FLUID DYNAMICS

III Semester: AE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AAEB03	Foundation	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 33	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 48		

OBJECTIVES:

The course should enable the students to:

- I. Illustrate about the basic properties of a fluid, hydrostatic forces on submerged bodies and different manometers.
- II. Derive the basic principles of a fluid-continuity, momentum, Euler and Bernoulli's equations.
- III. Explain the concept of boundary layer theory and importance of Prandtl's boundary layer theory.
- IV. Understand the flow behavior through different fluid pump systems.

COURSE OUTCOMES(COs):

- CO 1 Understand the basic fluid properties and fluid dynamic concepts with its applications of fluid statics to determine forces of buoyancy and stability; and to fluids in rigid-body motion.
- CO 2 Use of conservation laws in differential forms and Understand the dimensional methods and kinematics of fluid particles.
- CO 3 Use Euler's and Bernoulli's equations and the conservation of mass to determine velocities, pressures, and accelerations for incompressible and inviscid fluids.
- CO 4 Understand the concepts of viscous boundary layers, mechanics of viscous flow effects on immersed bodies and its forces.
- CO 5 Apply principles of fluid mechanics to the operation, design, and selection of fluid machinery and to understand the ethical issues associated with decision making.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Define the properties of fluids and its characteristics, which will be used in aerodynamics, gas dynamics, marine engineering etc.
- 2. Explain the hydrostatic forces on submerged bodies, variation with temperature and height with respect to different types of surfaces.
- 3. Define different types of manometers and explain buoyancy force, stability of floating bodies by determining its metacenter height.
- 4. Dimensional similarity and prediction of flow behavior using dimensionless numbers.
- 5. Classification of fluid flows and governing equations of inviscid fluid flows.
- 6. Conceptual analysis of fluid flow and exact solutions of navier stokes equations for coquette flow and poiseuille flow.
- 7. Define Fluid forces and describe the motion of a fluid particle with fluid deformation;
- 8. Determine the Euler's and Bernoulli's equation and obtain its phenomenological basis of Naviers-stokes equation.
- 9. Describe about the flow measurements using different equipments of fluid flows.
- 10. Understand the Concept of boundary layer flows and control of flow separation.
- 11. Determine the flows over streamlined and bluff bodies to predict the drag and lift forces.
- 12. Understand the thickness factor with respect to Displacement, momentum and energy thickness.
- 13. Explain about the turbo machinery systems and working.
- 14. Describe the concepts of turbo machinery in the field of aerospace engineering and concepts of internal flows through engines.
- 15. Demonstrate the knowledge gained from the working of compressors, fans and pumps

MODULE-I	FLUID PROPERTIES AND FLUID STATICS	Classes: 10					
Density, specific weight, specific gravity, surface tension and capillarity, Newton's law of viscosity, incompressible and compressible fluid, numerical problems; Hydrostatic forces on submerged bodies - Pressure at a point, Pascal's law, pressure variation with temperature and height, center of pressure plane, vertical and inclined surfaces; Manometers - simple and differential Manometers, inverted manometers, micro manometers, pressure gauges and numerical problems. Buoyancy - Archimedes principle, metacenter, Meta centric height calculations; Stability.							
MODULE-II	FLUID KINEMATICS AND BASIC EQUATIONS OF FLUID FLOW ANALYSIS	Classes: 09					
Statement of Buckingham's π - theorem, similarity parameters - Reynolds number, Froude number, concepts of geometric, kinematic and dynamic similarity, Reynolds number as a very approximate measure of ratio of inertia force and viscous force. Types of fluid flows, differential equations of mass and momentum for incompressible flows, inviscid eulers equation and viscous flows- navier stokes equations, concept of fluid rotation, vorticity and stream function, exact solutions of navier stokes equations for coquette flow and poiseuille flow, numericals.							
MODULE-III	FLUID DYNAMICS	Classes: 10					
Fluid forces and Motion of a fluid particle; Fluid deformation; Euler's and Bernoulli's equation, phenomenological basis of Naviers- stokes equation, flow measurements : pressure, velocity and mass flow rate, viscosity, pitot-static tube, venturi meter, orifice meter and V-Notch, numericals.							
MODULE-IV	BOUNDARY LAYER THEORY	Classes: 08					
Concept and assumptions, qualitative idea of boundary layer and separation, streamlined and bluff bodies, drag and lift forces. Displacement, momentum and energy thickness, numericals.							
MODULE-V	TURBO MACHINERY	Classes: 08					
Introduction and classification of fluid machines: Turbo machinery analysis; The angular momentum principle; Euler turbo machine equation; Application to fluid systems, working principle overview of turbines, fans, pumps and compressors.							
Text Books:							
 D.J Tritton, "Physical Fluid Dynamics", Oxford university press, 2nd edition 2016. R. K Bansal, "Fluid mechanics and hydraulic machines", Laxmi publications ltd, 9th Edition, 2011. Robert W Fox, Alan T McDonald, "Introduction to fluid Mechanics", John Wiley and Sons, 6th Edition, 1995. Streeter V. L, Wylie, E.B., "Fluid Mechanics", McGraw-Hill, 9th Edition, 1983. 							
Reference Books:							
 Yuan S W, "Foundations of fluid Mechanics", Prentice-Hall, 2nd Edition, 1987. Milne Thompson L M, "Theoretical Hydrodynamics", MacMillan, 5th Edition, 1968. Rathakrishnan. E, "Fundamentals of Fluid Mechanics", Prentice-Hall, 5th Edition, 2007. Som S. K, Biswas. G, "Introduction to fluid mechanics and fluid machines", Tata McGraw-Hill, 2nd Edition, 2004. 							
Web References:							
 https://nptel.ac.in/courses/112105171/1 https://textofvideo.nptel.iitm.ac.in/112105171/lec1.pdf https://www.fkm.utm.my/~syahruls/3-teaching/2-fluid-II/fluid-II-enote/32-pump-2.pdf https://www.scribd.com/doc/16605891/Fluid-Mechanics 							

E-Text Books:

- 1. https://bookboon.com/en/engineering-fluid-mechanics-ebook
- 2. https://www.slideshare.net/asifzhcet/fluid-mechanics-and-hydraulic-machines-dr-r-k-bansal
- 3. https://eprints.staffs.ac.uk/222/1/engineering-fluid-mechanics%5B1%5D.pdf
- 4. https://www.engr.uky.edu/~acfd/me330-lctrs.pdf