interest.
e It does not systematically overestimate or underestimate
the target parameter.



Pro
- Point Estimators

» Of all the unbiased estimators, we prefer the estimator
whose sampling distribution has the smallest spread
or variability.

\

Unbiased Biased =~ Minimum

f /\\ variability
J N

Paratneler

Parameter




Me
- of an Estimator

* The distance between an estimate and the true value
the parameter is the error of estimation.

The distance between the bullet and the
bull's-eye.

* In this chapter, the sample sizes are
large, so that our unbiased estimators

will have normal dis1
Theorem.



/.: - :
~and Proportions

For a quantitative population,
Point estimator of population mean x : X

S

Margin of error(n>30) :£1.96

Vn

For a binomial population,
Point estimator of population proportion p: p = X/n

A A

P9

Margin of error(n >30) :£1.96,—
n




Interval Estimation

* Create an Iinterval (a, b) so that you are
fairly sure that the parameter lies between

these two values.
« “Fairly sure” is means “with high probability”,
measured using the confidence coefficient,

Usually, 1-a = .90, .95, .98, .99

e Suppose 1-a = .95
and that the |
estimator has a —
normal dIStrlb Parameter + 1.96SE




For a quantitative population,
Confidence interval for a population mean u :

i05/2\/_

For a binomial population,
Confidence interval for a population proportion p :







Test statistic for T.O.H. in several cases are

Statistic for test concerning mean ¢ known

X — o
L= olvn
Statistic for large sample test concerning mean with o

unknown
i X — ly

S/+/n




Statistic for test concerning difference between the
means

)
under NH H_:p, -p, =0dagainstthe AH, H:p -, >
dorH:p -p,<oorH:p -p, #0
Statistic for large samples concerning the difference
between two means (o, and ¢, are unknown)

7 — _X-X)

U nl n2



StatIStICS Tor large sampie test
| ncerning one proportion

Z ey X —Np,
VNP, (1—py)

under the N.H: H_: p = p, against H: p # p_, or p > p, or
Pl

Statistic for test concerning the difference
between two proportions

Xl XZ

nl nZ
/= J[p0-pC+D)
X, + X,

With °-5, under the NH : H_: p,.=p, against the AH
H;:;p,<p,orp,>p,orp,#p,




ifference b

- Two Means

*Sometimes we are interested in comparing the
means of two populations.

*The average growth of plants fed using two
different nutrients.

*The average scores for students taught with two
different teaching methods.

*To make this comparlson




Esti ' ifference b
-~ Two Means

*\\/e compare the two averages by making
Inferences about u,-u,, the difference in the two
population averages.

*|f the two population averages are the same,
then p,-u, = 0.

*The best estimate of u,-u, Is the difference
In the two sample means,

)_(1_)_(2



W%“

of X1_¥2

1. The mean of X, — X, IS 1, — ,, the difference In
the population means.

2 2
2. The standard deviation of X, — X, ISSE = \/0—1 + 22
nl n2

3. If the sample sizes are large, the sampling distribution
of X, — X, 1sapproximately normal, and SE can be estimated

2 2
S S

asSE = L +—2.
nl




Estimating p,-p,

For large samples, point estimates and their
margin of error as well as confidence intervals
are based on the standard normal (z)

distribution. [IEESINCCR ST

2
1

S
N,

Margin of Error:+£1.96 +

2
2
N,

Confidence interval for s - u, :




- Two Proportions

*Sometimes we are interested in comparing the
proportion of “successes” in two binomial
populations.

*The germination rates of untreated seeds and seeds
treated with a fungicide.

*The proportion of male and female voters who
favor a particular candidate for governor.

A random sample of size n, drawn from ]

binomial population 1 with parameter p;.

A random sample of size n, drawn from
binomial population 2 with parameter p,.



ifference b

- Two Means

*\\le compare the two proportions by making
Inferences about p,-p,, the difference in the two
population proportions.

*|f the two population proportions are the
same, then p,-p, = 0.

*The best estimate of p,-p, Is the difference
In the two sample proportions,




W%“

of 0L — Py

1. The mean of p,—p, IS p, — p,, the difference In
the population proportions.

2. The standard deviation of p, — p, is SE = \/ Ptk | Polly
nl r]2

3. If the sample sizes are large, the sampling distribution
of p, — p, Isapproximately normal, and SE can be estimated

%SE:Jmm+pﬂ;
nl n2
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Confidence Bounds

‘ .

2m

* Confidence intervals are by their nature
two-sided since they produce upper and
lower bounds for the parameter.

® One-sided bounds can be constructed
simply by using a value of z that puts o
rather than o/2 in the tail of the z
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Parameter Point Estimator Margin of Error
o s
M X "_‘1.96(W)
p == +196, /24
p p= *1. .
2 2
- — 51 A )
[ ) X1 — X2 ety
P~ P2 By — po) = ( 1 X2 +1.96 P1q1 + P292

n




IV. Large-Sample Interval Estimators

To estimate one of four population parameters when the
sample sizes are large, use the following interval

estimators.
Parameter (1 — @)100% Confidence Interval
X+ z S
M — Za2 \/’;
p P E Zan M
n
2 2
_ 0y 0y
L1 — Mo (X1 — X2) = Zap N
ny np
. 0141 |, P29
P1~ P2 01— P2) £ Zan2 \/plql + 2242
np np
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of the Sample Mean

* When we take a sample from a normal population,
the sample mean as a normaljghstrl ution for any
sample size n, and

X — i
s/A/n
® has a standard normal distribution.
e But if ¢ is unknown, and we must use s to estimate it,

the resulting statistic is not normal.

is not normal!







: ’ e
/ Erl’glggtgt, tqﬁlts s[’c)al’c§s¥1rcl olejs gvre‘ a

sampling distribution that is well known to
statisticians, called the Student’s t
distribution, with n-1 degrees of freedom.

X_
t= 2

s/+/n

\\e can use this distribution to create
estimation testing procedures for the population
mean L.




/’
mf Student’st

Mound-shaped
and symmetric
about O.

More variable than
Z, with “heavier

tails”
Shape depends on the sample size n or

the degrees of freedom, n-1.

As n increases the shapes of the t and z
distributions become almost identical.




Sm = .
for a Population Mean L

* The basic procedures are the same as
those used for large samples. For a test of
hypothesis:

Test H, : i =, versus H, :one or two tailed

using the test statistic

X —
t_

_ Hg

s//n
using p - valuesor a rejection region based on
a t - distribution with df =n-1.




for a Population Mean

e Forai1o00(1—a)% confidence interval for the
population mean p:

where t_,, IS the value of t that cuts off area o/2
In the tail of a t - distribution with df =n-1.




Approxi =
~ p-value

* You can only approximate the p-value for the est
using Table 4.

df t_\“ toso
1 3.078 6.314
2 1.886 2.920
/\ 3 1.638 2.353
4 2.132
5 2.015

'/ A

Since the observed value
of t =1.38 Is smaller
than t,, = 1.476,

1.38 1.476 t

p-value > .10.




The exact p-value

* You can get the exact p-value
using some calculators or a computer.

p-value =.113 which
IS greater than .10 as

we approximated
using Table 4.

One-Sample T: Times
Test of mu = 15 vs > 15

95% \\
Lower

Variable N Mean StDev SE Mean Bound T P
Times 6 19.1667 7.3869 3.0157 13.0899} 1.38 [0.113




between Two Means

As in Chapter 9, independent random samplesof size n1 and n2 are drawn

frompopulations1and 2 with means M and “ and variances o—lzand 05'

Since the samplesizesare small, the two populations must be normal.

sl
‘H,: p—p, =D, versus H,: one of three

where D, Is some hypothesized difference,
usually O.



Testl e Di
between Two Means

*The test statistic used in Chapter 9

does not have either a z or a t distribution, and
cannot be used for small-sample inference.

*\\e need to make one more assumption, that
the population variances, although
unknown, are equal.



between Two Means

|nstead of estimating each population variance
separately, we estimate the common variance
with

*And the resulting
test statistic,

. (n,~D)s?+(n, DS

S

has a t distribution
with n,+n,-2
degrees of freedom.




E g the
between Two Means

Y

*You can also create a 100(1-o)% confidence
Interval for p,-p..

2. Samples random and

3. Equal population

Remember the three
assumptions:

1. Original populations
normal

independent

variances.




between Two Means

*How can you tell if the equal variance
assumption is reasonable?
Rule of Thumb :

larger s°
argers” _

smallers®
the equal variance assumption Is reasonable.

If the ratio,

larger s°
smaller s*
use an alternative test statistic.

If the ratio, > 3,




between Two Means

*|f the population variances cannot be assumed
equal, the test statistic
2
S LS
nl n2

NGNS
n -1 n,—-1

*has an approximate t distribution with degrees
of freedom given above. This Is most easily
done by computer.



The Paired-

- Tes

TotestH,: g, —u, =0wetestH,:u, =0
using the test statistic

~d-0

B Sy //n

t

where n = number of pairs, d and s, are the
mean and standard deviation of the differences, d..

Use the p - value or a rejection region based on
a t-distribution with df =n-1.




a Population Variance

*Sometimes the primary parameter of interest
IS not the population mean p but rather the
population variance . We choose a random
sample of size n from a normal distribution.

«The sample variance s2 can be used in its
standardized form:

» which has a Chi-Square distribution with n - 1
degrees of freedom.
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a Population Variance

Totest H,:o° = o versusH, :one or two tailed

we use the test statistic ‘

, (n—-1)s°
- 2

¥ with a rejection region based on

Oy

a chi - square distribution with df =n-1.

Confidence interval :

(n—1)s? e o (n—1)s?
Zozg/z Z(Zl_a/Z)

O
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Two Population Variances

*\\e can make inferences about the ratio of two
population variances in the form a ratio. We
choose two independent random samples of
size n, and n, from normal distributions.

*|f the two population variances are equal, the
statistic

*has an F distribution with df, =n, - 1 and df, =
n, - 1 degrees of freedom.



Two Population Variances

*Table 6 gives only upper critical values of the
F statistic for a given pair of df; and df.,.

3 For example, the value

of F that cuts off .05 In

;m/uupeﬂﬁll/o(%‘the
—rdistribution with df, =5
/ and df, = 8 is F =3.69.

1 (=]
3.69 F

dii

"
h

df2
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Two Population Variances

Totest H, : 6/ = o> versus H_ :one or two tailed

we use the test statistic
2

S : .
F == where s’ is the larger of the two sample variances.
S2
with a rejection region based on an F distribution with
df, =n,—land df, =n, -1.

Confidence interval :

s: 1 ol §
2 £ S—2<7 Fdfz,dfl
S; Farar, O2 57




Parameter Test Statistic Degrees of Freedom
X~ po
n = —— n—1
sf\/r_t
(1 — Mo (equal variances) e X)) — (t — po) n+n, —2
\/ 2 — +- —
M1 — Mo (unequal variances) = = X2) = (W = M) Satterthwaite’s approximation
5% .5'2
—_— + —_—
n n»>
M — Mo (paired samples) t= u n—1
sdNV'n
o? Xz — (n— 1)s? =1
o
oilos F = sils3 —landn, — 1




