AEROSPACE STRUCTURES

V-Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEEB07	Core	L	Т	Р	С	CIA	SEE	Total
		3			3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil To				Tota	al Classes: 45	

OBJECTIVES:

The students will try to learn:

- I. The application of mathematical principles on aircraft structural components and determination of deflections and stresses under various loading conditions.
- II. The concepts of thin plate theory, phenomena of thin plate structural instability, analysis of bending, shear and torsion of thin walled beams
- III. The concept of structural idealization and transformation of complex structures to simple structures.
- IV. The behavior of wing, fuselage and landing gears under various loading conditions.

COURSE OUTCOMES:

- **CO 1 Illustrate** the airplane structural components subjected to different loading conditions for determining its behaviour.
- **CO 2 Apply** energy principles to aircraft structural components with different boundary conditions and loads for predicting deflections.
- **CO 3** Explain the concept of thin rectangular plates subject to various boundary conditions for obtaining deflection curves.
- **CO 4 Analyze** various loads acting on thin plates with different boundary conditions for efficient design of monoques structures.
- **CO 5 Apply** beam bending concept on thin walled beam structures for predicting deflections and stresses in out of plane.
- **CO 6 Analyze** the deflection and twist produced in thin walled open and closed section beams under torsion loads for designing beams with minimum stresses.
- **CO 7 Apply** the concept of elementary bending theory for predicting warping and torsion of aircraft structural components.
- **CO 8** Explain the concepts in structural idealization for transforming complex structural geometries to simple structural geometries.
- **CO 9** Apply the concept of structural idealization for determining deflections in open and closed section beams
- **CO 10 Illustrate** the concept of beam bending to tapper wing, and cutout sections in wing and fuselage for predicting deflections and stresses.
- **CO11 Apply** the concept of maximum stress theories to aircraft structural components for determining failure loads.
- **CO12** Interpret the load interaction between various aircraft components, for determining maximum stress.

MODULE-I	INTRODUCTION TO AIRCRAFT STRUCTURAL COMPONENTS AND ENERGY METHODS			
structural joints, loads. Monocoq principles, castig	ral components and loads, functions of structural components, airframe loads; Types of type of loads on structural joints; Aircraft inertia loads; Symmetric manoeuvre loads, gust ue and semi monocoque structures, stress in thin and thick shells; Introductions to energy glianos theorems, max wells reciprocal theorem, unit load method, Rayleigh Ritz method, ergy method, flexibility method.			
MODULE-II	THIN PLATE THEORY, STRUCTURAL INSTABILITY			
Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading: Thin plates having small initial curvature, energy methods of analysis. Buckling of thin plates: Elastic, inelastic, experimental determination of critical load for a flat plate, local instability, instability of stiffened panels, failure stresses in plates and stiffened panels. Tension field beams- complete diagonal tension, incomplete diagonal tension, post buckling behavior.				
MODULE-III	BENDING, SHEAR AND TORSION OF THIN WALLED BEAMS			
axis; Deflections Shear loaded this shear flow system Torsion of beam open section beam	bending: Resolution of bending moments, direct stress distribution, position of neutral due to bending: Approximations for thin walled sections, temperature effects; in walled beams: General stress, strain and displacement relationships, direct stress and n, shear centre, twist and warping. as of closed section: Displacements associated with Bredt-Batho shear flow; Torsion of ams; Warping of cross section, conditions for zero warping; Bending, shear, torsion of and closed section beams.			
MODULE-IV	STRUCTURAL IDEALIZATION			
Structural idealization: Principal assumptions, idealization of panel, effect on the analysis of thin walled beams under bending, shear, torsion loading- application to determining deflection of open and closed section beams. Fuselage frames - bending, shear and torsion.				
MODULE-V	ANALYSIS OF FUSELAGE, WING AND LANDING GEAR			
stringer areas; w in wings; Cutout	ox beams, tapered wing spar, open and closed sections beams, beams having variable ings – three boom shell in bending, torsion and shear, tapered wings, deflections, cutouts s in fuselages; Fuselage frame and wing rib; principle of stiffener, web constructions. d types; Analysis of landing gear.			
TEXTBOOKS:				
	egson, "Aircraft Structures", Butterworth-Heinemann Ltd, 5 th Edition, 2012. h, "Analysis and Design of Flight vehicles Structures", Tri-state off set company, USA, 4 th 65.			
REFERENCE	BOOKS:			
	ldson, "Analysis of Aircraft Structures - An Introduction", McGraw Hill, 3 rd Edition, 1993. nko, "Strength of Materials", Volumes I and II, Princeton D. Von Nostrand Co., Reprint,			