

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	PROBABILITY AND STATISTICS					
Course Code	AHSB12	AHSB12				
Program	B. Tech	B. Tech				
Semester, Branch	THREE					
Course Type	Foundation					
Regulation	IARE – R20					
	Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Course Coordinator	Mr. Ch Chaitanya, Assistant Professor					
Course Faculty	Dr. P Srilatha, Ms. B Praveena					

I. COURSE OVERVIEW:

Probability theory is the branch of mathematics that deals with modelling uncertainty. Inferential Statistics and regression analysis together with random variate distributions are playing an exceptional role in designing data driven technology which is familiarly known as data centric engineering. They also have wide variety applications in telecommunications and other engineering disciplines. The course covers advanced topics of probability and statistics with applications. The course includes: random variables, probability distributions, hypothesis testing, confidence intervals, and linear regression. There is an emphasis placed on real-world applications to engineering problems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
10+2	AHSB12	III	Fundamentals of Statistics

II. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Aircraft Stability and Control	70 Marks	30 Marks	100

~	Chalk & Talk	~	Quiz	~	Assignments	X	MOOCs
~	LCD / PPT	~	Seminars	X	Mini Project	>	Videos
X	Open Ended Experi	iments					

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. **There could be a maximum of two sub divisions in a question.**

The expected percentage of cognitive level of the questions is broadly based on the criteria given in Table: 1.

Percentage of Cognitive Level	Blooms Taxonomy Level
10 %	Remember
50 %	Understand
25 %	Apply
15 %	Analyze
0 %	Evaluate
0 %	Create

Table 1: The expected percentage of cognitive level of questions in SEE.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 2), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (Table 3).

Component	Theory			Total Manka	
Type of Assessment	CIE Exam	Quiz	AAT	TOLAI IVIAEKS	
CIA Marks	20	05	05	30	

Table 2: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT):

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours / classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc. The AAT chosen for this course is given in table 3.

5 Minutes Video	Assignment	Tech-talk	Seminar	Open Ended Experiment
20%	30%	30%	10%	10%

Table 3: A	Assessment	pattern	for	AAT
------------	------------	---------	-----	-----

VI. COURSE OBJECTIVES:

The st	tudents will try to learn:
Ι	The Principles of probability, the theory of random variables, basic random variate
	distributions and their applications.
II	The Methods and techniques for quantifying the degree of closeness among two or more
	variables and linear regression analysis.
III	The Estimation statistics and Hypothesis testing which play a vital role in the assessment of
	the quality of the materials, products and ensuring the standards of the engineering process.
IV	The statistical tools which are essential for translating an engineering problem into
	probability model.

VII. COURSE OUTCOMES:

After successful completion of the course, students will be able to:					
	Course Outcomes	Knowledge Level (Bloom's Taxonomy)			
CO 1	Determine the conditional probability of interdependent events by	Apply			
	using Bayes theorem.				
CO 2	Explain simulation of random events by using the concept of random	Understand			
	variables				
CO 3	Calculate the expected values, variances of the discrete and continuous	Apply			
	random variables for making decisions under randomized probabilistic	~ ~ ~			
	conditions.				

CO 4	Interpret the Probability distributions such as Binomial, Poisson and Normal distribution by using their probability functions and parameters.	Understand
CO 5	Apply the concepts of discrete and continuous probability distribution and CLT for solving real time problems under probabilistic conditions.	Apply
CO 6	Interpret the results of Bivariate and Multivariate Regression as well as Correlation Analysis for statistical forecasting.	Understand
CO 7	Identify the role of types of statistical hypotheses, types of errors, sampling distributions of means and confidence intervals in hypothesis testing	Apply
CO 8	Apply tests of hypotheses for both large and small samples in making decisions over statistical claims.	Apply
CO 9	Test for the assessment of goodness of fit of the given probability distribution model by using Chi-square distribution.	Analyze
CO 10	Make Use of R software package in computing confidence intervals, Regression analysis and hypothesis testing.	Apply
CO 11	Select appropriate statistical methods for solving real-time engineering problems governed by laws of probability.	Apply

KNOWLEDGE COMPETENCY LEVELS:

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes		Proficiency Assessed by
PO 1	Engineering knowledge:	3	CIE/Quiz/AAT
	Apply the knowledge of mathematics, science, engineering		
	fundamentals and an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	CIE/Quiz/AAT
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 4	Conduct Investigations of Complex Problems:	1	Seminar/
	Use research-based knowledge and research methods including		Conferences/
	design of experiments, analysis and interpretation of data, and		Research Papers
	synthesis of the information to provide valid conclusions.		

	Program Outcomes	Strength	Proficiency Assessed by
PO 5	Modern Tool Usage: Create, select, and apply appropriate	3	Assignments/
	techniques, resources, and modern Engineering and IT tools		Discussion
	including prediction and modelling to complex Engineering		
	activities with an understanding of the limitations.		

3 = High; **2** = Medium; **1** = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO 1	Synthesize and analyze aircraft structures, propulsion,	-	-
	production technologies and computer aided engineering in		
	aeronautical systems including air traffic controls standards.		
PSO 2	Focus on broad knowledge of aeronautical engineering in	-	-
	innovative, dynamic and challenging environment for design		
	and development of new products.		
PSO 3	Make use of design, computational and experimental tools for	-	-
	research and innovation in aerospace technologies and allied		
	streams, to become successful professional, entrepreneurs and		
	desire higher studies.		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course		Program Outcomes													Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-		
CO 2	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-		
CO 4	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 5	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 6	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-		
CO 7	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 8	\checkmark	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 9	\checkmark	-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-		
CO 10	\checkmark	-	-		\checkmark	-	-	-	-	-	-	-	-	-	-		
CO 11	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-		

XI. JUSTIFICATIONS FOR CO – PO MAPPING:

Course	POs /	Justification for mapping (Students will be able to)	No. of key
Outcomes	PSOs 1		competencies
COI	POI	Determine the conditional probability of interdependent events	2
		(knowledge, understanding and application) which occur in the	
		complex engineering problems involving uncertainty by using	
	DO 4	ratios, set theory (principles of mathematics).	1
	PO4	The conditional probabilities of interdependent events will be	1
COO	DO 1	quantitatively measured by using Bayes law.	-
CO2	POI	Explain (understanding) the role of random variables and	2
		simulation of random events (Apply) in solving complex	
		engineering problems involving random events and	
		uncertainty by using Mathematical functions (principles of	
~~~	<b>D</b> O 4	mathematics).	
CO3	<b>PO</b> 1	Calculate the expected values, variances (Application) of the	2
		discrete and continuous random variables (knowledge) for	
		making decisions in complex engineering problems under	
		randomized probabilistic conditions by using principles of	
		mathematics.	
	PO 4	The expected values, variances for the given discrete random	1
		variables will be quantitatively measured by using statistical	
		computer software (R-software, SPSS-software).	
CO4	<b>PO 1</b>	<b>Interpret</b> the Probability distributions such as Binomial, Poisson	2
		and Normal distribution (Understanding) with the support of	
		evaluation of integrals ( <b>principles of mathematics</b> ) and	
		appreciate their importance and applicability (Apply) in solving	
		complex engineering problems involving uncertainty.	
CO5	<b>PO 1</b>	<b>Apply</b> the concepts of discrete and continuous probability	2
		distributions which involves the role of Arithmetic mean,	
		median, mode and variance, mathematical functions ( <b>principles</b>	
		of mathematics) for solving complex engineering problems	
		under probabilistic conditions	
	<b>PO 2</b>	Understand the <b>statement and formulation</b> of a complex	5
		engineering problem which involves the events of uncertainty,	
		Model it with suitable probability distribution and Apply the	
		concepts of discrete or continuous distributions along with basic	
		principles of mathematics to <b>develop the solution</b> and reaching	
		substantiated conclusions by the interpretation of results	
CO6	<b>PO 1</b>	Interpret (Understand) the results of Bivariate and Multivariate	2
		Regression and Correlation Analysis by using ratios, square	
		roots, straight lines and planes (principles of mathematics) for	
		statistical forecasting (Apply) in complex engineering	
		problems involving bivariate or multivariate data.	
	<b>PO 4</b>	Interpret the results of Bivariate and Multivariate Regression	1
		and <b>quantifying</b> the degree of closeness between two or more	
		variables by using <b>statistical computer software</b> (R-software,	
		SPSS-software).	
<b>CO7</b>	<b>PO 1</b>	<b>Identify</b> the role of types of statistical hypotheses, types of	2
		errors, sampling distributions of means and confidence intervals	
		with the aid of statements and sets, percentages (principles of	
		mathematics) in hypothesis testing of complex engineering	
		problems which requires sampling inspections.	
<b>CO8</b>	<b>PO 1</b>	Apply tests of hypotheses which involves the role of	2
		mathematical tools like statements, sets, ratios and percentages	

		( <b>principles of mathematics</b> ) for both large samples and small	
		samples (knowledge) in making decisions over statistical claims	
		that arise in complex engineering problems which requires	
		sampling inspections	
	<b>DO 2</b>	Understand the statement and formulation of a complex	5
	r0 2	anging archien which needs varification of truth values of	5
		engineering problem which needs verification of truth values of	
		numerical of statistical hypothesis, collect the necessary	
		finormation and data through sampling techniques, apply tests	
		of hypotheses (both large and small samples) along with basic	
		principles of mathematics to develop the solution and reaching	
	<b>D</b> O 1	substantiated conclusions by the interpretation of results	
CO9	PO I	Test for the assessment of goodness of fit of the given	2
		probability distribution model (knowledge) which is fit to	
		analyze the complex engineering problem governed by laws	
		of probability with the support of principles of mathematics	
		and Chi-square distribution	
	<b>PO 4</b>	<b>Test for</b> the assessment of goodness of fit of the given	
		probability distribution model by using statistical quantitative	1
		methods and statistical computer software (R-software, SPSS-	
		software).	
<b>CO10</b>	<b>PO 1</b>	Make Use of R software package (Apply) in computing	2
		confidence intervals, statistical averages and hypothesis	
		testing(understand) while handling complex engineering	
		problems which requires sampling inspections with the	
		knowledge of statements and sets, percentages and intervals	
		(principles of mathematics).	
	<b>PO 5</b>	Make Use of R software package a in modelling complex	1
		Engineering activities which involves computation of confidence	
		intervals, statistical averages and regression analysis, hypothesis	
		testing.	
	<b>PO 4</b>	Make Use of R software package in computing confidence	1
		intervals, statistical averages and hypothesis testing.	
		(Computer software relevance)	
CO11	<b>PO 1</b>	Select appropriate statistical methods(understand) for solving	2
		some real-time complex engineering problems governed by	
		laws of probability with the knowledge of fundamental	
		principles of mathematics.	

## XII. NUMBER OF KEY COMPETENCIES FOR CO – PO MAPPING:

Course Outcomes		Program Outcomes / No. of key competencies													Program Specific Outcomes / No. of key competencies		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	12	1	2	2		
CO 1	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-		
CO 2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO 3	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-		

<b>CO 4</b>	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-
<b>CO 7</b>	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 10	2	-	-	1	1	-	-	-	-	-	-	-	-	-	-
CO 11	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-

## XIII. PERCENTAGE OF KEY COMPETENCIES FOR CO – PO MAPPING:

Course Outcomes		Program Outcomes / No. of key competencies													Program Specific Outcomes / No. of key competencies		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
	3	10	10	11	1	5	3	3	12	5	12	12	1	3	2		
CO 1	66.7	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 2	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 3	66.7	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 4	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 5	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 6	66.7	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 7	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 8	66.7	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 9	66.7	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 10	66.7	0.0	0.0	9.0	100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
CO 11	66.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

## XIV. COURSE ARTICULATION MATRIX (PO – PSO MAPPING)

COs and POs and COs and PSOs on the scale of 0 to 3, 0 being **no correlation**, 1 being the **low correlation**, 2 being **medium correlation** and 3 being **high correlation**.

## $\mathbf{0} - \mathbf{0} \le \mathbf{C} \le 5\%$ – No correlation $\mathbf{1} - 5 < \mathbf{C} \le 40\%$ – Low/ Slight

 $\mathbf{2} - 40 \ \% < \mathbf{C} < 60 \%$  –Moderate  $\mathbf{3} - 60 \% \le \mathbf{C} < 100 \%$  – Substantial /High

Course					Prog	gram	Outco	omes					Program Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
<b>CO 4</b>	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 7	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 10	3	-	-	1	3	-	-	-	-	-	-	-	-	-	-
CO 11	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 12	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
TOTAL	33	4		5	3										
AVERAGE	3	2		1	3										

## XV. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2, PO 4,PO 5	SEE Exams	PO 1,PO 2, PO 4,PO 5	Assignments	-	Seminars	PO 1, PO 2, PO 4, PO 5
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4, PO5						

## XVI. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts	5	

## XVII. SYLLABUS

Module-I PROBABILITY AND RANDOM VARIABLES

Probability, Conditional Probability, Baye's Theorem; Random variables: Basic definitions, discrete and continuous random variables; Probability distribution: Probability mass function and probability density functions; Mathematical expectation.

Module-II PROBABILITY DISTRIBUTION

Binomial distribution; Mean and variances of Binomial distribution, Recurrence formula for the Binomial distribution; Poisson distribution: Poisson distribution as a limiting case of Binomial distribution, mean and variance of Poisson distribution, Recurrence formula for the Poisson distribution; Normal distribution; Mean, Variance, Mode, Median, Characteristics of normal distribution.

Module-III CORRELATION AND REGRESSION

Correlation: Karl Pearson's Coefficient of correlation, Computation of correlation coefficient, Rank correlation, Repeated Ranks; Properties of correlation.

Regression: Lines of regression, Regression coefficient, Properties of Regression coefficient, Angle between two lines of regression; Multiple correlation and Regression.

Module-IV TEST OF HYPOTHESIS - I

Sampling: Definitions of population, Sampling, Parameter of statistics, standard error; Test of significance: Null hypothesis, alternate hypothesis, type I and type II errors, critical region, confidence interval, level of significance. One sided test, two-sided test.

Large sample test: Test of significance for single mean, Test of significance for difference between two sample means, Tests of significance single proportion and Test of difference between proportions.

Module-V TEST OF HYPOTHESIS - II

Small sample tests: Student t-distribution, its properties: Test of significance difference between sample mean and population mean; difference between means of two small samples. Snedecor's F-distribution and its properties; Test of equality of two population variances Chi-square distribution and it's properties; Chi-square test of goodness of fit.

**Text Books:** 

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons Publishers, 9th Edition, 2014.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2012.

#### **Reference Books:**

- 1. N. P. Bali, "Engineering Mathematics", Laxmi Publications, 9th Edition, 2016.
- 2. S. C. Gupta, V. K. Kapoor, "Fundamentals of Mathematical Statistics", S. Chand & Co., 10th Edition, 2000.
- 3. Richard Arnold Johnson, Irwin Miller and John E. Freund, "Probability and Statistics for Engineers", Prentice Hall, 8th Edition, 2013.

Lecture	Topics to be covered	Course	Reference
No		Outcomes	
1	Define the concept of probability and its applications	CO 1,CO 11	T2:26.3
2-3	Describe the concept of conditional probability	CO 1,CO 11	R2:21.48
4-5	Describe the Concept of Baye's Theorem	CO 1,CO 11	T2:26.6 R2:21.50
6-7	Describe the concept of Random variables, contrast discrete Random variables and also calculate the mean and variance of discrete Random variables, probability distribution	CO 2,CO 11	T2:26.7 R2:21.51
8-9	Recall the continuous probability function	CO 2,CO 11	T2:26.8
10-11	Identify mathematical expectation	CO 3,CO 11	T2:26.10
12-13	Recall characteristics of the Binomial Distribution and find mean, variance	CO 4,CO 5, CO 11	T2:26.14 R2:21.55
14-15	Recognize cases where Poisson Distribution could be appropriate model to find mean and variance	CO 4,CO 5, CO 11	T2:26.15 R2:21.58
16-18	Apply Normal Distributions find the probability over a set of values, mean and variance	CO 4,CO 5, CO 11	T2:26.16 R2:21.61
19-20	Recognize the limitation of correlation as a summary of bivariate data.	CO 6, CO 10, CO 11	T2:25.12 R2:21.24
21-22	Interpret the correlation between the bivariate data by allotting ranks.	CO 6, CO 10, CO 11	T2:25.16 R2:21.29
23	Correlation properties	CO 6, CO 10, CO 11	T2:25.14 R2:21.31
24-25	Recognize the multiple correlation and regression of bivariate data	CO 6, CO 10, CO 11	T2:25.14 R2:21.33
26-27	Calculate the Karl Pearson's correlation coefficient for the given data	CO 6, CO 10,	R2:21.33
28	Calculate the Spearman's rank correlation coefficient for the given data.	CO 6, CO 10, CO 11	T2:27.2 R2:21.64
29	Understand Regression coefficients and their properties	CO 6, CO 10, CO 11	T2:27.2
30	Define the concept of least squares estimation in linear regression	CO 6, CO 10, CO 11	T2:27.2 R2:21.67
31-33	Estimate the linear model to a bivariate data to the line of regression	CO 6, CO 10, CO 11	T2:27.2
34	Understand the foundation for classical inference involving hypothesis testing and two types of errors possible	CO 7, CO 10, CO 11	T2:27.3 R2:21.71
35	Explain level of significance confidence interval	CO 7, CO 10, CO 11	T2:27.4 R2:21.68
36	Identify the confidence interval with single mean	CO 8, CO 10, CO 11	T2:27.7 R2:21.74
37	Identify the confidence interval with difference between the mean	CO 8, CO 10,	T2:27.12 R2:21.75
38	Identify the confidence interval with difference between the proportions	CO 8, CO 10,	T2:27.8 R2:21.72
39	Identify the confidence interval with difference between the proportions	CO 8, CO 10, CO 11	T2:27.8 R2:21.73

**XVIII. COURSE PLAN:** The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No		Outcomes	
40-41	Recall the definition of a t-statistics in terms of statistics of	CO 8, CO 10,	T2:27.14
	sample from a normal distribution	CO 11	R2:21.78
42	Apply the definition of F-distribution	CO 8, CO 10,	T2:27.19
		CO 11	R2:21.814
43	Apply the definition of $\chi^2$ –Distribution	CO 9, CO 10,	T2:27.12
		CO 11	R2:21.82
44-45	Apply $\chi^2$ - distribution of goodness of fit	CO 9, CO 10,	T2:27.18
		CO 11	R2:21.82

# XIX. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Introduction to R software	Seminars/NPTEL	PO 5
2	Statistical quality control charts	Seminars	PO 1

**Prepared by** Mr. Ch Chaitanya, Assistant Professor

HOD, FE