AERODYNAMICS

IV Semester: AE									
Course Code		Category	Hours / Week			Credits	Maximum Marks		
AAEB10		Core	L	Т	Р	С	CIA	SEE	Total
			3	1	-	4	30	70	100
Contact Classes: 45		Tutorial Classes: 15	Practical Classes: Nil			Total Classes: 60			
COURS	E OBJECTIVES	:							
Ι	The fundamental knowledge on basics of aerodynamics and aerodynamic characteristics of								
Π	wings, airfoils. The mathematical model for lift and drag coefficient of finite wing and wing of infinite aspect								
	ratio.								
III	The flow over non-lifting bodies from method of singularities and investigate the interference effect.								
IV	The effect of viscosity and boundary layer growth over various shaped geometry and its control.								
COURSE OUTCOMES:									
After successful completion of the course, students will be able to:									
01	Explain the velo	ocity potential, stream fui	nction ar	nd their	impor	tance for so	lving the	e flow ov	ver
CO 2	Develop the mathematical model using method of singularities for non-lifting, lifting flow								
CO 3	Illustrate variou	us types of airfoil, their no	omencla	ture an	d aeroc	lynamic cha	aracterist	tics for it	S
CO 4	Solve the lift cha	n. aracteristics of wing of in	finite as	pect ra	tio fror	n classical t	hin airfo	oil forrea	1
	world applicatio	ons							
CO 5	of finite aspect r	nathematical model using ratio.	the con	cept of	Prandt	l's lifting li	ne theor	y forwin	g
CO 6	Summarize the aerodynamic cha	effect of wing twist, win aracteristics of finite wing	g taper a g.	und win	ig swee	p for percei	iving the	;	
CO 7	Apply vortex pa	anel and vortex lattice me	- thods <mark>fo</mark>	rflow c	over no	n-lifting bo	dies		
CO 8	Demonstrate th	e effect of propeller slips	tream fl	ow on 1	the aero	odynamic cl	haracteri	stics of	
CO 9	Interpret the regimes and separation of boundary layer growth over external fluid flow systems for identifying its effect on boundary layer properties								

Module-I	INTRODUCTORY TOPICS FOR AERODYNAMICS				
Potential flow, velocity potential, stream function, Laplace equation, flow singularities-Uniform flow, source, sink, doublet, Vortex, Non lifting and lifting flow over a cylinder Kutta-Joukowski theorem.					
Module-II	II THIN AEROFOIL THEORY				
Aerofoil nome infinite aspect Kutta's trailin devices.	enclature, aerodynamic characteristics, centre of pressure and aerodynamic centre; Wing of ratio, $C_{L-\alpha-}$ diagram for a wing of infinite aspect ratio, generation of lift, starting Vortex, g edge condition; Thin aerofoil theory; Elements of panel method; High lift airfoils, High lift				
Module-III	FINITE WING THEORY				
Vortex motion Savart's law, a vortices; Induc	s, vortex line, vortex tube, vortex sheet; Circulation; Kelvin and Helmhotz theorem; Biot- applications, Rankine's vortex; Flow past finite wings, vortex model of the wing and bound ced drag; Prandtl's lifting line theory; Elliptic wing.				
Influence of secondary vor	taper and twist applied to wings, effect of sweep back wings; Delta wings, primary and tex; Elements of lifting surface theory. Source Panel Vortex panel and Vortex lattice methods.				
Module-IV	FLOW PAST NON-LIFTING BODIES AND INTERFERENCE EFFECTS				
Flow past non and bodies and	lifting bodies, method of singularities; Wing-body interference; Effect of propeller on wings l tail unit; Flow over airplane as a whole.				
Module-V	BOUNDARY LAYERTHEORY				
Introduction to displacement layer.	b boundary layer, laminar and turbulent boundary layer, transition, boundary layer on flat plate, thickness, momentum thickness, energy thickness, effect of curvature, temperature boundary				
Text Books:					
 E. L. Houghton and P. W. Carpenter, —Aerodynamics for Engineering Students^{II}, Edward Arnold Publishers Ltd., London, 5thEdition, 1982, J. D. Anderson, —Fundamentals of Aerodynamics , Mc Graw Hill Book Co., New York, 5thEdition, 1985. John J. Bertin and Russell M. Cummings, —Aerodynamics for Engineering Students^{II}, Pearson, 5thEdition, 2009. 					
Reference Bo	oks:				
 L. J. Clancy, —Aerodynamics, Pitman, 1stEdition, 1986. L. H. Milne, S. Thomson, —Theoretical Aerodynamics, Dover, 2ndEdition, 1985. K. Karamcheti, —Principles of Ideal-Fluid Aerodynamics, Krieger Pub Co; 2ndedition, 1980. 					
E-Text Books	:				
 https://bookboon.com/en/engineering-fluid-mechanics-ebook https://www.slideshare.net/asifzhcet/fluid-mechanics-and-hydraulic-machines-dr-r-k-bansal https://eprints.staffs.ac.uk/222/1/engineering-fluid-mechanics%5B1%5D.pdf https://www.engr.uky.edu/~acfd/me330-lctrs.pdf 					