INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal- 500 043, Hyderabad.

AERONAUTICAL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	AEROSPACE VE	AEROSPACE VEHICLE STRUCTURES-1										
Course Code	A42103	442103										
Regulation	R13 - JNTUH	R13 - JNTUH										
Course Structure	Lectures	Tutorials	Practicals	Credits								
Course Structure	3	1	-	4								
Course Coordinator	Mr. G S D Madhav	, Assistant Professor										
Team of Instructors	Mr. G S D Madhav	, Assistant Professor										

I. COURSE OVERVIEW:

The subject provides students with necessary skills and knowledge in basic aerospace structures to confidently analyze and design different aircraft structures with particular reference to aerospace industry. Each unit contrasts theoretical application to determine stability of aerospace structures. The role of approximate methods of analysis and their interaction with design process is highlighted.

II. PREREQUISITE(S):

Level	Credits	Periods/ Week	Prerequisites								
UG	4	4	Basic concepts of Engineering mechanics, Some mathematical concepts and Advanced solid mechanics								

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam marks	Total marks
Mid Semester Test		
There shall be two midterm examinations.		
Each midterm examination consists of subjective type and objective type tests.		
The subjective test is for 10 marks of 60 minutes duration.		
Subjective test of shall contain 4 questions; the student has to answer 2 questions, each carrying 5 marks.		
The objective type test is for 10 marks of 20 minutes duration. It consists of 10 Multiple choice and 10 objective type questions, the student has to answer all the questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Assignment		
Five marks are earmarked for assignments.		
There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	I Mid Examination	80 minutes	20
2.	I Assignment	-	5
3.	II Mid Examination	80 minutes	20
4.	II Assignment	-	5
5.	External Examination	3 hours	75

V. COURSE OBJECTIVES:

- I. **Discuss** the basic tasks of theory of elasticity and methods of solving the problems and to apply the methods in technical calculations on the basis of illustrative examples.
- II. **Understand** to determine the components of the stress and strain tensors and how to apply the conditions of compatibility and equations of equilibrium.
- III. Analyze statically indeterminate structure by using different approximate methods.
- IV. **Demonstrate** curvature beams and how to determine deflection using various approximation methods.
- V. **Understand** concept of stability of structural systems and different modes of instability of structures.
- VI. **Demonstrate** the basic concepts energy methods and to apply them on different structures.
- VII. Understand the concept of shear flow for various aerospace structures.

VI. COURSE OUTCOMES:

At the end of the course the students are able to:

- 1. **Apply** the stress strain relations in conjunction with elasticity and material properties to determine the strain given stress or vice versa.
- 2. Differentiate between redundant structures and determinate structures.
- 3. **Analyze** the redundant structures of complex structural components subjected to different loading and boundary conditions.
- 4. **Evaluate** beams with elastic supports.
- 5. Analyze the stability of structural elements and determine buckling loads.
- 6. **Apply** the structural analysis theories and to predict the performance of bars under axial loading including buckling.
- 7. **Analyze** the behavior of thin-walled beams subjected to combined loads, including bending, torsion, and shear.
- 8. **Discuss** about exact solution methods for various members.
- 9. Calculate analysis for different structural members by different energy methods.
- 10. **Explain** shear analysis for aerospace closed section box structures.

	Program Outcomes	Level	Proficiency assessed by
PO 1	Knowledge in fundamentals of mathematics, science and engineering.	Н	Discussions
PO 2	An ability to identify, formulate and solve problems in key areas of Aerodynamics, Structures, Propulsion, Flight Dynamics and Control, Design, Testing, Space and Missile Technologies and Aviation of Aeronautical Engineering discipline	Н	Discussions Assignments
PO 3	An ability to design and conduct experiments, analyze and interpret data related to various areas of Aeronautical Engineering.	S	Discussions
PO 4	An ability in conducting investigations to solve problems using research based knowledge and methods to provide logical conclusions.	Н	Mini Projects
PO 5	Skills to use modern engineering and IT tools, software and equipment to analyze the problems in Aeronautical Engineering.	S	Mini Projects

PO 6	Understanding of impact of engineering solutions on the society to assess health, safety, legal, and social issues in Aeronautical Engineering.	N	
PO 7	The impact of professional engineering solutions in environmental context and to be able to respond effectively to the needs of sustainable development.	Ν	
PO 8	The knowledge of Professional and ethical responsibilities.	Ν	
PO 9	An ability to work effectively as an individual and as a team member/leader in multidisciplinary areas.	S	
PO 10	An ability to critique writing samples (abstract, executive summary, project report), and oral presentations.	S	
PO 11	Knowledge of management principles and apply these to manage projects in multidisciplinary environments.	Ν	
PO 12	The need of self education and ability to engage in life - long learning.	Н	Assignments

N-None

S-Supportive

H-Highly Related

	Program Outcomes	Level	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	Н	Discussions
PSO 2	Problem solving skills: imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles	Н	Discussions Assignments
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	Н	Project
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats	Н	

N-None

S-Supportive

H-Highly Related

VII. SYLLABUS:

UNIT – I

INTRODUCTION TO THEORY OF ELASTICITY

Equilibrium and Compatibility conditions for elastic solids- 2D elasticity equations for plane stress, plane strain and generalized plane strain cases Airy's stress function. Simple problems in plane stress / plane strain. Stress and strains on arbitrary planes and transformations. Concept of principal planes, stress and strains, construction of Mohr's circle.

UNIT-II

REDUNDANT STRUCTURES

Indeterminate structures and order of redundancy. Introduction to redundant analysis. Statically determinate models- Area movement method, Claypron's method- use of free body diagrams to explain compatibility and redundant analysis principles. Singularity method for uniform beams with various boundary and support conditions (props, hinges and fixities) subjected to distributed / discrete loads (including moments).

UNIT-III

BEAMS WITH ELASTIC SUPPORTS AND INITIAL CURVATURE:

Direct solution of beams on elastic foundation, Deflection of beams with discrete elastic supports using singularity methods and modeling concepts. Equation of equilibrium for curved beam stress and deflections of a typical curved beam (Bulk Head segments on fuselages).

UNIT-IV

STABILITY

Stability of Structural systems, Modes of instability of columns. Euler's formula for critical loads of column. Slenderness ratio, Effect of boundary conditions on mode shapes and critical loads. Column with initial curvature, effect of eccentricity. Long, medium and short column ranges. Rankine and Jhonson's formulae. Eigen values and Eigen modes. Effect of intermediate supports. Concept of beam column.

UNIT-V

ENERGY PRINCIPLES AND METHODS

Introduction to energy principles and methods. Principles of Virtual Displacement and Principle of Virtual Force Castigliano's theorems, Maxwell's reciprocal theorem and Unit load method. The displacement method (Rayleigh Ritz method). Admissible functions energy and work expressions for redundant analysis of 1-D structures (rods, shafts and beams). Various 1D Structures subjected to Complex loading. Stresses of errors and convergence. Direct application of energy principles to beams and trusses. Bredt-Batho formula. Single and multi-cell closed box structures. Semi monocoque and moncoque structures. Approximate method for box beams. Shear flow in single and multicell monocoque and semi monocoque box beams subject to torsion.

Text books:

- 1. Megson THG, "Aircraft Structures for Engineering students", Edward Arnold Publication
- 2. B.C.Punmia, "Theory of Structures", Laxmi Publication.
- 3. R K Bansal, "strength of material", ,Laxmi Publication.

References:

- 1. Shames I. H. and Dym C. L, Energy and finite element methods structural analysis McGraw Hill
- 2. Timoshenko S. P. and J.N. Goodier, "Theory of Elasticity McGraw Hill Book Co.
- 3. David J. Peery" Aircraft Structures" McGRAW-HILL Book Company.
- 4. S.Ramamrutham, R.Narayanan, "Theory of Structures" Dhanpat Rai Publishing Co, 2003
- 5. Argyris J. H. and Kelsey S. Energy theorems and structural analysis, Butterworths Scientific Publications.1960
- 6. Donaldson, B. K. Analysis of Aircraft Structues-An introduction "McGraw Hill.
- 7. David H. Allen, and Walter E. Haiseler Introduction to Aeronautical Stuructre Analysis, John Wiley & Son, 1985.

VIII. COURSE PLAN:

Lecture No.	Course Learning Outcomes	Topics to be covered	Reference	
1-3	Define stress and strain. Equations associated with them	UNIT 1INTRODUCTIONTOTHEORYOFELASTICITYEquilibrium and Compatibility conditions for elastic	T1	
4-6	Examine stress functions associated with stress and	solids, 2D elasticity equations for plane stress, 2D elasticity equations plane strain and generalized plane strain cases Airy's stress function	T1	
7-8	strain Analyze plane stress and plane strain	Simple problems in plane stress and plane strain.	T1	
9-11	Relate stress and strain to other planes	Stress and strains on arbitrary planes and transformations	T3	
12-14	Describe method of analysis	Concept of principal planes, principal stress and Strains	Т3	
15-17	Evaluate problems on methods	Construction of Mohr's circle	T3	
18-20	Describe statically indeterminate structures and equations	UNIT 2 REDUNDANT STRUCTURES Indeterminate structures and order of redundancy, Introduction to redundant analysis, Statically determinate models, Use of free body diagrams to explain compatibility and redundant analysis principles.	T2	
21-23	Evaluate methods of analysis of statically indeterminate beams	Statically determinate models- Area movement method use of free body diagrams to explain compatibility and redundant analysis principles.	T2	
24-26	Evaluate methods of analysis of statically indeterminate beams	Statically determinate models- Clayprons method use of free body diagrams to explain compatibility and redundant analysis principles.	T2	
27-29	Explain methods of analysis of statically indeterminate beams	Singularity method for uniform beams with various boundary and support conditions (props, hinges and fixities) subjected to distributed / discrete loads (including moments).	-	
30-32	Explain different types of beams and solutions for beam having initial curvature	UNIT 3 BEAMS WITH ELASTIC SUPPORTS AND INITIAL CURVATURE: Direct solution of beams on elastic foundation,	-	
33-35	Discuss deflection methods for beams with initial curvature.	Deflection of beams with discrete elastic supports using singularity methods and modeling concepts.	-	
36-38	Define stress for beam with initial curvature	Equation of equilibrium for curved beam stress and deflections of a typical curved beam (Bulk Head segments on fuselages).	Т3	
39-41	Describe stability of structures and column.	UNIT 4 STABILITY Stability of Structural systems, Modes of instability of columns. Euler's formula for critical loads of column.	Τ3	
42-44	Explain method to solve critical loads for columns	Slenderness ratio, Effect of boundary conditions on mode shapes and critical loads.	T3	
45-47	Discuss classification of columns	Column with initial curvature, effect of eccentricity. Long, medium and short column ranges.	T3	
48-50	Describe methods to solve short columns	Rankine and Jhonson's formulae. Eigen values and Eigen modes. Effect of intermediate supports. Concept of beam column.	Т3	
51-53	Discuss energy principles for different conditions	UNIT 5 ENERGY PRINCIPLES AND METHODS Introduction to energy principles and methods. Principles of Virtual Displacement and Principle of Virtual Force Castigliano's theorems.	T2	

At the end of the course, the students are able to achieve the following course learning outcomes.

54-56	Explain method of solution	Maxwell's reciprocal theorem and Unit load method.	T2
	by applying theorems	The displacement method (Rayleigh Ritz method).	
57-59	Discuss various expressions	Admissible functions energy and work expressions	T2
	for 1D structures	for redundant analysis of 1-D structures (rods, shafts	
		and beams). Various 1D Structures subjected to	
		Complex loading. Stresses of errors and	
		convergence.	
60-62	Explain solution of beams	Direct application of energy principles to beams and	T2
	and trusses by energy	trusses.	
	principle method		
63-65	Discuss shear stresses in thin	Bredt-Batho formula. Single and multi-cell closed	T1
	walled structures	box structures. Semi monocoque and moncoque	
		structures.	
66-68	Explain method of solution	Approximate method for box beams. Shear flow in	T1
	for different thin walled	single and multicell monocoque and semimonocoque	
	structures.	box beams subject to torsion.	

IX. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course		Program Outcomes											Pr	Program Specific Outcomes			
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Ι	S	Н	S		S					S		Н	Η	S	S		
II	Н	Н	S	S	S							Н	Η	S	S		
III	Н	Н	Н		S					S		Н	S	Н			
IV	Н	S	S	Н	S					S		Н	Η	S			
V	Н	Н	Н	Н	S					S		Н	Η		S		
VI	Н	Н	S	S	S							Н	Η	S			
VII	Н	Н	Н	Η	S					S		Н	Н	S			

S = Supportive

H = Highly Related

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course														Progra	m Spec	ific
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
1	Н	Η	Η	S	Η				S			Η	Н	S		
2	Н				Η								Η	S		
3	Н	Η	Η	Η	Η							Η		Н	S	
4	Η	Η	Η	Η								Η		Н	S	
5	Η	S	Η	Η	Η							Η		Н	S	
6	Η	S	Η	Η								S	Η	S		
7	Η	Η		Η	S							Η		Н	S	
8	Η			S								Η	Η	S		
9	Η													Н	S	
10	Η												Η	S		

S = **Supportive**

H = Highly Related

Prepared by: Mr. G S D Madhav, Assistant Professor,

HOD, AERONAUTICAL ENGINEERING