DATA STRUCTURES

Course Code		Category	Hours / Week			Credits	Maximum Marks		
ACSB03 Contact Classes: 45		Core Tutorial Classes: Nil	L	Т	Р	C 3	CIA	SEE	Tota
			3	0	0		30	70	100
			Practical Classes: 1			es: Nil	Total Classes: 60		s: 60
	TIVES: dents will try	to learn:							
Ι	To provide students with skills needed to understand and analyze performance trade-offs of different algorithms / implementations and asymptotic analysis of their running time and								
II	memory usage. To provide knowledge of basic abstract data types (ADT) and associated algorithms: stacks, queues, lists, tree, graphs, hashing and sorting, selection and searching.								
III	The fundamentals of how to store, retrieve, and process data efficiently.								
IV	To provide practice by specifying and implementing these data structures and algorithms in Python.								
V	Understand essential for future programming and software engineering courses.								
CO 1 CO 2	Carryout the analysis of a range of algorithms in terms of algorithm analysis and express algorithm complexity using the O notation.Make use of recursive algorithm design technique in appropriate contexts.								
CO 3	Represent standard ADTs by means of appropriate data structures.								
CO 4	Select appropriate sorting technique for given problem.								
CO 5	Select appropriate searching technique for given problem.								
CO 6	Implement standard searching and sorting algorithms; including binary search; merge sort and quick sort; and analyze their time and space complexities.								
CO 7	Implement linked lists, stacks and queues in Python for problem solving.								
CO 8	Explain the use of basic data structures such as arrays, stacks, queues and linked lists in program design.								
CO 9									
CO 10	Design and implement tree structures ir		n real-time applications.						
CO 11	Compare and contrast the benefits of dynamic and static data structures implementations and choose appropriate data structure for specified problem domain.					8			
CO 12		and explain how efficient	-	-			11 he ant	alv	

	-
MODULE-I	INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING
structures; Algorith complexity and spa to Linear and Nor	troduction to data structures, classification of data structures, operations on data in Specification, Recursive algorithms, Data Abstraction, Performance analysis- time ice complexity, Asymptotic Notation-Big O, Omega, and Theta notations. Introduction in Linear data structures, Searching techniques: Linear and Binary search; Sorting Selection, Insertion, Quick and Heap Sort and comparison of sorting algorithms.
MODULE-II	LINEAR DATA STRUCTURES
stacks, Arithmeti	T, definition and operations, Implementations of stacks using array, applications of c expression conversion and evaluation; Queues: Primitive operations; queues using Arrays, applications of linear queue, circular queue and double ended
MODULE-III	LINKED LISTS
	luction, singly linked list, representation of a linked list in memory, operations on a pplications of linked lists: Polynomial representation and sparse matrix manipulation.
• •	s: Circular linked lists, doubly linked lists; Linked list representation and operations of presentation and operations of queue.
MODULE-IV	NON LINEAR DATA STRUCTURES
terminology, Graph	ee variants, threaded binary trees, application of trees, Graphs: Basic concept, graph n Representations - Adjacency matrix, Adjacency lists, graphimplementation, Graph FS, Application of graphs, Minimum spanning trees – Prims and Kruskal algorithms. BINARY TREES AND HASHING
Introduction to M-V	s: Binary search trees, properties and operations; Balanced search trees: AVL trees; Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash s, applications of hashing.
Text Books:	
	e, "Data Structures and Algorithms using Python", Wiley StudentEdition. David Julian, "Python Data Structures and Algorithms", Packt Publishers,2017.
Reference Books:	
· ·	ata Structures", Tata McGraw Hill Education, 1 st Edition,2008. assic Data Structures", PHI Learning, 2 nd Edition,2004.
Web References:	
	prialspoint.com/data_structures_algorithms/algorithms_basics.htm
•	lechef.com/certification/data-structures-and-algorithms/prepare
•	auckland.ac.nz/software/AlgAnim/dsToC.html
4. https://online-lea	arning.harvard.edu/course/data-structures-and-algorithms
2 P a g e	
-	