(Autonomous)
Dundigal, Hyderabad -500 043
AERONAUTICAL ENGINEERING
TUTORIAL QUESTION BANK

Course Title	PROBABILITY AND STATISTICS				
Course Code	AHSB 12				
Program	B. Tech				
Semester	THREE				
Course Type	Foundation				
Regulation	IARE - R20				
Course Structure	Theory			Theory	
	Lectures	Lectures	Lectures	Laboratory	Laboratory
	3	1	4	-	-
Course Coordinator	Mr. Ch Chaitanya, Assistant Professor				

COURSE OBJECTIVES:

The students will try to learn:	
I	The Principles of probability, the theory of random variables, basic random variate distributions and their applications.
II	The Methods and techniques for quantifying the degree of closeness among two or more variables and linear regression analysis.
III	The Estimation statistics and Hypothesis testing which play a vital role in the assessment of the quality of the materials, products and ensuring the standards of the engineering process.
IV	The statistical tools which are essential for translating an engineering problem into probability model.

COURSE OUTCOMES:

After successful completion of the course, students will be able to:		
Course Outcomes	Knowledge Level (Bloom's Taxonomy)	
CO 1	Determine the conditional probability of interdependent events by using Bayes theorem. Explain simulation of random events by using the concept of random variables	Apply
CO 2 Understand		

CO 3	Calculate the expected values, variances of the discrete and continuous random variables for making decisions under randomized probabilistic conditions.	Apply
CO 4	Interpret the Probability distributions such as Binomial, Poisson and Normal distribution by using their probability functions and parameters.	Understand
CO 5	Apply the concepts of discrete and continuous probability distribution and CLT for solving real time problems under probabilistic conditions.	Apply
CO 6	Interpret the results of Bivariate and Multivariate Regression as well as Correlation Analysis for statistical forecasting.	Understand
CO 7	Identify the role of types of statistical hypotheses, types of errors, sampling distributions of means and confidence intervals in hypothesis testing	Apply
CO 8	Apply tests of hypotheses for both large and small samples in making decisions over statistical claims.	Apply
CO 9	Test for the assessment of goodness of fit of the given probability distribution model by using Chi-square distribution.	Analyze
CO 10	Make Use of R software package in computing confidence intervals, Regression analysis and hypothesis testing.	Apply
CO 11	Select appropriate statistical methods for solving real-time engineering problems governed by laws of probability.	Apply

MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF

 PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:| Course Outcomes | Program Outcomes | | | | | | | | | | | | Program Specific Outcomes | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
| CO 1 | 3 | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - |
| CO2 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| CO3 | 3 | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - |
| CO 4 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| CO 5 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| CO 6 | 3 | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - |
| CO 7 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| CO 8 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| CO 9 | 3 | - | - | 1 | - | - | - | - | - | - | - | - | - | - | - |
| CO 10 | 3 | - | - | 1 | 3 | - | - | - | - | - | - | - | - | - | - |
| CO 11 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| TOTAL | 33 | 4 | | 5 | 3 | | | | | | | | | | |
| AVERAGE | 3 | 2 | | 1 | 3 | | | | | | | | | | |

TUTORIAL QUESTION BANK

MODULE - I
PROBABILITY AND RANDOM VARIABLES
PART - A (SHORT ANSWER QUESTIONS)

S No	Questions	Blooms Taxonomy Level	How does this Subsume the level	Course Outcome
1	State the definition of probability?	Remember	---	CO 1
2	Explain the classical definition of probability. Find the probability for a leap year to have 52 Mondays and 53 Sundays?	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to find the probability for a leap year to have 52 Mondays and 53 Sundays.	CO 1
3	State the definition of conditional probability?	Remember	---	CO 1
4	State the Baye's theorem.	Remember	---	CO 1
5	State the definitions of discrete and continuous random variables with a suitable example.	Remember	---	CO 1
6	List out the important Properties of probability density function.	Remember	---	CO 2
7	Find the probability distribution of getting number tails if we toss three coins calculate mean.	Remember	---	CO 2
8	State the definition of mathematical expectation of a probability distribution function	Remember	---	CO 3
9	State the definition of the Mean and Variance of a probability mass function.	Remember	---	CO 3
10	State the definition of the Mean and Variance of a probability density function.	Remember	---	CO 3
11	Find the probability distribution for sum of scores on dice if we throw two dice.	Remember	---	CO 2, CO 3
12	Out of 24 mangoes, 6 mangoes are rotten. If we draw two mangoes. Obtain probability distribution of number of rotten mangoes that can be drawn. also find the expectation	Remember	---	CO 2, CO 3
13	If X is a random variable then show that $E[X+K]=E(X)+K$ where ' K ' constant.	Understand	Learner to Explain the concept of random variable and Prove $E[X+K]=E(X)+K$, where ' K ' constant.	CO 3
14	Show that $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$.	Understand	Learner to Explain the concept of variance of a random variable and Prove $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$	CO 3
15	State the definitions of the probability mass function and probability density of random variables.	Remember	---	CO 2

16	If X is Discrete Random variable then show that $V[a X+b]=a^{2} V(X)$.	Understand	Learner to Explain the concept of variance of a random variable and Prove that $V[a X+b]=$ $a^{2} V(X)$.	CO 3
17	State the classical definition of probability. If a fair coin is tossed six times. calculate the probability of getting four heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 6 times.	CO 1
18	State the definition of different types of random variables with example.	Remember	---	CO 2
19	outline the classical definition of probability. A coin is tossed 9 times. calculate the probability of getting 5 heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 9 times.	CO 1
20	State the definition of random variable with an example.	Remember	---	CO 2
PART-B (LONG ANSWER QUESTIONS)				
1	A bag A contains 2 white and 3 red balls and a bag B contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and it is found to be red. Calculate the probability that the red ball drawn is from bag B.	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
2	Suppose 5 men out of 100 and 25 women out of 10000 are color blind. A color-blind person is chosen at random. Calculate the probability of the person being a male (Assume male and female to be in equal numbers)?	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
3	In a bolt factory machines A, B, C manufacture 20%, 30% and 50% of the total of their output and $6 \%, 3 \%$ and 2% are defective. A bolt is drawn at random and found to be defective. Calculate the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C.	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
4	Bag I contain 2 white, 3 red balls and bag II contains 4 white, 5 red balls, one ball is drawn at random from one of the bags it found to be red. Calculate the probability that red ball is drawn from bag I.	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
5	In a certain college 25% are boys 10% are girls are studying statistics, the girls constitute 60% of class room. a) Calculate probability that statistics is being studied? b) If a student is selected at random and is found to be studying statistics, Calculate the probability that the	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1

	student is a girl?								
6	The length of time (in minutes) that a certain lady speaks on the telephone is found to be random phenomenon, with a probability function specified by the function $f(x)=\left\{\begin{array}{l}A e^{-\frac{x}{5}}, x \geq 0 \text {. (i) Calculate the value } \\ 0, \text { otherwise }\end{array}\right.$ of A that makes $f(x)$ a probability density function. (ii) calculate the probability that she will take over the phone is more than 20 minutes?						Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
7	If X denote the sum of the two numbers that appear when a pair of fair dice is tossed. Estimate the (i) Distribution function (ii) Mean and (iii) Variance.						Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 3
8	Is the function defined as follows a density function $f(x)=\left\{\begin{array}{c}e^{-x}, x \geq 0 \\ 0, x<0\end{array}\right.$. If so, estimate the probability that the variate having This density will fall in the interval (1,2)? Calculate the cumulative probability F (2)?						Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
9	If probability density function $f(x)=\left\{\begin{array}{c}K x^{3}, 0 \leq x \leq 3 \\ 0, \text { elsewhere }\end{array}\right.$. Calculate the value of K and Calculate the probability between $x=1 / 2$ and $x=3 / 2$.						Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
10	Calculate (i) k (ii) $P(x<6)($ iii) $P(X \geq 6)$					wing probability (≥ 6)	Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 3
11	Let X denotes the minimum of the two numbers that appear when a pair of fair dice is thrown once. calculate the (i) Discrete probability distribution (ii) Expectation (iii) Variance.						Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete	CO 3

										range probabilities, expected values.	
12	A ran funct X $\mathrm{P}(\mathrm{x})$ Then	dom: -3 k Calcu	riable -2 0.1 te (i)	X has -1 k (ii)	$\begin{aligned} & \text { ne foll } \\ & \hline 0 \\ & \hline 0.2 \\ & \hline \text { ean (iii } \end{aligned}$		obabi 2 0.4 e.	ity $\begin{array}{\|l\|} \hline 3 \\ \hline 2 k \end{array}$	Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 3
13	A continuous random variable has the probability density function $f(x)=\left\{\begin{array}{l} k x e^{-\lambda x}, \text { for } x \geq 0, \lambda>0 \\ 0, \text { otherwise } \end{array}\right.$ Evaluate (i) Mean (ii) Variance by finding k.								Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
14	If the Probability density function of random variable is $f(x)=k\left(1-x^{2}\right), 0<x<1$, then Calculate (i) k (ii) $P(0.1<x<0.2)$ (iii) $P(x>0.5)$.								Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
15	A ran funct X P(X Calcu devia	Calculate (i) Expectation (ii) variance (iii) Standard deviation.							Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 3
16	If X is a Continuous random variable whose density function is $f(x)=\left\{\begin{array}{rr} x & \text { if } 0<x<1 \\ 2-x & \text { if } 1 \leq x<2 \\ 0 & \text { elsewhere } \end{array}\right.$ Evaluate $E\left(25 X^{2}+30 X-5\right)$.								Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
17	The cumulative distribution function for a continuous random variable X is $F(x)=\left\{\begin{array}{c}1-e^{-2 x}, x \geq 0 \\ 0, x<0\end{array}\right.$ Evaluate (i) density function $\mathrm{f}(\mathrm{x})$ (ii) Mean and (iii) Variance of the density function.								Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability distributive function of a continuous random variable and use it to calculate the	CO 3

			continuous range probabilities, expected values.	
18	Two coins are tossed simultaneously. Let X denotes the number of heads then Calculate $E[X], E\left(X^{2}\right), E\left(X^{3}\right), V(X)$.	Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 3
19	Is the function defined by $f(x)=\left\{\begin{array}{c} 0, \quad x<2 \\ \frac{1}{18}(2 x+3), \quad 2 \leq x \leq 4 \\ 0, \quad x>4 \end{array}\right.$ a probability density function? Estimate the probability that a variate having $\mathrm{f}(\mathrm{x})$ as density function will fall in the interval $2 \leq x \leq 3$.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
20	The probability density function of a random variable X is $f(x)=\frac{K}{x^{2}+1},-\infty<x<\infty$. Calculate K and the distribution function $\mathrm{F}(\mathrm{x})$.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 3
PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)				
1	If the probability that a communication system will have high fidelity is 0.81 and the probability that it will have selectivity and fidelity is 0.18 . what is the probability that a system with high fidelity will also have high selectivity?	Apply	Learner to recall the formula of conditional probability and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
2	A businessman goes to hotels X, Y, Z, 20\%, 50\% and 30% of the time respectively. It is known that $5 \%, 4 \%$, 8% of the rooms in X, Y, Z hotels have faulty plumbing. Calculate the probability that business man's room having faulty pluming is assigned to hotel Z ?	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
3	In a factory, machine A produces 40% of the output and machine B produces 60%. On the average, 9 items in 1000 produced by A are defective and 1 item in 250 produced by B is defective. An item drawn at random from a day's output is defective. Estimate the probability that it was produced by A or B?	Apply	Learner to recall the Bayes law and its parameters. Then assigning correct values for the parameters and Calculate the required conditional probability.	CO 1
4	A fair die is tossed. Let the random variable X denote the twice the number appearing on the die:(i) construct the probability distribution of X hence find Mean and	Apply	Learner to recall the concept of a discrete random variable and explain the properties of	CO 1

	Calculate c, mean and variance of X.		continuous random variable and use it to calculate the continuous range probabilities, expected values.	
MODULE - II				
PROBABILITY DISTRIBUTIONS				
PART - A (SHORT ANSWER QUESTIONS)				
1	20% of items produced from a goods factory are defective. If we choose 5 items randomly then Calculate the probability of non-defective item.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 5
2	The probability if no misprint in a book is e^{-4}. Calculate probability that a page of book contains exactly two misprints.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 5
3	Assume that 50% of all engineering students are good in Mathematics. Determine the probability that among 18 engineering students exactly 10 are good in Mathematics.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 5
4	If the probability of a defective bolt is 0.2 , Calculate (i) mean (ii) standard deviation for the bolts in a total of 400 .	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 5
5	Interpret the properties of Binomial distribution.	Understand	Learner to Define the binomial distribution and explain its properties and parameters.	CO 4
6	If $\mathrm{n}=4, \mathrm{p}=0.5$ then Calculate standard deviation of the binomial distribution.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 5
7	Explain the properties of Poisson distribution.	Understand	Learner to Define the Poisson distribution and explain its properties and parameters.	CO 4
8	Build the binomial distribution for which the mean is 4 and variance 3	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required parameters.	CO 5

9	If X is normally distributed with mean 2 and variance 0.1, then Calculate $P(\|x-2\| \geq 0.01) ?$	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 5
10	If X is Poisson variate such that $\mathrm{P}(\mathrm{X}=1)=24 \mathrm{P}(\mathrm{X}=3)$ then Calculate the mean.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the mean.	CO 5
11	Explain the properties of normal distribution Normal distribution.	Understand	Learner to Define the Normal distribution and explain its properties and parameters.	CO 4
12	Interpret the properties of Binomial distribution. Derive the recurrence relation for binomial distribution.	Understand	Learner to Define the binomial distribution and explain its properties and use it to derive the recurrence relation.	CO 4
13	The mean and variance of a binomial distribution are 4 and $4 / 3$ respectively. Then Calculate $P(x=1)$.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 5
14	In eight throws of a die 5 or 6 is considered a success. Calculate the mean number of success	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 5
15	If a bank received on the average 6 bad cheques per day, Calculate the probability that it will receive 4 bad cheques on any given day.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 5
16	Illustrate the properties of the Normal curve.	Understand	Learner to recall the definition of Normal distribution and Illustrate the properties of Normal curve.	CO 4
17	State the formulae of Mean, Variance of Poisson distribution	Remember	---	CO 4
18	State the formulae of mode of a Binomial distribution.	Remember	---	CO 4
19	State the formulae of mean, variance of Binomial distribution.	Remember	--	CO 4
20	Explain the properties of Poisson distribution. Derive the recurrence relation for the Poisson distribution.	Understand	Learner to Define the Poisson distribution and explain its properties and use it to derive the recurrence relation.	CO 4

PART-B (LONG ANSWER QUESTIONS)						

			the required frequencies.	
18	Show that the recurrence relation for the Poisson distribution is $P(x)=\frac{\lambda}{x} \cdot P(x-1)$	Understand	Learner to Define the Poisson distribution and explain its properties and use it to derive the recurrence relation.	CO 4
19	The life of electronic tubes of a certain type may be assumed to be normal distributed with mean 155 hours and standard deviation 19 hours. Calculate the probability that the life of a randomly chosen tube is (i) between 136 hours and 174 hours. (ii) less than 117 hours (iii) will be more than 195 hours	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 5
20	The probability that a man hitting a target is $1 / 3$. If he fires 5 times, the probability that he fires (i) At most 3 times (ii) At least 2 times	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 5
PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)				
1	Show that the Poisson distribution is a limiting case of Binomial distribution.	Understand	Learner to recall the definitions of Binomial as well as Poisson distributions and outline the proof of the theorem that Poisson distribution is a limiting case of Binomial distribution.	CO 4
2	Explain the properties of normal distribution. Calculate the variance of the Poisson distribution.	Understand	Learner to recall the definition of Poisson distribution and outline the proof of variance of Poisson distribution	CO 4
3	Explain the properties of normal distribution. Determine the Mode in Normal distribution.	Understand	Learner to recall the definition of Normal distribution and Illustrate the properties of Normal curve and derive the mode of normal distribution.	CO 4
4	Explain the properties of normal distribution. Calculate the median of the Normal distribution.	Understand	Learner to recall the definition of Normal distribution and Illustrate the properties of Normal curve and derive the median of normal distribution.	CO 4
5	The marks obtained in Statistics in a certain examination found to be normally distributed. If 15% of the students greater than or equal to 60 marks, 40% less than 30 marks. Calculate the mean and standard deviation.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and standard deviation.	CO 5
6	The variance and mean of a binomial variable X with parameters n and p are 4 and 3. Calculate i) $P(X=1)$ ii) $P(X \geq 1)$ iii) $P(0<X<3)$.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate	CO 5

	Calculate the correlation co-efficient.		the coefficient of correlation for the given data.			
8	State the properties of rank correlation coefficient.	Remember	--	CO 6		
9	Outline the properties of coefficient correlation. From the following data calculate (i) correlation c coefficient (ii) standard deviation of y. $b_{x y}=0.85$, $b_{x y}=0.89, \sigma_{x}=3$.	Understand	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 6		
10	Outline the properties of coefficient correlation. If N=8, $\sum X=544, \sum Y=552, \sum X Y=37560$ then Calculate COV (X, Y).	Understand	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the covariance for the given data.	CO 6		
11	Outline the properties of coefficient correlation. The equations of two regression lines are $7 \mathrm{x}-16 \mathrm{y}+9=0,5 \mathrm{y}-$ $4 \mathrm{x}-3=0$. Calculate the coefficient of correlation.	Understand	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 6		
12	State the normal equations for regression lines?	Remember	--- 13 State the formula of multiple correlation.	Remember		---
:---						

												multiple correlation for the given data.	
PART-B (LONG ANSWER QUESTIONS)													
1	Interpret the properties of rank correlation coefficient. A random sample of 5 college students is selected and their grades in mathematics and statistics are found to be										Understand	Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using spearman's rank coefficient of correlation.	CO 6
				1		3		4	5				
	Mathematics			85	60	73		40					
	Statistics			93	75	65		50					
	Calculate Spearman's rank correlation coefficient.												
2	Interpret the properties of correlation coefficient. Calculate the coefficient of correlation from the following data										Understand	Learner to recall the concept of coefficient of correlation and Interpret the degree of closeness between the given two variables by using Pearson's coefficient of correlation.	CO 6
	x y	12	9	8	10		11	13		7			
	y	14	8	6	9		11	12		13			
3	Explain the properties of rank correlation coefficient. The following data gives the marks in obtained by 10 students in accountancy and statistics.										Understand	Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using spearman's rank coefficient of correlation.	CO 6
	R	1	2	- 4	5	6	7	8	9	10			
	A	45	70	5	90	40	50	507	758	60			
	S	35	90	0	- 95	40	80	80	- 80	50			
	Where R: roll number, A: accountancy, S: statistics. Calculate the coefficient of correlation.												
4	Interpret the properties of correlation coefficient. Calculate the Karl Pearson's coefficient of correlation from the following data.										Understand	Learner to recall the concept of coefficient of correlation and Interpret the degree of closeness between the given two variables by using Pearson's coefficient of correlation.	CO 6
	W	100	101	102	102	100	99	97	98	96			
	C	98	99	99	97	95	92	95	94	90			
	Where W: wages and C: cost of living.												
5	Explain the properties of rank correlation coefficient. Calculate a suitable coefficient of correlation for the following data:										Understand	Learner to recall the concept of coefficient of correlation and Interpret the degree of closeness between the given two variables by using Pearson's coefficient of correlation.	CO 6
	F	15	18	20	24	30		35	40	50			
	P	85	93	95	105	12		130	150	160			
	Where F: Fertilizer used(tones) and P: Productivity (tones)												
6	Explain the properties of correlation coefficient. The following table give the distribution of the total population and those who are totally partially blind among them. Calculate out if there is any relation between age and blindness.										Understand	Learner to recall the concept of coefficient of correlation and Interpret the degree of closeness between the given two variables by using Pearson's coefficient of correlation.	CO 6
	A	$\begin{aligned} & \hline 0- \\ & 10 \end{aligned}$	$\begin{aligned} & 10- \\ & 20 \end{aligned}$	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 30- \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & \hline 50- \\ & 60 \end{aligned}$	$\begin{aligned} & \hline 60- \\ & 70 \end{aligned}$	$\begin{array}{\|l\|} \hline 70- \\ 80 \\ \hline \end{array}$			
	N	100	60	40	36	24		11	6	3			
	B	55	40	40	40	36		22	18	15			

	Where A: age intervals, N: No of persons in thousands and B: no of blind persons.							
7	Interpret the properties of rank correlation coefficient. Following are the ranks obtained by 10 students in two subjects, Statistics and Mathematics. Estimate To what extent the knowledge of the students in two							
subjects is related?								

	From the above data show how to Calculate the coefficients of the equation $Y(x)=a+b x$.											
14	Outline the formula of angle between two regression lines. If $\sigma_{x}=\sigma_{y}=\sigma$ and the angle between the regression lines is $\operatorname{Tan}^{-1}\left(\frac{4}{3}\right)$. Calculate r .									Understand	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 6
15	Outline the formula of multiple correlation coefficient. From the following data Calculate the multiple coefficients of correlation of X_{3} on X_{1} and X_{2}.									Understand	Learner to recall the concept of coefficient of multiple correlation and Interpret the degree of closeness among the given three variables by using coefficient of multiple correlation.	CO 6
	X_{1}	3	5	6		8	12		14			
		16	10	7		4	3		2			
		90	72	5		42	30		12			
16	Interpret the properties of regression coefficients. For 20 army personal the regression of weight of kidneys (Y) on weight of heart (X) is $\mathrm{Y}=0.399 \mathrm{X}+6.394$ and the regression of weight of heart on weight of kidneys is $\mathrm{X}=1.212 \mathrm{Y}+2.461$. Calculate the correlation coefficient.									Understand	Learner to recall the concept of regression lines and Interpret the degree of closeness between the given two variables by using coefficient of correlation and regression coefficients.	CO 6
17	Outline the formulae of regression lines. Calculate the most likely production corresponding to a rainfall 40 from the following data:									Understand	Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.	CO 6
				Rain	fall		Produ	ction	(Y)			
	Average			30			500 Kgs					
	Standard deviation			5			100 Kgs					
	Coefficient of correlation			0.8								
18	Outline the formulae of regression lines. The heights of mothers and daughters are given in the following table. From the two tables of regression estimate the expected average height of daughter when the height of the mother is 64.5 inches.									Understand	Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using Pearson's coefficient of correlation.	CO 6
	M	626	64	6			66	68	70			
	D	$64 \quad 6$	61	69			68	1	65			
	Where F: Mother's height in inches and D: Daughter's height in inches.											
19	Explain the properties of rank correlation coefficient. A panel of two judges P and Q graded seven dramatic performances by independently awarding marks as follows:									Understand	Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using spearman's rank coefficient of correlation.	CO 6
	Performance		1	2	3	4	5	6	7			
	Marks by P		46	42	44	40	43	41	45			
	Marks by Q		40	38	36	35	39	37	41			
	The eight performance, which judge Q would not attend, was awarded 37 marks by judge P. If judge Q had also been present, calculate how many marks would be expected to have been awarded by him to the eighth performance.											

7	Outline the formula of angle between two regression lines. If $\sigma_{x}=\sigma_{y}=\sigma$ and the angle between the regression lines are $\theta=\operatorname{Tan}^{-1}(3)$. Obtain r .							Understand		earner to recall the concept of egression lines and Interpret he angle between the given regression lines by using oefficient of correlation and egression coefficients.	CO 6
8	Outline the formula of angle between two regression lines. If θ is the angle between two regression lines and S.D. of Y is twice the S.D. of X and $r=0.25$, Calculate $\tan \theta$.							Understand		earner to recall the concept of egression lines and Interpret he angle between the given egression lines by using oefficient of correlation and egression coefficients.	CO 6
9	Outline the formula of the multiple linear regression equation. Construct the multiple linear regression equation of X_{1} on X_{2} and X_{3} from the data given below:							Understand	Learner to recall the concept of multiple linear regression and Translate the inherent relation between the given three variables in to a mathematical function by using multiple linear regression.		CO 6
10	Outline the formulae of regression lines. Construct the regression equation of Y on X from the data given below, taking deviations from actual means of X and Y.							Understand	Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.		CO 6
MODULE - IV											
TESTING OF HYPOTHESIS											
PART - A (SHORT ANSWER QUESTIONS)											
1	List out the different types of sampling methods.							Remember	---		CO 7
2	State the definition of population? Give an example.							Remember	---		CO 7
3	State the definition of sample? Give an example.							Remember	---		CO 7
4	State the definition of parameter and statistic.							Remember	---		CO 7
5	find the value of correction factor if $\mathrm{n}=5$ and $\mathrm{N}=200$.							Remember	---		CO 7
6	State the definition of standard error of a statistic.							Remember	---		CO 7
7	Find out How many different samples of size $\mathrm{n}=2$ can be chosen from a finite population of size 25 .							Remember	---		CO 7
8	Find the standard error and probable error of sample size 14 and correlation coefficient 0.74 .							Remember	---		CO 7
9	If the population consists of four members $1,5,6,8$, Find How many samples of size three can be drawn with replacement?							Remember	---		CO 7
10	The mean weekly wages of workers are with standard deviation of rupees 4. A sample of 625 is selected.							Remember	---		CO 7

	Find the standard error of the mean.			
11	List out the differences between large and small samples with example.	Remember	---	CO 7
12	In a manufacturing company out of 100 goods 25 are top quality. Find sample proportion.	Remember	---	CO 7
13	Find the confidence interval for single mean if mean of sample size of 400 is 40 , standard deviation is 10 .	Remember	---	CO 7
14	Find the confidence interval for single proportion if 18 goods are defective from a sample of 200 goods.	Remember	---	CO 7
15	State the Formula of standard error of sample proportion.	Remember	---	CO 7
16	In a manufacturing company out of 200 goods 80 were faulty. Find the sample proportion.	Remember	---	CO 7
17	Find the sample proportion in one day production of 400 articles only 50 are top quality.	Remember	---	CO 7
18	State the formula for difference of means in large samples.	Remember	---	CO 7
19	State the formula of test statistic for difference of proportions in large samples.	Remember	---	CO 7
20	Find the confidence interval for mean if mean of sample size of 144 is 150 , standard deviation is 2.	Remember	---	CO 7
PART-B (LONG ANSWER QUESTIONS)				
1	A population consists of ranks of five students based on their performance in a physical test namely $2,3,6,8$ and 11. Consider all possible samples of size two which can be drawn with replacement from This population. Calculate The mean of the population. The standard deviation of the population. The mean of the sampling distribution of means. The standard deviation of the sampling distribution of means.	Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under with replacement and hence use them to calculate the required values.	CO 7
2	A population consists of ranks of six students based on their performance in a physical test namely 5,10 , $14,18,13,24$. Consider all possible samples of size two which can be drawn without replacement from This population. Calculate The mean of the population. The standard deviation of the population. The mean of the sampling distribution of means. The standard deviation of the sampling distribution of means.	Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under without replacement and hence use them to calculate the required values.	CO 7
3	A population consists of ranks of six students based on their performance in a physical test namely 4,8 , $12,16,20,24$. Consider all possible samples of size two which can be drawn without replacement from This population. Calculate The mean of the population. The standard deviation of the population. The mean of the sampling distribution of means.	Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under without replacement and hence use them to calculate the required values.	CO 7

	he standard deviation of the sampling distribution of means.			
4	A population consists of ranks of six students based on their performance in a physical test. Samples of size 2 are taken from the population $1,2,3,4,5,6$. Which can be drawn with replacement? Calculate The mean of the population. The standard deviation of the population. The mean of the sampling distribution of means. The standard deviation of the sampling distribution of means.	Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under with replacement and hence use them to calculate the required values.	CO 7
5	A population consists of ranks of five students based on their performance in a physical test. Samples of size 2 are taken from the population $3,6,9,1527$. Which can be drawn with replacement? Calculate i) The mean of the population ii) The standard deviation of the population iii) The mean of the sampling distribution of means iv) The standard deviation of the sampling distribution of means.	Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under with replacement and hence use them to calculate the required values.	CO 7
6	A population consists of ranks of five students based on their performance in a physical test. If the population is $3,6,9,15,27$. List all possible samples of size 3 that can be taken without replacement from the finite population. Calculate the mean of each of the sampling distribution of means. Calculate the standard deviation of sampling distribution of means.	Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under without replacement and hence use them to calculate the required values.	CO 7
7	The mean height of students in a college is 155 cm and standard deviation is 15 . Estimate the probability that the mean height of 36 students is less than 157 cm .	Apply	Learner to recall the statement of central limit theorem and Relate it to the normality and calculate the required probabilities by using the concept of central limit theorem.	CO 5
8	A random sample of size 100 is taken from an infinite population having the mean 76 and the variance 256 . Estimate the probability that $\overline{\mathrm{x}}$ will be between 75 and 78.	Apply	Learner to recall the statement of central limit theorem and Relate it to the normality and calculate the required probabilities by using the concept of central limit theorem	CO 5
9	The mean of certain normal population is equal to the standard error of the mean of the samples of 64 from that distribution. Calculate the probability that the mean of the sample size 36 will be negative.	Apply	Learner to recall the statement of central limit theorem and Relate it to the normality and calculate the required probabilities by using the concept of central limit theorem	CO 5
10	A random sample of size 64 is taken from a normal population with $\mu=51.4$ and $\sigma=68$. Estimate the probability that the mean of the sample will	Apply	Learner to recall the statement of central limit theorem and Relate it to the normality and	CO 5

	i) exceed 52.9 ii) fall between 50.5 and 52.3 iii) be less than 50.6.		calculate the required probabilities by using the concept of central limit theorem	
11	A sample of 400 items is taken from a population whose standard deviation is 10. The mean of sample is 40. Examine whether the sample has come from a population with mean 38 also calculate 95\% confidence interval for the population.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO

	prefer brand B. Examine whether 8% difference is a valid claim.					calculated test statistic value with the tabulated value to draw the inference.	
18	If 48 out of 400 persons in rural area possessed 'cell' phones while 120 out of 500 in urban area. Can it be accepted that the proportion of 'cell' phones in the rural area and Urban area is same or not. Use 5% of level of significance.				Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8
19	Samples of students were drawn from two universities and from their weights in kilograms mean and S.D are calculated and shown below make a large sample Examine the significance of difference between means.				Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
		Mean	Standard Deviation	Sample Size			
	University A	55	10	400			
	University B	57	15	100			
20	In a big city 325 men out of 600 men were found to be smokers. Does This information support the conclusion that the majority of men in This city are smokers?				Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8
PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)							
1	Let $S=\{1,5,6,8\}$, Calculate the probability distribution of the sample mean for random sample of size 2 drawn without replacement. Calculate i) The mean of the population. ii) The standard deviation of the population. iii) The mean of the sampling distribution of means. iv) The standard deviation of the sampling distribution of means.				Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under without replacement and hence use them to calculate the required values.	CO 7
2	Samples of size 2 are taken from the population 1, 2, $3,4,5,6$. Which can be drawn without replacement? Calculate i) The mean of the population. ii) The standard deviation of the population. iii) The mean of the sampling distribution of means. iv) The standard deviation of the sampling distribution of means.				Apply	Learner to recall the concept of sampling distribution of means and explain the parameters related to sampling distribution of means under without replacement and hence use them to calculate the required values.	CO 7
3	A normal population has a mean of 0.1 and standard deviation of 2.1. Calculate the probability that mean of a sample of size 900 will be negative.				Apply	Learner to recall the statement of central limit theorem and Relate it to the normality and calculate the required probabilities by using the concept of central limit theorem	CO 5
4	A random sample of size 64 is taken from an infinite population having the mean 45 and the standard				Apply	Learner to recall the statement of central limit theorem and	CO 5

\(\left.$$
\begin{array}{|c|l|l|l|l|}\hline & \begin{array}{l}\text { deviation } 8 . \text { Calculate probability that x will be } \\
\text { between 46 and 47.5. }\end{array}
$$ \& \begin{array}{l}Relate it to the normality and

calculate the required

probabilities by using the

concept of central limit theorem\end{array}\end{array}\right]\)| CO 5 |
| :--- |

2	List the differences between t -test and F-test.	Remember	---	CO 8
3	If $\bar{x}=40, \mu=25, s=8.4, n=24$ then Find t .	Remember	---	CO 8
4	State the definition of the statistic for t test for single mean?	Remember	---	CO 8
5	State the definition of degree of freedom.	Remember	---	CO 8
6	State the Formula of the degree of freedom for F test?	Remember	---	CO 8
7	Find $\mathrm{F}_{0.05}$ with $(7,8)$ degrees of freedom.	Remember	---	CO 8
8	Find $\mathrm{t}_{0.05}$ when 16 degrees of freedom.	Remember	---	CO 8
9	A random sample of size 16 from a normal population. The mean of sample is 53 and sum of square of deviations from mean is 150 .can This sample is regarded as taken from the population having mean 56 at 0.05 level of significance.	Remember	---	CO 8
10	Find $\mathrm{F}_{0.95}$ with $(19,24)$ degrees of freedom.	Remember	---	CO 8
11	State the definition of the statistic for t test for difference of means?	Remember	---	CO 8
12	Find $\mathrm{t}_{0.99}$ when 7 degrees of freedom.	Remember	---	CO 8
13	State the formula of the degree of freedom for t test for difference of means?	Remember	---	CO 8
14	Find $\mathrm{t}_{0.95}$ when 9 degrees of freedom.	Remember	---	CO 8
15	State the definition of the statistic for F test?	Remember	---	CO 8
16	Find $\mathrm{F}_{0.99}$ with $(28,12)$ degrees of freedom.	Remember	---	CO 8
17	State the formulae for sample variance and sample standard deviation.	Remember	---	CO 8
18	State the formula of the degree of freedom for chi square test for contingency table of order 4×3 ?	Remember	---	CO 8
19	State the Formula of statistic for chi square test?	Remember	---	CO 8
20	Find $\chi_{0.05}^{2}$ at 9 degrees of freedom.	Remember	---	CO 8
PART-B (LONG ANSWER QUESTIONS)				
1	Producer of 'gutkha' claims that the nicotine content in his 'gutkha' on the average is 0.83 mg . can This claim be accepted if a random sample of 8 'gutkhas' of This type have the nicotine contents of $2.0,1.7,2.1$, $1.9,2.2,2.1,2.0,1.6 \mathrm{mg}$.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8,11
2	A sample of 26 bulbs gives a mean life of 990 hours with S.D of 20hrs. The manufacturer claims that the mean life of bulbs 1000 hrs . Examine whether the sample is up to the standard or not?	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value	CO 8, CO 11

											with the tabulated value to draw the inference.	
3	A random sample of 10 boys had the following I. Q's $70,120,110,101,88,83,95,98,107,100$. Do the data support the assumption of population means I.Q of 100 . Examine the truth value of the claim at 5% level of significance?									Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
4	The means of two random samples of sizes 9,7 are 196.42 and 198.82.the sum of squares of deviations from their respective means are 26.94, 18.73.can the samples be considered to have been the same population?									Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
5	In one sample of 8 observations the sum of squares of deviations of the sample values from the sample mean was 84.4 and another sample of 10 observations it was 102.6. Examine whether there is any significant difference between two sample variances at at 5% level of significance.									Apply	Learner to recall the procedure of F-test for equality of variances and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8
6	Two random samples gave the following results.									Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8
	Sample		ize	Sam mea		Sum devia		res of om m				
	I		0	15		90						
	II		2	14		108						
	Examine whether the samples came from the same population or not?											
7	Two independent samples of items are given respectively had the following values.									Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8
	Sample I	11	11	13	11	15	9	12	14			
	Sample II	9	11	10	13	9	8	10	-			
	Examine whether there is any significant difference between their means?											
8	Time taken by workers in performing a job by method 1 and method 2 is given below.									Apply	Learner to recall the procedure of F-test for equality of variances and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8
	Method		20	16	27	23	22	26				
	Method		27	33	42	35	32	34	38			
	Does the data show that variances of time distribution from population which these samples are drawn do not differ significantly?											
9	The no. of automobile accidents per week in a certain area as follows: $12,8,20,2,14,10,15,6,9,4$. Are these frequencies in agreement with the belief that accidents were same in the during last 10 weeks.									Apply	Learner to recall the procedure of Chi square-test for equal frequencies and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8

17	A group of 5 patients treated with medicine A weigh $42,39,48,60$ and 41 kgs . Second group of 7 patients from the same hospital treated with medicine B weigh $38,42,56,64,68,69$ and 62 kgs . Do you agree with the claim that medicine B increases the weigh significantly?										Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
18	In one sample of 10 observations, the sum of the deviations of the sample values from sample mean was 120 and in the other sample of 12 observations it was 314 . Examine whether the difference is significant at 5\% level.										Apply	Learner to recall the procedure of F-test for equality of variances and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8, CO 11
19	The following table gives the classification of 100 workers according to gender and nature of work. Examine whether the nature of work is independent of the gender of the worker.										Apply	Learner to recall the procedure of Chi square-test for independency of attributes and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8
				Stable		Unstable		Total					
	Male		40			20		60					
	Female			10		30		40					
	Total			50		50		100					
20	The following random samples are measurements of the heat-producing capacity (in millions of calories per ton) of specimens of coal from two mines:										Apply	Learner to recall the procedure of F-test for equality of variances and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8
	$\begin{array}{\|l\|} \hline \text { Mine } \\ 1 \end{array}$,260	8,130	8,350		8,070	8,340					
	Mine 2		,950	1,890	7,90		8,140	7,920		,840			
	Use the 0.05 level of significance to Examine whether it is reasonable to assume that the variances of the two populations are equal.												
PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)													
$\begin{array}{r}1 \\ \\ \\ \\ \hline\end{array}$	A mechanist making engine parts with axle diameters of 0.700 inch . A random sample of 10 parts shows a mean diameter of 0.742 inch with a S.D of 0.040 inch. Compute the statistic you would use to Examine whether the work is meeting the specifications.										Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
2	To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 9 couples and administered them a test measures the I.Q. The results are as follows.										Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
	H	117	105	97	105	123	109	86	78	103			
	w	106	98	87				90	69	108			
	Where H: husband's I.Q., W: wife's I.Q. Examine the truth value of the hypothesis at level of significance of 0.05 .												

	University B	57		15		20				
9	The measurements of the output of two units have given the following results. Assuming that both samples have been obtained from the normal populations at 10% significant level, examine whether the two populations have the same variance.							Apply	Learner to recall the procedure of F-test for equality of variances and calculate test statistic value compare it with the tabulated value to draw the inference.	CO 8
	Unit- A	14.1		10.1	14.7	13.7	14.0			
	Unit - B	14.0		14.5	13.7	12.7	14.1			
10	The nicotine in milligrams of two samples of tobacco were found to be as follows. Examine the truth value of the hypothesis for the difference between means at 0.05 level.							Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 8, CO 11
	Sample-A	24	27	26	23	25	-			
	Sample-B	29	30	30	31	24	36			

Prepared by:
Mr. CH Chaitanya, Assistant Professor
HOD, FE

