

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMUS) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTION FORM

Course Title	ELECTRONIC CIF	ELECTRONIC CIRCUIT ANALYSIS					
Course Code	A40412	A40412					
Regulation	R13 – JNTUH	R13 – JNTUH					
Course Structure	Lectures	Tutorials	Practicals	Credits			
Course Structure	4	1	-	4			
Course Coordinator	Mrs. C Deepthi, Associate Professor, ECE						
	Mrs. C Deepthi, Assi						
Team of Instructors	Mrs .G Ajitha, Assistant Professor, ECE						
ream of instructors	Mrs. L. Sruthi, Assistant Professor, ECE						
	Mr. K. Ravi, Assista	ant Professor, ECE	Mr. K. Ravi, Assistant Professor, ECE				

I. COURSE OVERVIEW:

This course starts by introducing some basic ideas of electronic amplifiers, oscillator and tuned circuits. Subsequently the course covers important concepts like analysis of a single stage, multistage amplifiers. Frequency response analysis of various amplifiers is also discussed. Next the course probes into brief introduction and emphasis of MOS Amplifier. Further, design concepts of large signal (power) amplifiers are explained. In later units study of feedback concepts (both positive and negative), Oscillators and Tuned amplifiers circuits are emphasized.

II. **PREREQUISITE(S)**:

Level	Credits	Periods/ Week	Prerequisites
UG	4	5	Electronic Devices & Circuits

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam Marks	Total Marks
Midterm Test		
There shall be two midterm examinations. Each midterm examination consists of essay paper, objective paper and assignment.		
The essay paper is for 10 marks of 60 minutes duration and shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks.		
The objective paper is for 10 marks of 20 minutes duration. It consists of 10 multiple choice and 10 fill-in-the blank questions, the student has to answer all the questions and each carries half mark.	75	100
First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion.		
Five marks are earmarked for assignments. There shall be two assignments in		

Sessional Marks	University End Exam Marks	Total Marks
every theory course. Assignments are usually issued at the time of commencement of the semester. These are of problem solving in nature with critical thinking. Marks shall be awarded considering the average of two midterm tests in each course.		

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	I Mid Examination	80 minutes	20
2.	I Assignment	-	5
3.	II Mid Examination	80 minutes	20
4.	II Assignment	-	5
5.	External Examination	3 hours	75

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- I. Familiarize the student with the analysis and design of different amplifier circuits (single and multi stage) using BJTs.
- II. Understand the concepts of MOS Characteristics and analyze MOS amplifier.
- III. Understand the concepts of feed back in amplifiers and emphasis on feedback amplifiers (ckts of different implementing different topologies) and oscillators.
- IV. Familiarize with different power amplifier circuits using BJT and designing the power amplifier
- V. Learn about various tuned amplifiers and their frequency responses.

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Analyze various transistor amplifier circuits and their freq. responses at low, mid and high frequencies.
- 2. Designing amplifier circuits using BJTs.
- 3. Analyze the concepts of both positive and negative feedback in electronic circuits.
- 4. Design, construct & analyze oscillator circuits to generate signals in various frequency ranges.
- 5. Design different types of power amplifiers for practical applications of desired specifications.
- 6. Understand the concepts MOS characteristics and amplifier
- 7. Analyze different tuned amplifiers circuits.
- 8. Acquire experience in building and troubleshooting simple electronic analog circuits.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	Н	Assignments, Tutorials
PO2	Problem Analysis Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	S	Assignments
PO3	Design/Development of Solutions Design solutions for complex engineering problems and design system components or processes that	Н	Mini Projects

	Program Outcomes	Level	Proficiency assessed by
	meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations		
PO4	Conduct Investigations of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions	Н	Projects
PO5	Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations	S	Projects
PO6	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	Ν	
PO7	Environment and Sustainability Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development	S	Assignments
PO8	Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice	S	Oral Discussions
PO9	Individual and Team Work Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings	N	
PO10	Communication Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions	S	Presentations
PO11	Project Management and Finance Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments	S	Seminars, Discussions
PO12	Life-long Learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change	Н	Development of Prototype, Projects
	N - None S - Supportive	H - Hi	ghly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	Н	Lectures, Assignments
PSO2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	S	Tutorials
PSO3	Successful career and Entrepreneurship: An understanding of social- awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world	S	Seminars and Projects

Program Specific Outcomes	Level	Proficiency assessed by
applications using optimal resources as an Entrepreneur.		Ĭ
N North C Suprovidue II	Habb	Dolotod

N - None

S - Supportive

H - Highly Related

IX. SYLLABUS:

UNIT -I:

SINGLE STAGE AMPLIFIERS: Classification of Amplifiers – Distortion in amplifiers, Analysis of CE, CC and CB configurations with simplified hybrid model, Analysis of CE amplifier with emitter resistance and emitter follower, Miller's theorem and its dual, Design of single stage RC coupled Amplifier using BJT.

MULTISTAGE AMPLIFIERS: Analysis of Cascaded RC coupled BJT amplifiers, Cascode Amplifier, Darlington Pair, Different Coupling Schemes used in Amplifiers – RC coupled amplifiers, Transformer Coupled Amplifier, Direct Coupled Amplifier.

UNIT-II:

BJT AMPLIFIERS-FREQUENCY RESPONSE: Logarithms, Decibels, General frequency considerations, Frequency response of BJT Amplifier, Analysis at low and high frequencies, Effect of coupling and bypass capacitors. The Hybrid pi model –Common Emitter Transistor Model, CE Short Circuit current gain, current gain with resistive load, Single stage CE transistor Amplifier Response, Gain –Bandwidth Product, Emitter follower at high frequencies.

MOS AMPLIFIERS: Basic Concepts, MOS Small signal model, Common source amplifier with resistive load.

UNIT-III:

FEEDBACK AMPLIFIERS: Concepts of feedback, Classification of feedback amplifiers, General characteristics of negative feedback amplifiers, Effect of feedback on amplifier characteristics, Voltage Series, Voltage Shunt, Current Series and Current Shunt Feedback Configurations, Illustrative examples.

OSCILLATORS: Classification of oscillators, Condition for oscillations, RC Phase shift Oscillators, Generalized analysis of LC Oscillators-Hartley and Colpitts Oscillators, Wien Bridge and crystal Oscillators, Stability of Oscillators

UNIT-IV:

LARGE SIGNAL AMPLIFIERS: Classification, Class A Large signal amplifiers, Transformer Coupled Class A Audio Power amplifier, Efficiency of class A amplifier, Class B amplifier, Efficiency of class B Amplifier, class B Push pull Amplifier, Complementary Symmetry Class B Push Pull Amplifier, Distortion of Power Amplifiers, Thermal Stability and Heat sinks

UNIT-V:

TUNED AMPLIFIERS Introduction, Q Factor, Small signal Tuned Amplifiers, Effect of Cascading Single tuned Amplifiers on bandwidth, Effect of Cascading Double Tuned Amplifiers on Bandwidth, Stagger Tuned Amplifiers, Stability of tuned amplifiers.

TEXT BOOKS:

- 1. Integrated Electronics by J. Millman and C.C. Halkias, -1991 ed 2008 TMH. (T1)
- 2. Electronic Devices and Circuits by B.P. Singh, Rekha Singh, pearson, 2013 (T2)
- 3. Design of Analog CMOS Integrated Circuits- Behzad Razavi,2008,TMH. (T3)

REFERENCE BOOKS:

- 1. Electronic Circuit Analysis-Rashid, Cengagelearning2013 (R1)
- Electronic Devices and Circuits Theory-Robert L. Boylestad and Louis Nashelsky, PHI, 9th 2008 (R2)
- Micro Electronic Circuits by Sedra A.S. and K.C. Smith, Oxford University Press,5th Edition (R3)

- 4. Electronic Devices and Circuits by K. Lal Kishore, 2004 BSP. (R4)
- 5. Electronic Devices and Circuits by S.Salivahanan, N.Suresh Kumar, A.Vallavaraj, 2009, TMH. (**R5**)
- 6. Electronic Circuit Analysis A.P.Godse- Technical Publications (R6)
- 7. Electronic Devices and Circuits by G K Mittal Kanna Publications (**R7**)
- 8. Electronic Circuit Analysis-- by K. Lal Kishore(**R8**)

IX. COURSE PLAN:

At the end of the course, the students are able to achieve the following course learning outcomes:

Lecture No.	CLO	Unit	Learning Objective	Topics to be covered	Reference		
	Course Content Delivery Lecture Wise Break-up of Topics I SPELL						
1-3	1.		Identify different biasing techniques and types of amplifiers, amplifier analysis using hybrid model	Introduction, Classification of amplifiers	R6 1.1, 1.4		
4-5	2.		Apply the hybrid model for different types of Amplifiers.	Analysis of CE, CC and CB configurations with simplified hybrid model	R6 1.5-14		
6	3.		Identify the concept of Miller's theorem and its dual	Miller's theorem and its dual	R6 1.36		
7-10	4.		Apply the concept of Miller theorem for CE amplifier with emitter resistance and emitter follower with collector resistance	Analysis of CE amplifier with emitter resistance	R6 1.17		
11	5.		Define various distortions in amplifier circuits	Distortion in amplifiers	R7 6.3(II)		
12-15	6.	I	Differentiate various coupling schemes of BJT amplifier	Different Coupling Schemes used in Amplifiers – RC coupled amplifiers, Transformer Coupled Amplifier, Direct Coupled Amplifier.	R6 2.36		
16-17	7.		Apply the hybrid model for different types of amplifiers.	Analysis of Cascaded RC coupled BJT amplifiers, cascade, Darlington pair, CE-CC	R6 2.2.4,5,2.3, 2.4.1		
18	8.		Explain the Concepts of dB	Logarithms, Decibels, General frequency considerations	R6 3.3.1		
19-20	9.		Describe the high frequency analysis of BJT CE amplifier using hybrid- π model	The Hybrid pi model – Common Emitter	R6 3.5,6,7,8		
21-22	10.		Evaluate the current gain (short circuit and resistive load)	CE Short Circuit current gain, current gain with resistive load,	R6 3.9		
23	11.	II	Formulate & Relate the concepts of $f_{\alpha} f_{\beta} f_{\gamma}$	Single stage CE transistor Amplifier Response Gain –Bandwidth Product,	R6 3.10		

24	12.		Describe the high frequency		
24	12.		analysis of BJT CC amplifier	Emitter follower at high	R6 3.11
			using hybrid- π model	frequencies.	1000111
25-26	13.		Sketch the response of BJT	Frequency response of	
			Amplifier	BJT Amplifier, Analysis	R6 3.4
			1	at low and high	
				frequencies, Effect of	
				coupling and bypass	
				capacitors.	
Lecture No.	CLO	Unit	Learning Objective	Topics to be covered	Reference
27-29	14.		Summarize concepts of	Basic Concepts of MOS,	Т3
			MOS device and Second order	Small signal model	2.1,2,3,4
			effects and design a small		
			signal model considering the		
			second order effects		
30-32	15.		Analyze CS amplifier	Common source amplifier with resistive load	T3 3.1,.2.1
33	16.		Describe concepts of	Concepts of feedback	R6 5.1,.2
			feedback		
34	7.		Discriminate various	Classification of feedback	
0-0-			feedback amplifiers	amplifiers,	R6 5.4
35-36	18.		Examine the characteristics of	General characteristics of	R6 5.5,.6
			negative feedback amplifiers	negative feedback	
				amplifiers, Effect of	
		Ш		feedback on amplifier characteristics,	
37-40	19.		Analyze Voltage Series	Voltage Series, Current	
37-40	19.		amplifier, Current Series	Series, Current Shunt,	R6 5.7,.8
			amplifier, Current Shunt	Voltage shunt with	R 0 5.7,.0
			amplifier, Voltage shunt	illustrative example	
			amplifier	1	
		Course Co	ontent Delivery Lecture Wise II SPELL	e Break-up of Topics	·
41	20.		Distinguish various types of	Classification of	R6
			oscillators and explain the	oscillators, Condition for	6.4,.2,.3
			condition of oscillation using	oscillations,	, ,
			positive feedback		
42-45	21.		Formulate & Analyze	Generalized analysis of	R6 6.5,-
		III	general LC & RC oscillator	LC Oscillators-Hartley	6.10
				Oscillators RC Phase	
				Shift, Wien Bridge	
AC 47			F-4 L4h	94-1-11-4- 00 11 4	D((10.12
46-47	22.		Extend the concept of	Stability of Oscillators,	R6 6.12,13
			stability in oscillators and crystal oscillator	crystal Oscillators	
48	23.		Discriminate power	Classification of Power	R6 7.14
-10	25.		amplifiers based on the Q-	amplifiers	NU /.14
			point selection and angle of	miphilors	
			conduction		
49-55	24.		Analyze various power	Class A Large signal	R6 7.5-
			amplifiers and formulate their	amplifiers (series fed)	.7,.11,.12,
			efficiency	Class A Large signal	.13,
				amplifiers(transformer	
				coupled) Class A Audio	
		IV		Power amplifier,	
1				Efficiency of class A	

56-58	25.		Explain the concept of distortion in Power Amplifiers, Thermal Stability and Heat sinks.	amplifier, Class B Push pull Amplifier & effic, Complementary Symmetry Class B Push Pull Amplifier Distortion of Power Amplifiers, Thermal Stability and Heat sinks	R6 7.9,.15,.16 7.20,.21
Lecture No.	CLO	Unit	Learning Objective	Topics to be covered	Reference
59	26.		Discuss the need for tuned amplifier, basics of tuned amplifier, concept of Q-factor, classification of tuned amplifiers	Introduction, Q Factor,	R8 5.1
60-63	27	V	Analyze single tuned capacitive coupled amplifier (high freq analysis) of tapped single tuned , single tuned inductor or transformer coupled amplifier capacitive coupled amplifier	Single tuned capacitive coupled amplifier, Tapped single tuned capacitive coupled amplifier, Single tuned inductor or transformer coupled amplifier	R8 5.2,.3,.4,.5
64	28.		Illustrate the effect of cascading Single tuned Amplifiers on bandwidth	Cascading Single tuned Amplifiers on bandwidth	R6 8.10,
65-66 M A P	29.		Analyze the double tuned amplifier circuit, effect of cascading double tuning on BW, stagger Tuning	Double tuned amplifiers Effect of Cascading Double Tuned Amplifiers on Bandwidth, Stagger Tuned Amplifiers	R6 8.9,.11,.14
P 67-68 P I N	30.		Define term stability of tuned amplifiers and compensating circuits used to obtain the stability	Stability of tuned amplifiers.	R6 8.15

COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course	Program Outcomes												Program Specific Outcomes		
Objectives	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Ι	Н							S				Н		S	S
II		S			0		S			S			Н	S	
III				Н				S			S		Н	S	
IV			Н		S							Н	Н	S	
V	Н			Н			S							S	

S – Supportive

H - Highly Related

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

7 | Page

X.

Course Outcomes	Program Outcomes												Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	Н		Н					S		U	S	Н		S	S
2	Н				S		S			U	S		Н	S	
3	0	S			S			S				Н	Н	S	
4	Н			Н			S	S		S	S			S	
5	Н	S	Н		S								Н	S	
6	Н		Н	Н			S			S			Н	S	
7	Н			Н				S		S	S			S	
8	Н	S	Н		S		S						Н	S	
		C	S									-hh-Da			•

S – Supportive

H - Highly Related

Prepared by	:	Mr. K Ravi, Assistant Professor, ECE
Date	:	13 th DEC, 2016

HOD, ECE