FLUID MECHANICS AND MACHINES

IV Semester: ME										
Course Code		Category	Hours / Week			Credits	Maximum Marks			
AMEB08		Core	L	Т	Р	С	CIA	SEE	Total	
			3	1	-	4	30	70	100	
Contact Classes: 45		Tutorial Classes: 15	Practical Classes: Nil				Tot	Total Classes: 60		
 The course should enable the students to: I. Learn about the application of mass and momentum conservation laws for fluid flows. II. Understand the importance of dimensional analysis. III. Obtain the velocity and pressure variations in various types of simple flows. IV. Analyze the flow in water pumps and turbines. 										
MODULE-I	FLUI	D STATICS						Class	Classes: 09	
Definition of fluid, Newton's law of viscosity, Units and dimensions-Properties of fluids, mass density, specific volume, specific gravity, viscosity, compressibility and surface tension, Control volume- application of continuity equation and momentum equation, Incompressible flow.										
MODULE-II	FLUID KINEMATICS AND DYNAMICS						Class	Classes: 09		
Fluid Kinematics: Kinematics of fluid flow- Eulerian and Lagrangian descriptions, Stream line, path line, streak line and stream tube, classification and description of flows for one and three dimensions. Fluid Dynamics: Euler's equation of motion, Bernoulli equation for flow along a stream line and applications, Measurement of flow.										
MODULE-III BOUNDARY LAYER CONCEPTS AND CLOSED CONDUIT FLOW						Class	Classes: 09			
Concept of boundary layer – Definition, characteristics along thin plate, laminar, transition and turbulent boundary layers, separation of boundary layer, measures of boundary layer thickness.										
Closed conduit flow: – Darcy Weisbach equation, friction factor, Head loss in pipe flow, Moody's diagram. Exact flow solutions in channels and ducts, Couette and Poisuielle flow, laminar flow through circular conduits and circular annuli.										
MODULE-IV FLUI		D MACHINES						Class	ses: 09	
Classification of water turbines, heads and efficiencies, velocity triangles- Axial, radial and mixed flow turbines- Pelton wheel, Francis turbine and Kaplan turbines, working principles – draft tube- Specific speed, unit quantities, performance curves for turbines – governing of turbines.										
MODULE-V	DIM	ENSIONAL ANALYSIS	AND	PUM	PS			Class	ses: 09	
Dimensional Analysis: Need for dimensional analysis-methods of dimension analysis, Similitude, types of similitude Dimensionless parameters-application of dimensionless parameters, Model analysis. Pumps: Theory of Roto dynamic machines, various efficiencies, velocity components at entry and exit of the rotor, velocity triangles, Centrifugal pumps, working principle, work done by the impeller, performance curves – Cavitation in pumps- Reciprocating pump-working principle.										
Text Books:										
 Rajput, "Fluid Mechanics and Hydraulic Machines", S.Chand & Co, 6th Edition, 1998 H Modi, Seth, "Hydraulics, Fluid Mechanics and Hydraulic Machinery", Rajsons Publications, 20th Edition, 2013. M. White, Fluid Mechanics, 8th Edition, Tata McGraw Hill, 2016. 										

- 4. V. Gupta and S. K. Gupta, Fundamentals of Fluid Mechanics, 4th Edition, New Age International 2011.
- 5. W. L. McCabe, J. C. Smith and P. Harriot, Unit Operations of Chemical Engineering, 7th Edition, McGraw Hill International Edition 2005.
- 6. O. Wilkes, Fluid Mechanics for Chemical Engineers, Prentice Hall of India, 2005.
- 7. R. W. Fox, P. J. Pritchard and A. T. McDonald, Introduction to Fluid Mechanics, 7th Edition, Wiley-India 2010.
- 8. R. Welty, C. E. Wicks, R. E. Wilson, G. Rorrer, Fundamentals of Momentum, Heat and Mass Transfer, 4th Edition, 2007.

Reference Books:

- 1. D.S. Kumar, "Fluid Mechanics and Fluid Power Engineering", Kotaria & Sons, 9th Edition 2013.
- 2. Dr. R K Bansal, "A Text Book of Fluid Mechanics and Hydraulic Machines", Laxmi Publications, 9th Edition, 2015.
- 3. B. R. Munson, D. F. Young, T. H. Okiishi and W. W. Huebsch, Wiley-India, 6th Edition, 2010.
- 4. R. L. Panton, Incompressible Flow, , Wiley-India, 3rd Edition, 2005.
- 5. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd Edition, Wiley- India 2002.

Web Reference:

1. https://nptel.ac.in/courses/112105171/

E-Book:

1. https://vscht.cz/uchi/ped/hydroteplo/materialy/introduction.fluid.mech.pdf