

(Autonomous)

Dundigal, Hyderabad - 500 043

## **ELECTRONICS AND COMMUNICATION ENGINEERING**

## **COURSE DESCRIPTION FORM**

| Course Title     | : | SATELLITE CO     | SATELLITE COMMUNICATIONS                                                               |           |         |  |  |  |  |  |  |
|------------------|---|------------------|----------------------------------------------------------------------------------------|-----------|---------|--|--|--|--|--|--|
| Course Code      | : | A80452           | \$80452                                                                                |           |         |  |  |  |  |  |  |
| Academic Year    | : | 2018 - 2019      | 018 - 2019                                                                             |           |         |  |  |  |  |  |  |
| Branch           | : | IV - B. Tech ECE | V - B. Tech ECE-II Sem                                                                 |           |         |  |  |  |  |  |  |
|                  | : | Lectures         | Tutorials                                                                              | Practical | Credits |  |  |  |  |  |  |
| Course Structure |   | 4                | -                                                                                      |           | 4       |  |  |  |  |  |  |
| Course Faculty   | : |                  | Ars. G.Bhavana, Assistant Professor ,ECE<br>As.U Dhanalakshmi, Assistant Professor,ECE |           |         |  |  |  |  |  |  |

#### I. COURSEOVERVIEW

This course introduces the fundamentals of satellite communications that are important to communication system large bandwidth, satellite is a essential form of telecommunication and it has a large height to see large portion of area. Due to interference. It says about line-of-sight propagation paths and made possible transmission of microwaves with their consideration, communication satellites must maintain a certain separation and thus only a limited number of satellites can be placed in geo-stationary orbit to provide communication for a region. In addition only certain radio frequency bands and later on efficiency of the satellite communication systems are being increased by using higher band of frequency by increasing spectrum efficiency, developing high gain multiple spot beam antennas and frequency reusing technique.

#### II. PREREQUISITE(S)

| Level | Credit | Periods/Week | Prerequi                      |                 |         |                |     |  |  |  |
|-------|--------|--------------|-------------------------------|-----------------|---------|----------------|-----|--|--|--|
| UG    | 4      | 4            | Analog                        | communications, | digital | communications | and |  |  |  |
|       |        |              | Antennas and wave propagation |                 |         |                |     |  |  |  |

#### **III. MARKS DISTRIBUTION**

| Sessional Marks (25 Marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | University End<br>Exam Marks | Total<br>Marks |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|
| There shall be 2 midterm examinations. Each midterm examination consists of subjective type and Objective type tests.<br>The subjective test is for 10 marks, with duration of 1 hour. Subjective test of each midterm exam shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks.<br>The objective type test is for 10 marks with duration of 20minutes. It consists of 10 Multiple choice and 10 objective type questions. The student has to answer all the questions and each carries half mark.<br>First midterm examination shall be conducted for the first 2 ½ units of syllabus and second midterm examination shall be conducted for the remaining 2 ½ units.<br>Five marks are earmarked for assignments. There shall be two assignments in every theory course. Marks shall be awarded considering the average of two assignments in each course reason whatsoever, will get zero marks(s). |                              | 100            |



#### **IV. EVALUATION SCHEME**

| S.No | Component                | Duration(Hrs) | Marks |
|------|--------------------------|---------------|-------|
| 1    | I Mid Examination        | 1 hr 20 min   | 20    |
| 2    | I Assignment             |               | 05    |
| 3    | II Mid Examination       | 1 hr 20 min   | 20    |
| 4    | Ii Assignment            |               | 05    |
| 5    | End Semester Examination | 3 hrs         | 75    |

## **V. COURSE OBJECTIVES**

## At the end of the course, the students will be able to:

- I. Analyze the basic concept of satellite systems, its applications and its placement in the orbit.
- II. Know the satellite communication subsystems such as telemetry tracking and command systems and also designing of satellite links.
- III. Understand the effect of environment on satellite communication and the various techniques used for communication for transmission and reception of information.
- IV. Explore the satellite navigation and global positioning systems and use of various earth station technologies.
- V. Distinguish various packet communication technologies used for message transmission and reception.

## **VI. COURSE OUTCOMES**

#### After completing this course the student must demonstrate the knowledge and ability to:

- 1. Understand the basic concept of satellite communication systems and its applications.
- 2. Identify effects of orbital inclination, azimuth and elevation and placement of a satellite in a Geostationary orbit.
- 3. Develop the satellite subsystems and also design various satellite links for specified frequency ranges.
- 4. Analyze the environmental effect on satellite communication such as Atmospheric Absorption, Cloud Attenuation, tropospheric and ionospeheric Scintillation and Low angle fading.
- 5. Distinguish various types of multiple access techniques used for communicating with satellites.
- 6. Understand the concepts of transmitters, receivers, antennas, tracking systems, and terrestrial interface.
- 7. Demonstrate the impacts of GPS, Navigation, NGSO constellation design for tracking and launching.
- 8. Explain various message transmission techniques by using satellite packet communications.

# VII.HOW COURSE OUTCOMES ARE ASSESSED

|      | Program Outcomes                                                                                                                                                                                                                                                                                             | Level | Proficiency<br>assessed by           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|
| PO1  | <b>Engineering Knowledge:</b><br>Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of                                                                                                                                                 | Н     | Assignments<br>and<br>Exercises      |
| PO2  | <b>Problem Analysis:</b><br>Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and                                                                                        | н     | Exercises,<br>Assignments            |
| PO3  | <b>Design/Development of Solutions</b> :<br>Design solutions for complex engineering problems and design<br>system components or processes that meet the specified needs with<br>appropriate consideration for the public health and safety, and<br>the cultural, societal, and environmental considerations | S     | Interactive discussions              |
| PO4  | <b>Conduct Investigations of Complex Problems:</b><br>Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions                                                                  | Н     | Exercises<br>and<br>assignments      |
| PO5  | Modern Tool Usage:<br>Create, select, and apply appropriate techniques, resources, and<br>modern engineering and IT tools including prediction and<br>modeling to complex engineering activities with an                                                                                                     | S     | Work shops                           |
| PO6  | The Engineer And Society:<br>Apply reasoning informed by the contextual knowledge to<br>assess societal, health, safety, legal and cultural issues and the<br>consequent responsibilities relevant to the professional                                                                                       | N     | -                                    |
| PO7  | <b>Environment and sustainability</b> :<br>Understand the impact of the professional engineering solutions in<br>societal and environmental contexts, and demonstrate the<br>knowledge of, and need for sustainable development                                                                              | N     | -                                    |
| PO8  | <b>Ethics</b> :<br>Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice                                                                                                                                                                     | Ν     | -                                    |
| PO9  | <b>Individual and Team Work</b> :<br>Function effectively as an individual, and as a member or<br>leader in diverse teams, and in multidisciplinary settings                                                                                                                                                 | S     | Team<br>participation<br>in projects |
| PO10 | <b>Communication</b> :<br>Communicate effectively on complex engineering activities<br>with the engineering community and with society at large, such as,<br>being able to comprehend and write effective reports and design<br>documentation, make effective presentations, and give and receive            | Н     | Exams and seminars                   |
| PO11 | <b>Project management and finance</b> :<br>Demonstrate knowledge and understanding of the engineering and<br>management principles and apply these to one's own work, as<br>a member and leader in a team, to manage projects and in<br>multidisciplinary environments                                       | Н     | Exercises<br>and<br>assignments      |
| PO12 | Life-long learning:<br>Recognize the need for, and have the preparation and ability to<br>engage in independent and life-long learning in the broadest<br>context of technological change                                                                                                                    | S     | Mini<br>projects or<br>projects      |

#### VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|      | Program Specific Outcomes                                                                                                                                                                                                                                                                    | Level        | Proficiency<br>assessed by  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|
| PSO1 | <b>Professional Skills:</b> An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas like Electronics, Communications, signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems. | Н            | Lectures and<br>Assignments |
| PSO2 | <b>Problem-solving skills:</b> An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.                                                    | S            | Tutorials                   |
| PSO3 | <b>Successful career and Entrepreneurship:</b> An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.             | S            | Seminars<br>and Projects    |
| ľ    | N - None S - Supportive H - Hig                                                                                                                                                                                                                                                              | shly Related |                             |

## IX. SYLLABUS

## **UNIT - I : COMMUNICATION SATELLITE**

**ORBIT AND DESCRIPTION:** A Brief history of satellite communication, Satellite frequency Bands, Satellite Systems, Applications, Orbital period and velocity, effects of Orbital Inclination, Azimuth and Elevation, Coverage angle and Slant Range, Eclipse, Orbital Perturbations, Placement of a Satellite in a Geo-Stationary orbit.

#### **UNIT – II: SATELLITE SUB-SYSTEMS**

Attitude and Orbit Control system, TT &C subsystem, Attitude Control, Power systems, Communication subsystems, Satellite Antenna Equipment.

**SATELLITE LINK:** Basic transmission Theory, System Noise Temperature and G/T ratio, Basic Link Analysis, Interference Analysis, Design of satellite Links for a specified C/N, (With and without frequency Re-use), Link Budget.

#### **UNIT – III: PROPAGATION EFFECTS**

Introduction, Atmospheric Absorption, Cloud Attenuation, tropospheric and ionospeheric Scintillation and Low angle fading, Rain induced attenuation, rain induced cross polarization interference.

**MULTIPLE ACCESS:** Frequency Division Multiple Access (FDMA) – Inter-modulation Calculation of C/N, Time Division Multiple Access (TDMA) – Frame Structure, Burst Structure, Satellite Switched TDMA, On-board Processing, Demand Assignment Multiple Access (DAMA) — Types of Demand Assignment, Characteristics, CDMA Spread Spectrum Transmission and Reception.

#### **UNIT-IV: EARTH STATION TECHNOLOGY**

Transmitters, Receivers, Antennas, Tracking Systems, Terrestrial Interface, Power Test Methods, Lower Orbit Considerations. **SATELLITE NAVIGATION AND GLOBAL POSITIONING SYSTEMS**: Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers, GPS C/A Code Accuracy, Differential GPS.

#### **UNIT-V: SATELLITE PACKET COMMUNICATIONS**

Message Transmission by FDMA: MI G/i Queue, Message Transmission by TDMA, PURE ALOHA-Satellite Packet Switching, Slotted Aloha, Packet Reservation, Tree Algorithm.

## Text books

- 1. Timothy Pratt, Jeremy Allnutt, Charles Bostian "Satellite Communications", 2nd Edition, 2003, John Wiley & Sons.(T1)
- 2. Wilbur, L. Pritchand, Robert A. Nelson and Heuri G. Suyderhoud, "Satellite Communications Engineering" 2<sup>nd</sup> Edition., Pearson Publications. (T2)
- 3. TrjHa "Digital Satellite Communications", 2<sup>nd</sup> Edition, 1990, Mc.Graw Hill. (T3)

#### **Reference books**

- 1. Dennjs Roddy "Satellite Communications", 2nd Edition, 1996, McGraw Hill.(R1)
- 2. M. Richcharia "Satellite Communications: Design Principles", 2nd Ed., BSP, 2003. (R2)
- 3. Tn. T. Ha, "Digital Satellite Communications" 2nd Ed., MGH, 1990. (R3)
- 4. K. N. Raja Rao "Fundamentals of Satellite Communications", PHI, 2004. (R4)

## X. COURSEPLAN

At the end of the course, the students are able to achieve the following course learning outcomes:

| Lecture<br>No. | Course Learning Outcomes                                                | Topics to be covered                                                                     | Reference       |
|----------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------|
| 1              | Describe the basic idea and importance of                               | A Brief history of satellite<br>Communication                                            | T1 <b>:1</b> .1 |
|                | satellite communication                                                 |                                                                                          |                 |
| 2-3            | List out the frequency bands of satellite communication                 | Satellite Frequency Bands,<br>Satellite Systems                                          | T1:1.2          |
| 4              | List out the various applications of satellite communication            | Applications, Orbital Period and<br>Velocity                                             | T1:1.3          |
| 5-6            | Compare various effects of satellite systems                            | Effects of orbital inclination,<br>Azimuth and Elevation                                 | T1:1.4          |
| 7-8            | Define the coverage angle and slant height                              | Coverage angle and slant Range.                                                          | T1:1.5          |
| 9-12           | Formulate the orbital perturbations and placing geostationary orbit     | Eclipse, Orbital Perturbations<br>Placement of a Satellite in a Geo-<br>Stationary orbit | T1:1.6          |
| 13-16          | Evaluate the control system                                             | Attitude and Orbit Control<br>system,TT &C subsystem                                     | T1:2.1          |
| 17             | Define the attitude of control subsystem                                | Attitude Control subsystem                                                               | T1:2.2          |
| 18-19          | Describe measurement of power system                                    | Power systems, Communication subsystems                                                  | T1:2.3          |
| 20             | Design of satellite antenna                                             | Satellite Antenna Equipment                                                              | T1:2.3          |
| 21-22          | Analyze transmission theory, System<br>Noise Temperature and G/T ratio. | Basic Transmission Theory,<br>System Noise Temperature and<br>G/T ratio                  | T1:2.4          |
| 23-26          | Differentiate Basic Link Analysis,<br>Interference Analysis             | Basic Link Analysis, Interference<br>Analysis                                            | T1:2.6          |
| 27-29          | Design satellite Links for a specified C/N                              | Design of satellite Links for a specified C/N, (With and without frequency Re-use)       | T1:2.7          |
| 30-32          | Identify Link Budget                                                    | Link Budget                                                                              | T1:2.8          |

| 39-40 | Explain tropospheric and ionospeheric<br>Scintillation and Low angle fading        | Tropospheric and ionospeheric<br>Scintillation and Low angle fading                                                                                    | T1:3.1     |
|-------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 41-42 | Formulate & Relate Rain induced<br>attenuation, rain induced cross<br>polarization | Rain induced attenuation, rain<br>induced cross polarization<br>interference                                                                           | T1:3.2     |
| 43    | Evaluate Inter-modulation Calculation of C/N                                       | Frequency division Multiple<br>Access (FDMA) Inter-modulation<br>Calculation of C/N                                                                    | T1:3.3     |
| 44-45 | Employ Frame Structure of TDMA                                                     | Time Division Multiple Access<br>(TDMA) – Frame Structure                                                                                              | T1:3.3     |
| 46-48 | Explain Burst Structure, Satellite<br>Switched TDMA                                | Burst Structure, Satellite Switched<br>TDMA                                                                                                            | T1:3.5     |
| 49-50 | Define On-board Processing                                                         | On-board Processing                                                                                                                                    | T1:3.6     |
| 51    | Explain Demand Assignment Multiple<br>Access                                       | Demand Assignment Multiple<br>Access (DAMA) — Types of<br>Demand Assignment,<br>Characteristics, CDMA Spread<br>Spectrum Transmission and<br>Reception | T1:3.6     |
| 52    | Explain Transmitters, Receivers,<br>Antennas, Tracking Systems                     | Transmitters, Receivers, Antennas,<br>Tracking Systems                                                                                                 | T1:4.1     |
| 53    | Discuss Terrestrial Interface, Power Test<br>Methods                               | Terrestrial Interface, Power Test<br>Methods, Lower Orbit<br>Considerations                                                                            | T1:4.2     |
| 54-55 | List Radio and Satellite Navigation, GPS<br>Position Location Principles           | Radio and Satellite Navigation,<br>GPS Position Location Principles                                                                                    | T1:4.4     |
| 56    | Explain GPS Receivers, GPS C/A Code<br>Accuracy, Differential GPS                  | GPS Receivers, GPS C/A Code<br>Accuracy, Differential GPS                                                                                              | T1:4.6     |
| 57    | Explain Message Transmission by<br>FDMA: MI G/i Queue                              | Message Transmission by<br>FDMA: MI G/i Queue                                                                                                          | T1:5.1-5.3 |
| 58    | Define Message Transmission by TDMA                                                | Message Transmission by TDMA                                                                                                                           | T1:5.4     |
| 59    | Explain ALOHA-Satellite                                                            | PURE ALOHA-Satellite Packet<br>Switching, Slotted Aloha                                                                                                | T1:5.9     |
| 60    | Explain Tree Algorithm                                                             | Packet Reservation, Tree<br>Algorithm                                                                                                                  | T1:5.7     |

# XI. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF THE PROGRAM OUTCOMES:

| Course<br>Objectives |            | Program Outcomes |     |            |     |            |            |            |            |             |             |             | Program Specific<br>Outcomes |      |      |  |
|----------------------|------------|------------------|-----|------------|-----|------------|------------|------------|------------|-------------|-------------|-------------|------------------------------|------|------|--|
|                      | <b>PO1</b> | PO2              | PO3 | <b>PO4</b> | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | <b>PO11</b> | <b>PO12</b> | PSO1                         | PSO2 | PSO3 |  |
| I.                   | Η          |                  |     | S          |     |            | S          |            |            | Η           |             | S           | S                            |      | Н    |  |
| II.                  |            | Η                | S   |            |     |            |            |            |            | S           |             | S           | S                            |      |      |  |
| III.                 |            |                  | S   | S          | S   |            | Η          |            |            |             |             |             |                              | Н    | S    |  |
| IV.                  | S          | Η                | S   |            |     |            |            |            |            | S           |             | S           |                              | S    |      |  |
| <b>V.</b>            | S          |                  |     |            | S   |            |            |            |            |             |             | S           | H                            | S    |      |  |

S=Supportive

H = Highly Related

## XII. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF THE **PROGRAMME OUTCOMES**

| Course<br>Outcomes |            | Program Outcomes                |     |     |     |            |            |            |            |             |             |             |      | Program Specific<br>Outcomes |      |  |
|--------------------|------------|---------------------------------|-----|-----|-----|------------|------------|------------|------------|-------------|-------------|-------------|------|------------------------------|------|--|
|                    | <b>PO1</b> | <b>PO2</b>                      | PO3 | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | <b>PO9</b> | <b>PO10</b> | <b>PO11</b> | <b>PO12</b> | PSO1 | PSO2                         | PSO3 |  |
| 1.                 | Η          |                                 |     | S   |     |            |            |            |            | S           |             |             | S    |                              | Н    |  |
| 2.                 |            |                                 | Н   |     |     |            |            |            |            |             |             | S           | S    | Η                            |      |  |
| 3.                 |            |                                 | Н   | S   | S   |            |            |            |            | S           |             |             |      |                              | S    |  |
| 4.                 | S          |                                 |     | S   | S   |            | Η          |            |            | S           |             | S           | H    | S                            |      |  |
| 5.                 |            |                                 | Н   |     |     |            |            |            |            |             |             |             |      |                              |      |  |
| 6.                 | S          |                                 |     | S   | Н   |            |            |            |            | S           |             | S           | S    |                              | Н    |  |
| 7.                 |            |                                 |     |     | S   |            |            |            |            |             |             |             | Η    |                              | S    |  |
| 8.                 | S          |                                 |     | S   |     |            |            |            |            | Н           |             | S           |      | Η                            |      |  |
|                    |            | S=Supportive H = Highly Related |     |     |     |            |            |            |            |             |             |             |      |                              |      |  |

S=Supportive

H = Highly Related

**Prepared By:** 

Mrs. G.Bhavana, Assistant Professor, ECE

HOD, ECE.