HIGH SPEED AERODYNAMICS

V Semester: AE									
Course Code		Category	Hours / Week		Credits	Maximum Marks			
AAEB15		Core	L	Т	Р	С	CIA	SEE	Total
			3	1	-	4	30	70	100
Contact Classes: 33		Tutorial Classes: 15	Practical Classes:			es: Nil	Total Classes: 48		
OBJECTIVES:									
1	compressibility effect at high speeds and their importance on the design of high-speed vehicles								
II	The wave formations, propagation in supersonic flow field and their resultant effect on flow								
III	III The Method of characteristics, compatibility equations and method of solutions for isentropic								
	and non-isentropic flows							1	
IV	The various ex	xperimental methods and	measur	ement t	echniq	ues utilized	in comp	oressible	flow
	regimes								
COURSE OUTCOMES: After successful completion of the course, students will be able to:									
CO 1 Recall the basic concepts in aero-thermodynamic and fluid mechanicsfor describing various									
001	flow phenomenon								
CO 2	Explain the basic concepts of gas dynamics for determining how compressibility affects								
CO 3	the global and local nature of flow Demonstrate the wave formation in the supersonic flow field for determining the nature of								
005	shock and expansion wave								
CO 4	Construct the equations of change in pressure, density and temperature for								
CO 5	determining t	he nature of compression	and exp	pansion	waves	cornersfor	colving	complex	
005	problems in s	upersonic vehicles.	c snaped		Jicave	contension	sorving	complex	
CO 6	Developthe f	undamental equation for o	one-dim	ensiona	al and o	quasi one-di	imensior	nal flow <mark>c</mark>	of
CO 7	compressible	ideal gas.	w with	friction	and fl	ow with ha	ot transf	rfor	
07	solving proble	ems in flow through one-	dimensi	onal pa	ssage.	ow with hea	at transit		
CO 8	Build the small perturbation equations for subsonic, transonic, supersonic and hypersonic flow								
CO 9	Apply the concept of method of characteristics for the design of supersonic nozzle.								
CO 10	Illustrate the	e different wind tunnel of	configu	rations	utilize	dfor subsor	nic and	supersor	nic
CO11	Demonstrate compressible	the various optical fl flow fields.	ow vis	sualizat	ion te	echniques	usedfor	capturi	ng
CO 12	Analyzea supersonic intake for real world application for determining their performance characteristics.								

Module-I	INTRODUCTION TO COMPRESSIBLE FLOWS				
Basic concepts: Introduction to compressible flow, brief review of thermodynamics and fluid mechanics, integral forms of conservation equations, differential conservation equations, continuum postulates, acoustic speed and Mach number, governing equations for compressible flows.					
Module-II	OCK AND EXPANSION WAVES				
Shocks and expansion waves: Development of governing equations for normal shock, stationery and moving normal shock waves, applications to aircrafts, supersonic wind tunnel, shock tubes, shock polars, supersonic pitot probes; oblique shocks, governing equations, reflection of shock, Prandtl-Meyer expansion flow, shock expansion method for flow over airfoil, introduction to shock wave boundary layer interaction.					
Module-III	DIMENSIONAL AND QUASI ONE DIMENSINAL FLOW				
Quasi one-dimensional flow: Isentropic flow in nozzles, area Mach relations, choked flow, under and over expanded nozzles, slip streamline. One dimensional flow: Flow in constant area duct with friction and heat transfer, Fanno flow and Rayleigh flow, flow tables and charts for Fanno flow and Rayleigh flow.					
Module-IV	APPLICATIONS OF COMPRESSIBLE FLOWS AND NUMERICAL TECHNIQUES				
Small perturbation equations for subsonic, transonic, supersonic and hypersonic flow; Experimental characteristics of airfoils in compressible flow, supercritical airfoils, area rule; Theory of characteristics, determination of the characteristic lines and compatibility equations, supersonic nozzle design using method of characteristics.					
Module-V	EXPERIMENTAL METHODS IN COMPRESSIBLE FLOWS				
Experimental methods: Subsonic wind tunnels, supersonic wind tunnels, shock tunnels, free- piston shock tunnel, detonation-driven shock tunnels, and expansion tubes and characteristic features, their operation and performance, flow visualization techniques for compressible flows					
Textbooks:					
 John D. Anderson, —Modern Compressible flow with historical perspectivel, McGraw-Hill Education, 3rd Edition, 2002. John D. Anderson, —Fundamentals of Aerodynamicsl, McGraw-Hill Education, 6th Edition, 2016. 					
Reference Books:					
 Ascher H. Shapiro, —The Dynamics and Thermodynamics of Compressible Fluid Flow John Wiley & Sons; Volume 1 ed. Edition, 1977. RadhakrishnanEthirajan, —Gas Dynamics, John Wiley & Sons, 2nd edition 2010. 					
E-Text Books:					
 https://bookboon.com/en/engineering-fluid-mechanics-ebook https://www.slideshare.net/asifzhcet/fluid-mechanics-and-hydraulic-machines-dr-r-k-bansal https://eprints.staffs.ac.uk/222/1/engineering-fluid-mechanics%5B1%5D.pdf https://www.engr.uky.edu/~acfd/me330-lctrs.pdf 					