

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTION

Course Title	APPLIED PHYSICS (Common for AE / ME/ CE)								
Course Code	AHS008								
Course Structure	Lectures	Tutorials	Practicals	Credits					
	3	1	-	4					
Course Coordinator	Dr. A Jayanth Kumar, F	Dr. A Jayanth Kumar, Professor							
Team of Instructors	Dr. A Jayanth Kumar, E Ms. S Charvani, Ms. K	Dr. A Jayanth Kumar, Dr. Rizwana, Dr. N Rajeshwar Rao, Ms. S Charvani, Ms. K Sowmya, Mr. K Sai Baba, Mr. V S K Prasad							

I. COURSE OVERVIEW

The course matter is divided into five units covering duly-recognized areas of theory and study. This course develops abstract and critical reasoning by studying mathematical and logical proofs and assumptions as applied in basic physics and to make connections between physics and other branches of sciences and technology. The topics covered include dielectric and magnetic properties, acoustics of buildings, ultrasonics, equilibrium of system of forces, friction and dynamics of rigid bodies. The course helps students to gain knowledge of basic principles and appreciate the diverse applications in technological fields in respective branches and also in their lives.

II. PREREQUISITE(S)

Level	Credits	Periods	Prerequisite
UG	4	3	The basics of analytical and conceptual understanding of physics

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks		
Applied Physics	70 Marks	30 Marks	100 Marks		

Semester End Examination	70 Marks	5 questions to be answered. Each question
70 Marks	(3 Hours)	carries 14 Marks
All the Units (1, 2, 3, 4 and 5)	(5 110013)	carries 14 Marks

	Continuous Internal Assessment - 1							
	30 Marks (2 Hours)	Units I, II and III (half)	Continuous Internal Examination (CIE) (2 hours)	Part - A 5 questions to be answered out of 5 questions, each carries 1 mark. Part - B 4 questions to be answered out of 5 questions each carries 5 marks				
Average of two			Quiz-I /Alternate Assessment Tool (AAT- I)	5 marks for assignment.				
CIA Examinations	Continuous Internal Assessment - 2							
CIA Examinations	30 Marks (2 Hours)	Units III (half) IV and V	Continuous Internal	Part – A 5 questions to be answered out of 5 questions, each carries 1 mark.				
			(2 hours)	Part - B 4 questions to be answered out of 5 questions, each carries 5 marks.				
			Quiz-II /Alternate Assessment Tool (AAT- II)	5 marks for assignment.				

IV. EVALUATION SCHEME

S. No	Component	Duration	Marks					
1	CIE - I Examination	2 hour	25					
2	Quiz - I / AAT - I	-	05					
	30							
3	CIE - II Examination	2 hour	25					
4	Quiz - II / AAT - II	-	05					
	TOTAL		30					
	CIA Examination marks to be considered as average of above two CIA's							
5	EXTERNAL Examination	70						
	GRAND TOTAL							

V. COURSE OBJECTIVES

The course should enable the students to:

- I. Develop the strong fundamentals of system of forces and friction.
- II. Strengthen the knowledge of theoretical and technological aspects of dynamics of rigid bodies.
- III. Correlate principles with applications of the dielectric and magnetic materials.
- IV. Enrich knowledge in acoustics and ultrasonics.

VI. COURSE OUTCOMES

After completing this course the student must demonstrate the knowledge and ability to:

- 1. **Recall** the basic principles of physics.
- 2. Apply the concepts and principles in solving the problems of physics.
- 3. Acquire knowledge of basic terms related to dielectric materials and different polarization mechanisms.
- 4. Review properties of different magnetic materials and magnetization based on orientation of domains.
- 5. Recollect basic principles of acoustics of buildings and modern architectural acoustic techniques.
- 6. Explain production, properties and applications of ultrasonic waves.
- 7. **Review** the basic concepts of system of forces.
- 8. Analyze different law of forces and condition of equilibrium.
- 9. Discuss different types and laws of friction.
- 10. Interpret applications of friction.
- 11. Describe rotational motion of rigid bodies and moment of inertia of some of the regular shapes.
- 12. Identify and apply theorems of moment of inertia.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	Н	Assignments
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	Н	Assignments
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	S	Exercise
PO4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	Н	Exercise
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	S	Exercise
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	S	Exercise
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable	S	Discussion, Seminar

	development.		
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	N	
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	S	Discussion
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	S	Discussion, Seminar
PO11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.	Ν	
PO12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Н	Prototype, Discussion

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED

	Program Specific Outcomes	Level	Proficiency Assessed by
PSO1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products.	S	Lectures and Assignments
PSO2	Problem solving skills : imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.	S	
PSO3	Practical implementation and testing skills : Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies.	S	
	N - None S - Supportive	H – Hi	ghly Related

IX. SYLLABUS

UNIT – I DIELECTRIC AND MAGNETIC PROPERTIES

Dielectric Properties: Basic definitions, electronic, ionic and orientation polarizations-qualitative; Internal field in solids. Magnetic Properties: Basic definitions, origin of magnetic moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic moment, domain theory of ferro magnetism on the basis of hysteresis curve.

UNIT - II ACOUSTICS AND ULTRASONICS

Acoustics: Reverberation, reverberation time, Sabine's formula (qualitative), absorption coefficient, measurement of absorption coefficient, factors affecting acoustics of an auditorium and their remedies; Ultrasonics: Introduction; Generation of ultrasonic waves; Magnetostriction method, piezoelectric method, properties, applications.

UNIT – III EQUILIBRIUM OF SYSTEM OF FORCES

Introduction, basic concepts, system of forces, coplanar concurrent forces, force systems in plane, parallel forces in plane; Force systems in space, couples, resultant, Lami's theorem, triangle law of forces, polygon law of forces, condition of equilibrium.

UNIT – IV FRICTION

Friction: Types of friction, limiting friction, laws of friction, angle of repose, equilibrium of body laying on rough inclined plane, Application of friction: ladder friction, wedge friction, screw friction.

UNIT - V DYNAMICS OF RIGID BODIES - MOMENT OF INERTIA

Rotational motion, torque, angular momentum, relation between torque and angular momentum, angular momentum of system of particles, moment of inertia, expression for moment of inertia, radius of gyration, theorems on moment of inertia, moment of inertia of thin rod, rectangular lamina, circular disc.

Textbooks:

- 1. Dr. K. Vijaya Kumar, Dr. S. Chandralingam, "Modern Engineering Physics", Chand & Co. New Delhi, 1st Edition, 2010.
- 2. R. C Hibbler, "Engineering mechanics", Prentice Hall, 12th Edition, 2009.

Referencebooks:

- 1. R. K. Gaur, S. L. Gupta, "Engineering Physics", Dhanpat Rai Publications, 8th Edition, 2001.
- 2. Timoshenko, D. H. Young, "Engineering mechanics", Tata Mc Graw Hill, 5th Edition, 2013.
- 3. Hitendra K Malik, A. K. Singh, "Engineering Physics", Mc Graw Hill Education, 1st Edition, 2009.
- 4. S. S. Bhavikatti, "A text book of Engineering mechanics", New age international, 1st Edition, 2012.

X. COURSE PLAN:

Unit No.	Lecture No.	Course Learning Outcomes	Topics to be covered	Reference
	1	Acquire knowledge of basic terms related to dielectric materials.	Basic definitions of dielectric materials	T1, T2, R1, R2
	2	Discuss different polarization mechanisms in dielectrics	electronic, ionic and orientation polarizations	T1, T2, R1, R2
I	3-4	Derive expression for total electric field at a given point inside dielectrics.	Internal field in solids	T1, T2, R1, R2
	5	Acquire knowledge of basic terms related to magnetic materials.	Basic definitions of magnetic materials	T1, T2, R1, R2
	6	Describe magnetic moment in an atom in terms of Bohr Magneton	origin of magnetic moment, Bohr magneton	T1, T2, R1, R2
	7-8	Classify different magnetic materials based on electron theory.	Classification of dia, para and ferro magnetic materials on the basis of magnetic moment	T1, T2, R1, R2
	9	Examine the spontaneous magnetization in ferromagnets based on orientation of domains	Domain theory of ferro magnetism on the basis of hysteresis curve	T1, T2, R1, R2
	10	Explain the basic terms related to acoustics of buildings	Acoustics: Reverberation, reverberation time	T1, T2, R1, R2
-	11	Analyze the Sabine's formula of reverberation time	Sabine's formula	T1, T2, R1, R2
	12	Calculate the absorption coefficient of a surface	Absorption coefficient, measurement of absorption coefficient	T1, T2, R1, R2
Π	13	Identify remedies for factors affecting architectural acoustics	Factors affecting acoustics of an auditorium and their remedies	T1, T2, R1, R2
	14	Recall basics of ultrasonics	Ultrasonics: Introduction	T1, T2, R1, R2
	15	Explain the production of ultrasonics by Magnetostriction method	Generation: Magnetostriction method	T1, T2, R1, R2
	16	Explain the production of ultrasonics by Piezoelectric method	Generation: Piezoelectric method	T1, T2, R1, R2
	17	Review the properties of ultrasonics	Properties of ultrasonic waves	T1, T2, R1, R2
	18	Discuss the applications of ultrasonics	Applications of ultrasonic waves	T1, T2, R1, R2
	19	Identify the principle of forces	Introduction, basic concepts	T1, T2, R1, R4
	20	Recall different system of forces	System of forces, coplanar concurrent forces	T1, T2, R1, R4
	21	Acquire knowledge of force systems in space	Force systems in space	T1, T2, R1, R4
	22	Analyze parallel forces in plane	Parallel forces in plane	T1, T2, R1, R4

The course plan is meant as a guideline. There may probably be changes.

	23	Correlate couples in systems	Couples, resultant	T1, T2, R1, R4
	24	Apply Lami's theorem to problems	Lami's theorem	T1, T2, R1, R4
	25	Analyze triangle law of forces	Triangle law of forces	T1, T2, R1, R4
	26	Analyze polygon law of forces	Polygon law of forces	T1, T2, R1, R4
	27	Recognize condition of equilibrium	Condition of equilibrium	T1, T2, R1, R4
	28	Understand friction	Friction: Introduction, types of friction	T1, T2, R1, R2
	29	Discuss limiting friction	Limiting friction	T1, T2, R1, R2
	30	Analyze laws of friction	Laws of friction	T1, T2, R1, R2
IV	31	Describe angle of repose	Angle of repose	T1, T2, R1, R2
	32	Identify equilibrium of body laying on rough inclined plane	Equilibrium of body laying on rough inclined plane	T1, T2, R1, R2
	33	Solve problems on friction	Problems	T1, T2, R1, R2
	34	Understand ladder friction	Ladder friction	T1, T2, R1, R2
	35	Discuss wedge friction	Wedge friction	T1, T2, R1, R2
	36	Describe screw friction	Screw friction	T1, T2, R1, R2
	37	Explain basic concept rotational motion	Rotational motion, torque, angular momentum	T1, T2, R1, R2
	38-39	Derive relation between torque and angular momentum	Relation between torque and angular momentum	T1, T2, R1, R2
V	40-41	Acquire the knowledge of moment of inertia	Angular momentum of system of particles, moment of inertia, Expression for moment of inertia	T1, T2, R1, R2
	42	Examine radius of gyration	Radius of gyration	T1, T2, R1, R2
	43	Understand theorems on moment of inertia	Theorems on moment of inertia	T1, T2, R1, R2
	44	Calculate moment of inertia of thin rod, Rectangular lamina	Moment of inertia of thin rod, Rectangular lamina	T1, T2, R1, R2
	45	Calculate moment of inertia of circular disc	Circular disc.	T1, T2, R1, R2

XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES

Course	Program Outcomes										Program Specific Outcomes				
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н	Η	S	Н	S	Η	S		S	S		Н	S	S	S
п	Η	Н	S	Н	S	S	S		S	S		Н	S	S	S
Ш	Н	Н	S	Н	S	Н	S		S	Н	S	Н	S	S	S
IV	Н	Н	S	Н	S	S	S	S	S	S		Н	S	S	S
	$\mathbf{S} = \mathbf{S}\mathbf{u}$	pport	tive									$\mathbf{H} = \mathbf{H}$	ighly r	elated	

XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES

Course Outcomes	Program Outcomes													Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1	Н	Н	S	Н	S	Н	S		S	S	S	Н	S	S	S	
2	Н	Н	S	Н	S	S	S		S	S		Н	Н	S	S	
3	Н	Н	S	Н	S	S	Н	S	S	S		Н	S	S	S	
4	Н	Н	S	Н	S	S	S		S	Н	S	Н	S	S	S	
5	Н	Н	S	Н	S	S	S		S	S		Н	S	S	S	
6	Н	Н	S	Н	S	Н	S		S	S		Н	Н	S	S	
7	Н	Н	S	Н	S	S	S	S	S	S		Н	S	S	S	
8	Н	Н	S	Н	Н	S	S		S	S		Н	S	S	S	
9	Н	Н	S	Н	S	S	S		S	S		Н	Н	S	S	
10	Н	Н	S	Н	S	Н	S	S	Н	S	S	Н	S	S	S	
11	Н	Н	S	Н	S	S	Н		S	S		Н	S	S	S	
12	Н	Н	Н	Н	Н	S	S		S	Н		Н	S	S	S	
	C C											TT TT	tallar a			

S = Supportive

H = Highly related

Prepared by: Dr. A Jayanth Kumar, Professor

HOD, FRESHMAN ENGINEERING