AEROSPACE STRUCTURES

Course Code	Category	Hours / Week			Credits	M	aximum	Marks	
	C C	L	Т	Р	С	CIA	SEE	Total	
AAEB07	Core	3	1	-	4	30	70	100	
Contact Classes: 45	Tutorial Classes: 15 Pra			ctical Classes: 45			Total Classes: 60		
I. Understand the structural and	IVES: he aircraft structural compo- ledge in plate buckling and alysis. hin walled section and struc carried. esses and deflection in aircra	nents a structu tural ic aft strue	nd its b ral insta lealizati ctures li	ehavion ability of on of p ke fuse	under diffe of stiffened anels and d lage, wing	erent loa panels fo ifferentia and land	ding con or airfrar ate from ing gear	ditions ne the	
 CO 1. Describe a monocoqu CO 2. Describe a phenomer CO 3. Understar shear flow CO 4. Explore th sections. CO 5. Discuss the 	the concept of structural concept of structural concept of thin plates su the concept of thin plates su that of thin plates, local instab- ted the concept of symmetric distribution of thin walled the concept of Structural idea the concept of idealized thin	y methologic to bility and un section alizatio walled	ods and o differend instal n-symm ns and T n and st section	princip ent type bility o etric be Corsion cress dis s, fusel	olles, Work bles. es of loads a f stiffened p ending of be phenomeno stribution of age, Wing s	nd also boanels. banels. bams she bn. f idealize spar and	buckling ar stress ed thin w box bear	es and valled ms.	
 COURSE LEARNIN 1 Discuss the A loads acting of 2 Discuss differentiate maneuver loa 3 Differentiate shells. 4 Explain energy 5 Explain the T distributed tra 6 Describe Buc determination 7 Calculate the stiffened pane 8 Discuss critic 	NG OUTCOMES (CLOs): Aircraft Structural component on it. rent types of structural joint ds, gust loads on the joints. Monocoque and semi mono gy principles and its applica 'heory of thin plates and An unsverse load, combined ber ekling phenomena of thin plates of critical load for a flat plate local instability, instability els. cal buckling load for flat plates	nts, var as and t ocoque tion in halyze t nding a ates an ate. of stiff	ious fur he effec structur the ana hin rect nd in-pl d derive cened pa	nctions et of Ai res and lysis of angular lane loa e Elasti anels, fa	of the comp rcraft inertia analyze stro f structural of r plates subj ading. c, inelastic, ailure stress ng and end o	conents a a loads, s esses in t compone ject to be experim es in pla conditior	and airfr Symmetr thin and ents of A ending, t ental tes and ts	ame ric thick ircraft. wisting,	

- 11 Calculate the shear stresses and shear flow distribution of thin walled sections subjected to shear loads.
- 12 Explain Torsion phenomenon, Displacements and Warping associated with Bredt-Batho shear flow theory of beams.
- 13 Explain the theory of Structural idealization
- 14 Principal assumptions in the analysis of thin walled beams under bending, shear, torsion.
- 15 Solve for stress distribution of idealized thin walled sections subjected to bending.
- 16 Solve for stress distribution of idealized thin walled sections subjected to, shear and torsion.
- 17 Calculate and analysis of idealized thin walled sections subjected to bending
- 18 Calculate and analysis of idealized thin walled sections subjected to shear and torsion.
- 19 Analyze fuselage of variable stringer areas subjected to transverse and shear loads.
- 20 Analyze Wing spar and box beams of variable stringer areas subjected to transverse and shear loads.

MODULE -I INTRODUCTION TO AIRCRAFT STRUCTURAL COMPONENTS AND ENERGY METHODS Classes: 09

Aircraft Structural components and loads, functions of structural components, airframe loads; Types of structural joints, type of loads on structural joints; Aircraft inertia loads; Symmetric manoeuvre loads, gust loads. Monocoque and semi monocoque structures, stress in thin and thick shells; Introductions to energy principles, castiglianos theorems, max wells reciprocal theorem, unit load method, Rayleigh Ritz method, total potential energy method, flexibility method.

MODULE -II THIN PLATE THEORY, STRUCTURAL INSTABILITY

Classes: 09

Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading: Thin plates having small initial curvature, energy methods of analysis. Buckling of thin plates: Elastic, inelastic, experimental determination of critical load for a flat plate, local instability, instability of stiffened panels, failure stresses in plates and stiffened panels. Tension field beams- complete diagonal tension, incomplete diagonal tension, post buckling behavior.

MODULE -III	BENDING, BEAMS	SHEAR	AND	TORSION	OF	THIN	WALLED	Classes: 09

Unsymmetrical bending: Resolution of bending moments, direct stress distribution, position of neutral axis; Deflections due to bending: Approximations for thin walled sections, temperature effects;

Shear loaded thin walled beams: General stress, strain and displacement relationships, direct stress and shear flow system, shear centre, twist and warping.

Torsion of beams of closed section: Displacements associated with Bredt-Batho shear flow; Torsion of open section beams; Warping of cross section, conditions for zero warping; Bending, shear, torsion of combined open and closed section beams.

MODULE -IV STRUCTURAL IDEALIZATION

Classes: 09

Structural idealization: Principal assumptions, idealization of panel, effect on the analysis of thin walled beams under bending, shear, torsion loading- application to determining deflection of open and closed section beams. Fuselage frames - bending, shear and torsion.

MODULE -V ANALYSIS OF FUSELAGE, WING AND LANDING GEAR

Classes: 09

Wing spar and box beams, tapered wing spar, open and closed sections beams, beams having variable stringer areas; wings – three boom shell in bending, torsion and shear, tapered wings, deflections, cutouts in wings; Cutouts in fuselages; Fuselage frame and wing rib; principle of stiffener, web constructions. Landing gear and types; Analysis of landing gear.

- 1. T. H. G. Megson, "Aircraft Structures", Butterworth-Heinemann Ltd, 5th Edition, 2012.
- 2. E. H. Bruhn, "Analysis and Design of Flight vehicles Structures", Tri-state off set company, USA, 4th Edition, 1965.

Reference Books:

- 1. B. K. Donaldson, "Analysis of Aircraft Structures An Introduction", McGraw Hill, 3rd Edition, 1993.
- 2. S. Timoshenko, "Strength of Materials", Volumes I and II, Princeton D. Von Nostrand Co., Reprint, 1977.

Web References:

- 1. http://link.springer.com/book
- 2. http://www.sciencedirect.com/science
- 3. http://www.e-booksdirectory.com

E-Text Books:

- 1. https://soaneemrana.org/onewebmedia/AIRCRAFT%20STRUCTURES%20BY%20T.H.G.%20 MEGSON%20(4th%20%20Edition).pdf
- 2. https://www.academia.edu/34820677/AIRCRAFT_STRUCTURES_BY_T.H.G._MEGSON_4th_ Edition_.pdf
- 3. http://164.100.133.129:81/econtent/Uploads/ACD2501_Day%206_Aircraft_Structures.pdf