UNMANNED AIR VEHICLES

GROUP – I										
Course Code	Category	Hou	rs / V	Veek	Credits	Maximum Marks				
AAE506	Professional Elective	L	Т	Р	С	CIA	SEE	Total		
		3	-	-	3	30	70	100		
ontact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 45				
		3	- ractio	-	3					

OBJECTIVES:

The students will try to learn:

- I Introduce the major subsystems and the fundamental design phases of Unmanned Air Vehicle Systems (UAS).
- II Familiarize the basic aerodynamics and airframe configurations of unmanned air vehicles (UAVs).
- III Acquaint the various communication and navigation systems of UAVs.
- IV Accustom the basic control and stability aspects of UAVs.

COURSE OUTCOMES:

- CO 1 **Recall** the functions of each major sub-systems of the unmanned air vehicle systems to select the suitable subsystem.
- CO 2 **Demonstrate** the knowledge of basic design phases which will be considered for the design of unmanned air vehicle systems
- CO 3 **Recognize** the significant role requirement parameters which determine the shape, size, performance, and costs of UAV systems as per role requirement
- CO 4 **Demonstrate** the knowledge of the different types of drag in fixed, rotary-wing aircraft and UAV response to air turbulence in selecting the suitable airframe configuration
- CO 5 **Illustrate** the different types of airframe configurations available for unmanned air vehicle systems
- CO 6 **Outline** the scaling effects, package density, basic aerodynamics, and structures concepts used during the design of UAVs
- CO 7 Select a suitable power-plant based on power generation systems for the given role requirement
- CO 8 Analyze the attributes, performance, design issues and compromises of different types of aircrafts for UAV systems
- CO 9 **Identify** the appropriate communication and navigation systems for the UAVs as per the role requirements
- CO 10 Categorize the different techniques used to achieve the control and stability of UAV systems.
- CO 11 **Apply** the fundamental concepts of UAS in design and development of UAV systems for realworld application

MODULE-I INTRODUCTION TO UNMANNED AIRCRAFT SYSTEMS

Classes: 10

The systemic basis of UAS-system composition; Conceptual phase; Preliminary design; Selection of the system; Some applications of UAS.

MODULE-II	AERODYNAMICS AND AIRFRAME CONFIGURATIONS	Classes: 10			
configurations,	ag; Parasitic Drag; Rotary-wing aerodynamics; Response to air turbulence; Air scale effects; Packaging density ; Aerodynamics; Structures and mechanisms; ver-plants; Modular construction; Ancillary equipment.	frame			
MODULE-III	CHARACTERISTICS OF AIRCRAFT TYPES	Classes: 09			
aircraft;	e, long-range role aircraft; Medium-range, tactical aircraft; Close-range				
	COMMUNICATIONS NAVIGATION	Classes: 08			
rate and bandwi	media; Radio communication; Mid-air collision (MAC) avoidance; communic dth usage; Antenna Types; NAVSTAR Global Positioning System (GPS) - TA rtial Navigation - Radio Tracking - Way-point Navigation.				
MODULE -V	CONTROL AND STABILITY	Classes: 08			
HTOL Aircraft culmon filter- A	- Helicopters - OTE/OTE/SPH - Convertible Rotor Aircraft - Payload Control utonomy.	-Sensors –			
Text Books:					
1. Reg Austin.	, Unmanned Aircraft Systems, John Wiley and Sons., 2010.				
Reference Bool	KS:				
1. Milman &	Halkias, —Integrated Electronics, McGraw Hill, 1999.				
2. Malvino &	Leach, —Digital Principles & Applications, McGraw Hill, 1986.				
3. Collinson R.P.G, –Introduction to Avionics ^{II} , Chapman and Hall, India, 1996.					
4. Bernad Etik	in, "Dynamic of flight stability and control", John Wiley, 1972.				
Web Reference	ces:				
1. www.tc.gc.d	ca/eng/civilaviation/publications/page-6557.html				
2. www.dhl.co	m/en/about_us/logistics_insights/dhl_trend_research/				
E-Text Books	:				
www.ebookstru	st.com/9048197066/Ebooks%20Textbooks%20Handbook%20Of%20Unmann	ed.			